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Abstract—An accurate and efficient finite-difference time-domain
(FDTD) method for characterizing transient waves interactions on
axially symmetric structures is presented. The method achieves its
accuracy and efficiency by employing localized and/or fast Fourier
transform (FFT) accelerated exact absorbing conditions (EACs).
The paper details the derivation of the EACs, discusses their
implementation and discretization in an FDTD method, and proposes
utilization of a blocked-FFT based algorithm for accelerating the
computation of temporal convolutions present in nonlocal EACs. The
proposed method allows transient analyses to be carried for long time
intervals without any loss of accuracy and provides reliable numerical
data pertinent to physical processes under resonant conditions. This
renders the method highly useful in characterization of high-Q
microwave radiators and energy compressors. Numerical results that
demonstrate the accuracy and efficiency of the method are presented.

Received 27 October 2010, Accepted 7 December 2010, Scheduled 15 December 2010
Corresponding author: Kostyantyn Sirenko (kostyantyn.sirenko@kaust.edu.sa).



332 Sirenko et al.

1. INTRODUCTION

Simulation tools capable of accurate and efficient characterization of
wave interactions on resonant structures are indispensible during the
design of high-Q microwave radiators and energy compressors with
storage units and switches [1–3]. Mathematical modeling of wave
interactions on these structures gives rise to open initial-boundary
value problems. For solving such problems, time-domain simulators
might be considered more advantageous over their frequency-domain
counterparts since they allow real-time observation of the physical
phenomena, can easily incorporate nonlinear components, and provide
immediately broadband system response. On the other hand, they
typically require long simulation times due to the presence of slowly
decaying fields oscillating at resonance frequencies. This renders the
transient simulation inefficient and most likely inaccurate because of
the error build up during long time marching. In this paper, a finite-
difference time-domain (FDTD) method that maintains its accuracy
and efficiency even for long simulation times is presented.

FDTD methods are widely preferred in electromagnetic simulation
for analyzing transient wave interactions mostly because of the
simplicity of their implementation [4]. However, the need for
truncation of unbounded computation domains limits their accuracy
and efficiency. In this paper, this fundamental drawback is addressed
in a fast Fourier transform (FFT) accelerated two-dimensional (2-D)
FDTD implementation that employs exact absorbing conditions
(EACs).

The problem of accurately truncating unbounded computation
domains arose soon after the introduction of FDTD methods. The
most well known solutions to this problem include enforcing absorbing
boundary conditions on the boundaries of the computation domain
and wrapping the computation domain with layers of specially
designed absorbing/lossy material, so called perfectly matched layers
(PMLs) [4]. Although PMLs are error-controllable (up to certain
degree), they will still result in non-negligible errors especially
during the simulation of long-duration processes involving resonant
structures [4]. In such cases, computation domains can be truncated
more accurately using EACs. Several different approaches have
been proposed to this end: Dirichlet-to-Neumann maps [5, 6],
Kirchhoff’s integral expressions [7–9], and Fourier transform/eigen-
function expansion method [10, 11]. Unfortunately, all of these
approaches produce EACs that are nonlocal in space and time, and
hence require substantial computational resources. Techniques that
localize either time or space interactions have been proposed. However,
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these techniques typically contain approximations [6, 12, 13] and hence
the computational errors in the solution might be unpredictable
especially when the observation time is large.

In this paper, a 2-D FDTD method for transient analysis of
axially symmetric structures is presented. The computation domain
is truncated using the EACs derived from the radiation conditions for
the outgoing modes’ spatio-temporal amplitudes [14, 15]. The nonlocal
EACs on the planar boundaries located inside the waveguides are
localized without the loss of mathematical exactness. In situations,
where the localization becomes inefficient, the nonlocal EACs are
employed together with a blocked-FFT based algorithm, which is used
for accelerating the pertinent (nonlocal) temporal convolutions [16–
22]. In addition, the same FFT-based acceleration method is used for
computing the convolutions of nonlocal EACs enforced on spherical
boundaries, which are located external to the structures only on their
radiating ends. To briefly summarize, the contributions of this paper
are threefold: (i) A detailed derivation of the (planar and spherical)
EACs for axially symmetric waveguide and radiating structures,
which follows the approach developed in [14, 15], is presented. (ii)
Implementation and discretization of these (local and nonlocal) EACs
in an FDTD method are discussed. (iii) Computation of the temporal
convolutions present in nonlocal EACs is accelerated using a blocked-
FFT based algorithm [16–22].

It should be noted here that the proposed method allows the
transient analysis to be carried for long time intervals and can provide
highly accurate and reliable numerical data pertinent to physical
processes under resonant conditions [14, 23–25]. The proposed method
is especially useful for accurate analysis of long-duration processes
in resonant radiators and energy compressors with different types
of storage units (e.g., waveguide and open resonators with metal,
semitransparent, and frequency-selective mirrors) and switches (e.g.,
distributed grating-type switches, interference and resonant switches).

The remainder of this paper is organized as follows. Section 2
starts with description of the mathematical model for the structures
that can be characterized with the proposed method, develops the
EACs and details their localization, and ends with the description of
the finite-difference based discretization of the EACs and the FFT-
based acceleration scheme. Section 3 presents several numerical results
that demonstrate the accuracy and efficiency of the proposed method.
Section 4 presents conclusions and future research directions.
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2. FORMULATION

In this section the mathematical model describing the transient wave
interactions on axially symmetric radiators and waveguide units is
derived and presented in detail. Section 2.1 presents the descriptions of
the model structures and the equations pertinent to TE0n and TM0n

waves with axial symmetry. In Section 2.2, the EACs are derived
for waveguide units and radiators using the mode expansion of the
solutions in the regions external to these structures. This is followed
by the localization of EACs for waveguide units. Section 2.3 details
the FDTD implementation and FFT-based acceleration technique for
computing the temporal convolutions present in nonlocal EACs.

2.1. Mathematical Model

Consider an example waveguide unit and an example radiator with
infinite flange presented in Figs. 1(a) and (b), respectively. Here Q =
QL ∪ (I ∪ II ∪ L1 ∪ L2) represents the unbounded physical domain;
I = {g = {ρ, z} ∈ Q : b1 ≤ ρ ≤ a1, z < −L1} represents the infinite
regular feeding waveguide, II = {g = {ρ, z} ∈ Q : b2 ≤ ρ ≤ a2, z > L2}
for Fig. 1(a) and II = {g = {r, ϑ} ∈ Q : r > L2} for Fig. 1(b) repre-
sents the homogeneous external region; the remaining bounded compu-
tation domain is denoted with QL. L1 = {g = {ρ, z} ∈ Q : z = −L1}
represents the virtual boundary between I and QL and L2 =
{g={ρ, z} ∈ Q : z=L2} for Fig. 1(a) and L2 ={g={r, ϑ} ∈ Q : r=L2}
for Fig. 1(b) represents the virtual boundary between QL and II. Con-
ducting and dielectric scatterers with conductivity σ (g, t) and relative
permittivity εr (g) are assumed to be located in QL. σ (g, t) and εr (g)
are piecewise constant functions of spatial coordinates g = {ρ, z}, and
the conductivity’s time dependence is utilized to simulate changes in
a mode of operation. The medium is nonmagnetic, i.e., its relative
permeability µr (g) = 1. The surface of the perfect electrically con-
ducting parts of the waveguide unit and the radiator is represented by
S and the surface of scatterers located in QL is represented by Sε,σ.
S and Sε,σ are assumed to be sufficiently smooth. Supports of the
source functions ϕ (g) and ψ (g) are assumed to be located in I; ϕ (g)
and ψ (g) give rise to an incident wave U i (g, t), which arrives upon the
virtual boundary L1 at time t > 0.

TE0n and TM0n waves propagating in the axially symmetric
waveguide unit and radiating to the outside satisfy [14, 15]:[−εr (g) ∂2

t −P +∂2
z +∂ρ

(
ρ−1∂ρρ

)]
U (g, t) = 0, t > 0, g = {ρ, z} ∈ Q

U (g, 0) = ϕ (g) , ∂tU (g, t)|t=0 = ψ (g) , g ∈ I (1)
Etg (g, t) = 0, g ∈ S; U (0, z, t) = 0, t ≥ 0.
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Figure 1. Geometry of the model problems: (a) a waveguide cavity
resonator fed and terminated by coaxial waveguides; (b) a parabolic
radiator with elliptical subreflector and infinite flange.

Here U = Eφ, Eρ = Ez = Hφ = 0, P [U ] = ∂t [σ (g, t) U (g, t)]
for TE0n waves, and U = Hφ, Hρ = Hz = Eφ = 0, P [U ] =
σ (g, t) ∂tU (g, t) for TM0n waves. Etg (g, t) is the component of the
electric field that is tangential to S. The SI system is used for all
physical parameters except time t which is measured in meters — it is
a product of the natural time and the speed of light in free space.

2.2. Derivation of EACs and Their Localization

The unbounded physical domain Q is reduced to the bounded
computation domain QL by defining EACs on the virtual boundaries
L1 and L2. The EACs are derived from solutions of (1) in homogeneous
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external regions I and II assuming the sources are set to zero (i.e.,
assuming (1) is a homogenous equation). The following summarizes the
steps carried out in this process, which is presented in detail afterwards:

i. The unknown solutions of homogeneous (1) in I and II are
represented as a product of transverse functions and spatio-
temporal amplitudes (using separation of variables). This
facilitates the derivation of the EACs as the transverse functions
are known (hence, only the spatio-temporal amplitudes should be
found) and decouples time and transverse space variables.

ii. The spatio-temporal amplitudes are obtained as the solutions of
pertinent homogeneous initial value problems, which are derived
by inserting the “separation of variables” expansion in (i) into
homogenous (1)). These solutions are obtained using a standard
technique: First, the homogeneous problem is converted into the
nonhomogeneous Cauchy problem using the Fourier transform.
Then, in the space of generalized functions, the solution of
the (generalized) Cauchy problem is obtained by convolving the
fundamental solution of the corresponding operator with the right
hand side of the problem. Here the right hand side of the problem
involves the spatial derivatives of the spatio-temporal amplitudes.

iii. Inverse Fourier transform provides the solutions of the homoge-
neous initial value problems in the form of a relation between
boundary values of the spatio-temporal amplitudes and their spa-
tial derivatives. These relations are then used as boundary con-
ditions on the virtual boundaries L1 and L2. Since the boundary
conditions are obtained by the use of rigorous mathematical op-
erations, it is appropriate to name them “exact”. The boundary
conditions are called “absorbing” because the wave arriving onto
L1 and L2 from the computation domain QL is neither deformed
by the boundaries, nor reflected back as if the wave is being to-
tally absorbed by the external domains I and II or by the virtual
boundaries L1 and L2.

iv. The EACs, which are obtained via the above process, are nonlocal
in space and time; therefore, their numerical implementation
requires substantial memory and computational resources. This
problem is alleviated by localizing the EACs (for waveguide units
only). The localization is based on conversion of integral forms
into equivalent differential ones.
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2.2.1. Separation of Variables and Mode Expansion of the Solution in
Homogeneous Domain

If all the requirements of one-valued solvability of the problem (1) in
Sobolev space are met [14, 26], then under the aforesaid conditions,
the solution of (1) in I can be written as a sum of incident and
scattered fields: U (g, t) = U i (g, t) + U s

1 (g, t). Separation of variables
is applied to U i (g, t), U s

1 (g, t) and U (g, t) separately and the fields are
represented as infinite sums of modes [14]:

U i (g, t) =
∑

n

vn1 (z, t) µn1 (ρ), g = {ρ, z} ∈ I (2a)

U s
1 (g, t) =

∑
n

un1 (z, t) µn1 (ρ), g = {ρ, z} ∈ I. (2b)

U (g, t) =
∑

n

ut
n1 (z, t) µn1 (ρ), g = {ρ, z} ∈ I. (2c)

The spatio-temporal (mode) amplitudes un1 (z, t), vn1 (z, t) and
ut

n1 (z, t), and the transverse functions µn1 (ρ) are related by



un1 (z, t)
vn1 (z, t)
ut

n1 (z, t)



 =

a1∫

b1





U s
1 (g, t)

U i (g, t)
U (g, t)



µn1 (ρ)ρdρ, g = {ρ, z} ∈ I. (3)

It should be noted that for b1 > 0 and b1 = 0, I represents a coaxial and
a circular waveguide, respectively. Also, n ∈ {0, 1, 2, . . .} when TM0n

waves are considered and I is a coaxial waveguide, and n ∈ {1, 2, 3, . . .}
in all other cases. Inserting (2b) into the homogenous version of (1)
(i.e., assuming εr (g) = 1, σ (g, t) = 0, ϕ (g) = 0 and ψ (g) = 0),
equations satisfied by µn1 (ρ) and un1 (z, t) are obtained (see (4) and
(5) below). The transverse functions µn1 (ρ) and the corresponding
eigenvalues λn1 are specified by nontrivial solutions of the homogeneous
problem [14, 15][

∂ρ

(
ρ−1∂ρρ

)
+ λ2

n1

]
µn1 (ρ) = 0; b1 < ρ < a1;

TE0n : µn1 (b1) = µn1 (a1) = 0 (4)
TM0n : ∂ρ(ρµn1 (ρ))|ρ=b1

=0[µn1(b1)=0 if b1 =0] ,∂ρ(ρµn1(ρ))|ρ=a1
=0.

Solutions of (4) are well-known and provided below for TE0n and TM0n

waves [14, 15]:
TE0n :
µn1 (ρ)=G1,1(λn1, ρ, b1)

√
2
[
a2

1G
2
0,1(λn1, a1, b1)−b2

1G
2
0,1(λn1, b1, b1)

]−1/2
,

λn1 ∈ {λ : λ > 0, G1,1 (λ, a1, b1) = 0} , b1 < ρ < a1;
µn1 (ρ) = J1 (λn1ρ)

√
2 [a1 J0 (λn1a1)]

−1 ,
λn1 ∈ {λ : λ > 0, J1 (λa1) = 0} if b1 = 0;
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TM0n :

µ01 (ρ)=
[
ρ
√

ln (a1/b1)
]−1

, λ01 = 0, b1 < ρ < a1,

µn1(ρ)=G1,0 (λn1, ρ, a1)
√

2
[
a2

1G
2
1,0(λn1, a1, a1)−b2

1G
2
1,0(λn1, b1, a1)

]−1/2
,

λn1 ∈ {λ : λ > 0, G0,0 (λ, b1, a1) = 0} , n > 0, b1 < ρ < a1;
µn1 (ρ) = J1 (λn1ρ)

√
2 [a1 J1 (λn1a1)]

−1 ,
λn1 ∈ {λ : λ > 0, J0 (λa1) = 0} , n > 0 if b1 = 0.

Here Gq,p (λ, ρ, c) = Jq (λρ) Np (λc)−Nq (λρ) Jp (λc), Jq (.) and Nq (.)
are Bessel and Neumann functions. The spatio-temporal amplitudes
un1 (z, t) are solutions of the initial value problem

[−∂2
t + ∂2

z − λ2
n1

]
un1 (z, t) = 0; t > 0

un1 (z, 0) = 0, ∂tun1 (z, t)|t=0 = 0 ; z ≤ −L1. (5)

Similar to the solution of (1) in I, the solution of (1) in II can also
be decomposed using separation of variables. However, in II only
scattered fields exist, U (g, t) = U s

2 (g, t), (i.e., all sources are assumed
to be located in I):

U s
2 (g, t) =

∑
n

un2 (z, t) µn2 (ρ), g = {ρ, z} ∈ II, (6a)

U s
2 (g, t) =

∑
n

un2 (r, t) µn2 (cosϑ), g = {r, ϑ} ∈ II. (6b)

The spatio-temporal (mode) amplitudes un2 (z, t) and un2 (r, t), and
the transverse functions µn2 (ρ) and µn2 (cosϑ) are related by

un2 (z, t) =

a2∫

b2

U (g, t)µn2 (ρ)ρdρ, (7a)

un2 (r, t) =

π/2∫

0

U (g, t) µn2 (cosϑ) sin ϑdϑ. (7b)

For b2 > 0 and b2 = 0, in Fig. 1(a) II represents a coaxial and a
circular waveguide, respectively. In (6a), n ∈ {0, 1, 2, . . .} when TM0n

waves are considered and II is a coaxial waveguide, and n ∈ {1, 2, 3, . . .}
in all other cases; in (6b) n ∈ {2, 4, 6, . . .} for TE0n waves, and
n ∈ {1, 3, 5, . . .} for TM0n waves. It is evident that everything stated
above for µn1 (ρ) and un1 (z, t) remains valid for µn2 (ρ) and un2 (z, t)
as well. Inserting (6b) into the homogenous version of (1), equations
satisfied by un2 (r, t) and µn2 (cosϑ) are obtained (see (8) and (9)
below). The transverse functions µn2(cos θ) and the corresponding
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eigenvalues λn2 are specified by nontrivial solutions of the homogenous
Sturm-Liouville problem [14]:

[
∂2

ϑ + ctgϑ∂ϑ − sin−2 ϑ + λ2
n2

]
µn2 (cosϑ) = 0; 0 < ϑ < π/2;

TE0n : µn2 (cosϑ)|ϑ=0, π/2 = 0 (8)

TM0n : µn2 (cosϑ)|ϑ=0 = sin−1 ϑ ∂ϑ [µn2 (cosϑ)]|ϑ=π/2 = 0.

Solutions of (8) are well-known and provided below for TE0n and
TM0n waves [14]:

µn2 (cosϑ) = P 1
n (cosϑ)

√
(2n + 1) / (n (n + 1)), λ2

n2 = n (n + 1) .

Here, P 1
n (.) are associated Legendre functions of the first kind of degree

n. The mode amplitudes un2 (r, t) are solutions of the initial value
problem

[−∂2
t + ∂2

r − r−2λ2
n2

]
r un2 (r, t) = 0; r ≥ L2, t > 0

un2 (r, 0) = ∂tun2 (r, t)|t=0 = 0; r ≥ L2.
(9)

2.2.2. Exact Absorbing Conditions for Waveguide Units and Their
Localization

In this section, the derivation of the EACs enforced on the virtual
boundaries L1 and L2 for the solution of (1) in domain QL of compact
waveguide units (Fig. 1(a)) is detailed. First, the derivation of the
EAC on L1 is presented; then the EAC on L2, which is obtained in the
same way, is only written down. This is followed by the localization of
EACs.

The derivation of the EAC on L1 starts with applying the cosine
Fourier transform, defined with transform ↔ inverse transform pair

f̃ (ω) = =c [f (z̄)] ≡
√

2
π

∞∫

0

f (z̄) cos (ωz̄) dz̄ ↔

f (z̄) = =−1
c

[
f̃ (ω)

]
≡

√
2
π

∞∫

0

f̃ (ω) cos (ω z̄) dω, (10)

to (5). This results in the Cauchy problem for the image ũn1 (ω, t) =
=c [un1 (z̄, t)] , z̄ = − (z + L1) , z̄ ≥ 0:

[
∂2

t +(λ2
n1+ω2)

]
ũn1(ω, t)=−

√
2/π∂zun1(z̄, t)|z̄=0 ; ω>0, t>0

ũn1 (ω, 0) = 0, ∂tũn1 (ω, t)|t=0 = 0;ω ≥ 0
. (11)

In the derivation of (11), cosine Fourier transform pair =c

[
∂2

z̄f (z̄)
]

=
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−ω2f̃ (ω)−
√

2/π ∂z̄f (z̄)|z̄=0, is used. It is also assumed that U s
1 (g, t)

in domain I does not contain any wave components propagating in +z
direction, and the wave components propagating in −z direction vanish
for sufficiently large |z| at any finite instant of time t = T (because of
the finite speed of light).

Problem (11) can be solved analytically using concepts of
generalized functions and fundamental solutions [27]. The generalized
statement of the problem (11) is obtained carrying out the standard
procedure: ũn1 (ω, t) and ∂zun1 (z̄, t)|z̄=0 are extended with zeroes on
semi-axis t < 0 and initial conditions of (11) are embedded into the
equation itself. Thus, the generalized statement of the problem (11)
reads as [27]

[
∂2

t + (λ2
n1 + ω2)

]
ũn1 (ω, t) = −

√
2/π ∂zun1 (z̄, t)|z̄=0

+δ(1) (t) ũn1 (ω, 0) + δ (t) ∂tũn1 (ω, t)|t=0 ; ω > 0, −∞ < t < ∞.

Here δ (.) is Dirac delta function and δ(1) (.) is its generalized first
derivative. This equation is simplified using the zero initial conditions
of (11):

D

(√
λ2

n1 + ω2

)
[ũn1(ω, t)] ≡ [

∂2
t + (λ2

n1 + ω2)
]
ũn1 (ω, t)

= −
√

2/π ∂zun1 (z̄, t)|z̄=0 ; ω > 0, −∞ < t < ∞. (12)

The fundamental solution of the operator D(λ) ≡ [
∂2

t + λ2
]

is
known [14]: G(λ, t) = χ(t)λ−1 sinλt, where χ (.) is Heaviside step
function. The convolution of G(λ, t) with the right-hand side of (12)
yields the solution of (12) [27]:

ũn1(ω, t)=−
√

2
π

t∫

0

sin
[
(t−τ)

√
λ2

n1+ω2

]
∂zun1(z̄, τ)|z̄=0√

λ2
n1+ω2

dτ ; ω≥0, t≥0.

(13)
Applying inverse cosine Fourier transform (10) to (13) and using
z = − (z̄ + L1), yields

un1 (z, t)=

t+z+L1∫

0

J0

[
λn1

(
(t−τ)2−(z+L1)

2
)1/2

]
∂zun1 (z, τ)|z=−L1

dτ,

z ≤ −L1, t ≥ 0. (14)

Expression (14) defines a transport operator, which relates the values
of spatio-temporal amplitudes’ derivatives ∂zun1 (z, t)|z=−L1

on the
virtual boundary L1 to the values of amplitudes un1 (z, t) anywhere



Progress In Electromagnetics Research, Vol. 111, 2011 341

in the regular waveguide I. In the other words, the transport operator
connects the near field to the far field. Thus, it allows the evolution of
the transient wave U s

1 (g, t) to be tracked during its propagation along
the regular waveguide I.

If the observation point in (14) lies on the artificial boundary L1,
i.e., z = −L1, then (14) becomes

un1 (−L1, t) =

t∫

0

J0 [λn1 (t− τ)] ∂zun1 (z, τ)|z=−L1
dτ ; t ≥ 0. (15)

Using (15), (2b) and (3), taking into account the orthonormality
of the transverse functions µn1 (ρ), and considering the fact that
U (ρ,−L1, t) = U i (ρ,−L1, t) + U s

1 (ρ,−L1, t), one obtains

U (ρ,−L1, t)− U i (ρ,−L1, t) =
∑

n

{ t∫

0

J0 [λn1 (t− τ)]

×



a1∫

b1

∂z

[
U (ρ̃, z, τ)− U i (ρ̃, z, τ)

]∣∣
z=−L1

µn1 (ρ̃) ρ̃dρ̃


 dτ

}
µn1 (ρ) ;

b1 ≤ ρ ≤ a1, t ≥ 0. (16)

Equation (15) establishes a relation between boundary values of
the amplitudes and their derivatives; the overall behavior of the wave
is governed by (16). Then, (16) can be regarded as an EAC on the
virtual boundary L1: the scattered wave U s

1 (g, t) = U (g, t)− U i (g, t)
is neither deformed by the boundary L1, nor reflected back into the
domain QL.

Apparently, in order to use condition (16) one needs to know
the time dependence of both incident wave U i (g, t) and its derivative
with respect to z on the virtual boundary L1. These two functions
cannot be set arbitrary. Appropriate values of the derivative
must be in agreement with the values of the function U i (g, t) and
vice versa (principle of causality). A relation between vn1 (−L1, t)
and ∂zvn1 (z, t)|z=−L1

is obtained following the same steps used in
derivation of (15):

vn1 (−L1, t) = −
t∫

0

J0 (λn1 (t− τ)) ∂zvn1 (z, τ)|z=−L1
dτ ; t ≥ 0.

(17)
The EAC on the virtual boundary L2 can be derived similarly,

when II is a waveguide. Therefore the derivation will not be repeated
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here but the result is provided as
U(ρ, L2, t) =

−
∑

n





t∫

0

J0[λn2 (t−τ)]




a2∫

b2

∂zU (ρ̃, z, τ)|z=L2
µn2 (ρ̃) ρ̃dρ̃


dτ



µn2(ρ);

b2 ≤ ρ ≤ a2, t ≥ 0. (18)
Discretization of the spatially and temporally nonlocal EACs (16)

and (18) calls for substantial memory and computational resources as
all boundary values of the spatio-temporal amplitudes obtained at all
previous time steps must be stored in order to calculate the values of
the amplitudes at the next step (note the ranges of integrals over τ and
ρ̃ that indicate nonlocality). This problem is alleviated by localizing
the EACs as described next.

The localization is achieved by converting the integral forms into
differential ones. Taking into account the representation J0 (x) =
(2/π)

∫ π/2
0 cos (x sinϕ) dϕ [28], (15) is rewritten as

un1 (−L1, t)=
2
π

π/2∫

0





t∫

0

cos (λn1 (t−τ) sinϕ)∂zun1 (z, τ)|z=−L1
dτ



dϕ;

t ≥ 0. (19)
The derivation of the differential form requires the introduction of

the variables

wn1 (t, ϕ) =

t∫

0

sin (λn1 (t− τ) sin ϕ) ∂zun1 (z, τ)|z=−L1

λn1 sinϕ
dτ ;

t ≥ 0, 0 ≤ ϕ ≤ π/2, (20)
and

W1 (ρ, t, ϕ) =
∑

n

wn1 (t, ϕ) µn1 (ρ) . (21)

Taking the derivative of (20) with respect to t yields

∂twn1 (t, ϕ) =

t∫

0

cos (λn1 (t− τ) sin ϕ) ∂zun1 (z, τ)|z=−L1
dτ. (22)

Substituting (22) into (19) yields

un1 (−L1, t) =
2
π

π/2∫

0

∂twn1 (t, ϕ) dϕ; t ≥ 0. (23)
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Integral (20) is equivalent to the solution of differential equation[
∂2

t + λ2
n1 sin2 ϕ

]
wn1 (t, ϕ) = ∂zun1 (z, t)|z=−L1

; t > 0

wn1 (0, ϕ) = ∂twn1 (t, ϕ)|t=0 = 0
. (24)

Indeed, proceeding from (24) to the generalized Cauchy prob-
lem [27] and using the fundamental solution G(λ, t) = χ(t)λ−1 sinλt
of the operator D(λ) ≡ [

∂2
t + λ2

]
(see [14]), it becomes clear that

both (20) and (24) define the same function wn1 (t, ϕ). From the equa-
tion in (4), it follows that wn1 (t, ϕ), µn1 (ρ), and W1 (ρ, t, ϕ) satisfy∑
n

λ2
n1 wn1 (t, ϕ) µn1 (ρ) = −∂ρ

(
ρ−1∂ρ (ρ W1 (ρ, t, ϕ))

)
. Using this re-

lation, (2b), (21), taking into account the orthonormality of the trans-
verse functions µn1 (ρ), and considering the fact that U (ρ,−L1, t) =
U i (ρ,−L1, t) + U s

1 (ρ,−L1, t) one obtains

U (ρ,−L1, t)−U i (ρ,−L1, t) =
2
π

π/2∫

0

∂t W1 (ρ, t, ϕ)dϕ; t ≥ 0, b1 <ρ<a1

[
∂2

t − sin2 ϕ∂ρ

(
ρ−1∂ρρ

)]
W1 (ρ, t, ϕ)

= ∂z

[
U (ρ, z, t)− U i (ρ, z, t)

]∣∣
z=−L1

; b1 < ρ < a1, t > 0

W1 (ρ, 0, ϕ) = ∂t W1 (ρ, t, ϕ)|t=0 = 0; b1 < ρ < a1

TE0n : W1 (b1, t, ϕ) = W1 (a1, t, ϕ) = 0
TM0n : ∂ρ (ρW1 (ρ, t, ϕ))|ρ=b1

= 0 [W1 (0, t, ϕ) = 0 if b1 = 0] ,

∂ρ (ρW1 (ρ, t, ϕ))|ρ=a1
= 0.

(25)

Here W1 (ρ, t, ϕ) is the solution of auxiliary initial-boundary value
problem in (25), 0 ≤ ϕ ≤ π/2 is a numerical parameter. Condition
(25) is local in space and time and analytical equivalent to EAC (16)
on the virtual boundary L1.

The local EAC on the virtual boundary L2 is derived similarly:

U (ρ, L2, t) =
2
π

π/2∫

0

∂t W2 (ρ, t, ϕ) dϕ; t ≥ 0, b2 < ρ < a2

[
∂2

t − sin2 ϕ∂ρ

(
ρ−1∂ρρ

)]
W2 (ρ, t, ϕ) = − ∂zU (ρ, z, t)|z=L2

;

b2 < ρ < a2, t > 0
W2 (ρ, 0, ϕ) = ∂t W2 (ρ, t, ϕ)|t=0 = 0; b2 < ρ < a2

TE0n : W2 (b2, t, ϕ) = W2 (a2, t, ϕ) = 0
TM0n : ∂ρ (ρW2 (ρ, t, ϕ))|ρ=b2

= 0 [W2 (0, t, ϕ) = 0 if b2 = 0] ,

∂ρ (ρW2 (ρ, t, ϕ))|ρ=a2
= 0.

(26)
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2.2.3. Exact Absorbing Conditions for Radiating Structures

In this section, the EAC enforced on the spherical virtual boundary
L2 for the solution of (1) in the domain QL of radiators with infinite
flange (Fig. 1(b)) is detailed.

Before the derivation of the EACs on the spherical virtual
boundary L2, the following integral transform is studied:

f̃ (ω) =

∞∫

L2

f (r)Zγ (ω, r) dr; ω ≥ 0. (27)

Here Zγ (ω, r) = ra [α (ω) Jγ (ωr) + β (ω)Nγ (ωr)] is the kernel, Nγ (.)
are cylindrical Neumann functions, and a, γ, α (ω), and β (ω) are the
coefficient to be determined. The kernel Zγ (ω, r) satisfies [28]

[
∂2

r +
1− 2a

r
∂r + ω2 +

a2 − γ2

r2

]
Zγ (ω, r) = 0. (28)

The following equality is obtained using integration by parts:
∞∫

L2

∂2
rwn2 (r, t) Zγ (ω, r) dr

= ∂rwn2 (r, t) Zγ (ω, r)|∞L2
−

∞∫

L2

∂rwn2 (r, t) ∂rZγ (ω, r) dr

= ∂rwn2 (r, t) Zγ (ω, r)|∞L2
− wn2 (r, t) ∂rZγ (ω, r)|∞L2

+

∞∫

L2

wn2 (r, t) ∂2
rZγ (ω, r) dr (29)

Here wn2 (r, t) = r un2 (r, t) is an auxiliary function. From (28) it
follows that

∞∫

L2

wn2 (r, t) ∂2
rZγ (ω, r) dr =

−
∞∫

L2

wn2 (r, t)
[
1− 2a

r
∂r + ω2 +

a2 − γ2

r2

]
Zγ (ω, r) dr. (30)

Taking into account the fact that functions wn2 (r, t) vanish for
any finite t and sufficiently large r (because of the finite speed of light),
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applying the transform (27) to the equation of problem (9), using (29)
and (30), keeping in mind that in (9) λ2

n2 = n (n + 1), and setting the
kernel’s coefficients as a = 1/2 and γ = n + 1/2, one obtains

∞∫

L2

[− ∂2
t − ω2

]
wn2 (r, t) Zγ (ω, r) dr − ∂rwn2 (r, t)|r=L2

Zγ (ω, L2)

+ wn2 (L2, t) ∂rZγ (ω, r)|r=L2
= 0. (31)

From (31) and (27) follows simple differential equation with
respect to the unknown images w̃n2 (ω, t) of the functions wn2 (r, t):

[
∂2

t + ω2
]

w̃n2 (ω, t) = wn2 (L2, t) ∂rZγ (ω, r)|r=L2

−∂rwn2 (r, t)|r=L2
Zγ (ω,L2) ; ω ≥ 0, t > 0 (32)

Now coefficients α (ω) and β (ω) of the kernel Zγ (ω, r) should
be defined in such a way that inverse of the transform (27) exists
and the resulting EAC is as simple as possible and also convenient
in realization. To obtain a simple and realizable EAC, the derivative
of function wn2 (r, t) with respect to the radial variable r, should be
eliminated, as it is difficult to approximate the radial derivative on a
curvilinear boundary in rectangular coordinates {ρ, z}. So, let the
coefficient Zγ (ω, L2), which multiplies ∂rwn2 (r, t)|r=L2

in (32), be
identically zero:

Zγ (ω, L2) =
√

L2 [α (ω) Jγ (ωL2) + β (ω) Nγ (ωL2)] = 0;ω ≥ 0. (33)

The requirement (33) is satisfied when α (ω) = −Nγ (ωL2) and
β (ω) = Jγ (ωL2), which turns (27) into the Weber-Orr transform [29]

f̃ (ω) =

∞∫

L2

[Jγ (ωL2) Nγ (ωr)−Nγ (ωL2) Jγ (ωr)] f (r)
√

r dr ↔

f (r) =
√

r

∞∫

0

Jγ (ωL2) Nγ (ωr)−Nγ (ωL2) Jγ (ωr)
J2

γ (ωL2)+N2
γ (ωL2)

f̃ (ω) ω dω(34)

The coefficient ∂rZγ (ω, r)|r=L2
in the remaining term in the right-

hand side of (32) is equal to

∂rZγ (ω, r)|r=L2
=

(
2
√

L2

)−1
[Jγ (ωL2) Nγ (ωL2)−Nγ (ωL2) Jγ (ωL2)]

+ω
√

L2

[
Jγ (ωL2) N ′

γ (ωL2)−Nγ (ωL2) J ′γ (ωL2)
]

= ω
√

L2 W {Jγ (ωL2) , Nγ (ωL2)} = 2
/(

π
√

L2

)
(35)
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Here W {Jγ (ωL2) , Nγ (ωL2)} = 2/(πωL2) is Wronskian [28]; N ′
γ (ωL2)

and J ′γ (ωL2) are the derivatives of the functions Jγ (ωL2) and Nγ (ωL2)
with respect to (ωL2). From (9), (32), (33) and (35) the following
Cauchy problem in the unknown image w̃n2 (ω, t) is obtained:

[
∂2

t + ω2
]

w̃n2 (ω, t) = 2
(
π
√

L2

)−1
wn2 (L2, t) ; t > 0, ω ≥ 0

∂tw̃n2 (ω, t)|t=0 = w̃n2 (ω, 0) = 0;ω ≥ 0
. (36)

A solution of the problem (36) is obtained using concept of
generalized functions [27] and the fundamental solution [14] G(λ, t) =
χ(t)λ−1 sinλt of the operator D (λ) ≡ [

∂2
t + λ2

]
(see passage from (11)

to (13) for more details):

w̃n2 (ω, t)=
2

πω2
√

L2


wn2 (L2, t)−

t∫

0

cos [ω (t− τ)]∂τwn2 (L, τ) dτ


 ;

ω ≥ 0, t ≥ 0. (37)

Taking into account the value of integral [30]
∞∫

0

Jγ (ωL2) Nγ (ωr)−Nγ (ωL2) Jγ (ωr)
ω

[
J2

γ (ωL2) + N2
γ (ωL2)

] dω =
π

2

(
L2

r

)γ

; L2 < r,

and applying the inverse transform of (34) to (37), one obtains

wn2 (r, t) =
(

L2

r

)γ−1/2

wn2 (L2, t)

− 2
π

√
r

L2

t∫

0

Fγ (r, L2, t−τ) ∂τwn2 (L2, τ) dτ ; r>L2,(38)

Fγ(r, L2, t−τ)=

∞∫

0

cos (ω (t−τ))[Jγ (ωL2)Nγ(ωr)−Nγ(ωL2)Jγ(ωr)]
ω

[
J2

γ (ωL2)+N2
γ (ωL2)

] dω.

(39)
For effective numerical implementation of (38), an easy way

to compute functions Fγ (r, L2, t− τ) must be found. Consider the
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following function:

F̃γ (r, L2, t− τ)

=
1
2





∞∫

−∞

H
(1)
γ (zr)

H
(1)
γ (zL2)

exp[iz (t−τ)]
z

dz+

∞∫

−∞

H
(1)
γ (zr)

H
(1)
γ (zL2)

exp[−iz (t−τ)]
z

dz





=

−δ∫

−∞

H
(1)
γ (zr)

H
(1)
γ (zL2)

cos [z (t− τ)]
z

dz+

∞∫

δ

H
(1)
γ (zr)

H
(1)
γ (zL2)

cos [z (t− τ)]
z

dz

+
∫

Cδ

H
(1)
γ (zr)

H
(1)
γ (zL2)

cos [z (t−τ)]
z

dz=−
∞∫

δ

H
(1)
γ

(
eiπzr

)

H
(1)
γ (eiπzL2)

cos [z (t−τ)]
z

dz

+

∞∫

δ

H
(1)
γ (zr)

H
(1)
γ (zL2)

cos [z (t− τ)]
z

dz − πi

(
L2

r

)γ

= 2iFγ (r, L2, t− τ)− πi

(
L2

r

)γ

(40)

Here H
(1)
γ (.) is Hankel function of the first kind; Cδ is a semicircle

of infinitely small radius δ in the upper half-plane of complex variable
z. This semicircle serves as a part of path of integration to detour
singularity at z = 0. The last passage in (40) was made taking into
account (39) and using the following equality [30]:

H
(1)
γ (zr)

H
(1)
γ (zL2)

− H
(1)
γ

(
eiπzr

)

H
(1)
γ (eiπzL2)

= 2i
Jγ (zL2) Nγ (zr)−Nγ (zL2) Jγ (zr)

J2
γ (zL2) + N2

γ (zL2)
.

The standard technique based on the Cauchy theorem and the
Jordan lemma [31] is utilized to compute integrals in curly brackets
in the expression (40). As relationship H

(1)
γ (zr)

/
H

(1)
γ (zL2) ≈

(L2/r)1/2 exp [iz (r − L2)] is true for |zL2| ≥ γ and z → ∞ [28],
then it is possible to close the integration contour by a circular arc
of infinitely large radius in the upper half-plane of complex variable
z when r − L2 > t − τ . If r − L2 < t − τ , then the contour of
the first integral is closed in the upper half-plane, and the contour
of the second integral is closed in the lower half-plane. Taking into
account that all the singularities of the function H

(1)
γ (zr)

/
H

(1)
γ (zL2)

are nothing more than just a finite number of simple poles at points
z = zs : Imzs < 0; s = 1, 2, . . . , n which coincide with zeros of the
function H

(1)
γ (zL2) [32], and taking into account that asymptotic
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equality H
(1)
γ (zr)

/
H

(1)
γ (zL2) ≈ (L2/r)γ is satisfied when z → 0,

and that ∂zH
(1)
γ (zL2) = L2

[
H

(1)
γ−1 (zL2)− γH

(1)
γ (zL2)

/
(zL2)

]
, one

derive:

F̃γ (r, L2, t− τ)

=




−πi

[(
L2
r

)γ
+

∑
s

H
(1)
γ (zsr)

H
(1)
γ−1(zsL2)

exp[−izs(t−τ)]
zsL2

]
; τ < t− (r − L2)

0; τ > t− (r − L2)
. (41)

Finally, substituting (41) into (40) provides

Fγ (r, L2, t− τ)

=




−π

2

∑
s

H
(1)
γ (zsr)

H
(1)
γ−1(zsL2)

exp[−izs(t−τ)]
zsL2

=−π
2 Sγ(r, L2, t−τ); τ <t−(r−L2)

π
2

(
L2
r

)γ
; τ > t− (r − L2)

.(42)

Substituting (42) into (38) yields

wn2 (r, t) =
(

L2

r

)n

wn2 (L2, t− (r − L2))

+
√

r

L2

t−(r−L2)∫

0

Sn+1/2 (r, L2, t− τ) ∂τwn2 (L2, τ) dτ ; r>L2, t ≥ 0. (43)

Like (14), (43) defines the transport operator, and everything
stated above concerning (14) is also true for (43).

The EAC for the total field U (g, t) is obtained from (43) using
(6b), (7b), taking into account orthonormality of the transverse
functions µn2 (cosϑ), and keeping in mind that wn2 (r, t) = r un2 (r, t):

U (g, t) =
∑

n





(
L2

r

)n+1
π/2∫

0

U
(
L2, ϑ̃, t−(r−L2)

)
µn2

(
cos ϑ̃

)
sin ϑ̃dϑ̃

+

√
L2

r

t−(r−L2)∫

0

Sn+1/2 (r, L2, t− τ)

×




π/2∫

0

∂τU
(
L2, ϑ̃, τ

)
µn2

(
cos ϑ̃

)
sin ϑ̃dϑ̃


 dτ





µn2 (cosϑ) ;

g = {r; ϑ} ∈ II, t ≥ 0. (44)
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The EAC (44) is nonlocal. It should also be noted here that it
does not contain radial derivatives of U (g, t), so it can be implemented
on a rectangular grid of coordinates {ρ, z} with minimal numerical
inaccuracy.

2.2.4. Virtual Feeding Waveguide Concept

The EAC (44) is derived for the semispherical virtual boundary L2,
but it can be extended for a spherical boundary which fully surrounds
the structure under study [14] (Fig. 2). In such cases, an excitation of
the structure is not trivial since in the above formulation of EACs the
sources are assumed to be outside the domain QL and physical feeding
structures are not allowed to penetrate through the virtual boundary
L2. To overcome this problem, a “virtual” feeding waveguide is used
to excite the structure. This concept is based on the fact that (5)
can be extended to the case of I being bounded and the conclusion
that U s

1 (g, t) is an outgoing wave. In this case, EACs (16) or (25)
on the virtual boundary L1 reduce the domain of analysis to QL as
usual, but I becomes a “virtually infinite” but physically bounded
feeding waveguide. This concept makes the modeling of realistic
structures considerable easier, but does not affect the derivation and
implementation of the EACs. An example of these structures is
presented in Fig. 2: a compact radiator residing in free space is fully
surrounded by the spherical virtual boundary L2. The radiator has
no flange, as opposed to the radiator with an infinite flange shown in
Fig. 1(b); but it can still be excited in the same way using the virtual
waveguide I.

I
1

L

1
z L= −                    0                                                   

2
z L=         φ z

L
Q                                         I I

S

ρ

ϑ

                   r

2
L

Figure 2. Geometry of a compact radiator without flange.
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2.2.5. Conclusion of the Derivations

The result of the derivations presented in Sections 2.1 and 2.2 can be
summarized as follows:

Statement: Consider the following problem
[−εr (g) ∂2

t −P +∂2
z +∂ρ

(
ρ−1∂ρρ

)]
U (g, t) = 0; t>0, g={ρ, z} ∈ QL

U (g, 0) = 0, ∂tU (g, t)|t=0 = 0; g ∈ QL

D1

[
U (g, t)− U i (g, t)

]∣∣
g∈L1

= 0, D2 [U (g, t)]|g∈L2
= 0

Etg (g, t) = 0, g ∈ S;U (0, z, t) = 0; t ≥ 0

,

(45)

where operator D1 [.] is defined by EAC (16) or (25) and operator
D2 [.] is defined by EAC (18) or (26) and (44) for waveguide units and
radiators, respectively. Then problems (1) and (45) are equivalent
in the bounded subdomain QL of the unbounded domain Q; the
requirements for the uniqueness of the solutions of problems (1) and
(45) are identical. It should again be emphasized here that (16), (18),
(25), (26), and (44) are exact; replacing problem (1) with problem
(45) does not increase the computational error or distort the process
of numerical solution.

2.3. Numerical Implementation and FFT-based Acceleration

This section first details the numerical implementation of the EACs
(16), (18) and (25), (26). Utilization peculiarities and numerical
implementation of an EAC similar to (44) is discussed in [14].
Description of the numerical implementation is followed by an analysis
of the computational complexity of the local and nonlocal EACs.
The section ends with description of the FFT-based algorithm, which
is used for accelerating the pertinent temporal convolutions in the
nonlocal EACs (16), (18) and (44).

Using standard FDTD approximation [4] on a uniform rectangular
space-time grid, associated with coordinates {ρ, z} and time t,
for discretization of the problem (45), an explicit computational
scheme that updates the uniquely defined grid function U (j, k, m) ≈
U (ρj , zk, tm) is obtained. Here ρj = jh̄, zk = kh̄, and tm = ml̄;
h̄ is the space increment (space step) in the ρ and z coordinate
directions; and l̄ is the time increment (time step). The range of
integers j = 0, 1, . . . , J , k = 0, 1, . . . , K, and m = 0, 1, . . . , M depends
on the size of domain QL and the length of the observation time
T : {ρj , zk} ∈ QL and 0 = t0 ≤ tm ≤ tM = T . It should be
noted that −L1 = z0 ≤ zk ≤ zK = L2 but the boundaries for
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ρj change depending on the type of the structure. It is assumed
that the Courant stability condition between h̄ and l̄ [4] and the
condition, which enforces the uniform boundedness of the approximate
solution U (j, k, m) with decreasing h̄ and l̄ (formula (1.50) in [14]),
are satisfied. Under these conditions, the FDTD scheme is stable, and
the grid function U (j, k, m) converges to the solution U (ρj , zk, tm)
of the original problem (1). The approximation error is O(h̄2), but
could be improved for example using higher order schemes [33]. In
order to achieve the desired second-order accuracy, all integrals are
computed using the composite trapezoid rule and all one-sided first-
order derivatives are approximated using the second-order one-sided
finite differences [34].

2.3.1. Discretization of Nonlocal EACs (16) and (18)

Here the discretization of the EAC (16) on the virtual boundary L1 is
derived first. The discretization of the EAC (18) on L2 can be done in a
similar way. In a conventional FDTD scheme, it is more convenient to
discretize (15) for the amplitudes un1 (z, t) and then use (2) to obtain
boundary values of the total field U (ρ,−L1, t) rather than to discretize
(16) directly. On L1 the total field is a sum of the scattered field
and the incident wave: U (ρ, z, t) = U s (ρ, z, t) + U i (ρ, z, t), and one
should remember that (16) is formulated for the scattered field and the
problem (45) is being solved for the total field. It is assumed that (2)
and (3) are valid two space steps away from the boundary L1 into the
domain QL. Keeping in mind that un1 (z, t) = ut

n1 (z, t) − vn1 (z, t),
using the composite trapezoid rule to integrate over τ and the second-
order one-sided finite differences to calculate the derivative with respect
to z, taking into account that U (ρ,−L1, 0) = 0 and J0 (0) = 1, and
gathering all terms at the (m + 1)-th time step, (15) is discretized:

ut
n1(0,m+1)=[4ut

n1 (1,m+1)−ut
n1 (2,m+1)+4h̄vn1 (0,m+1)

/
l

−2h̄ ∂zvn1 (z, m + 1)|z=−L1
− 2

m∑

q=1

(J0 (λn1tm+1−q)

×[
3ut

n1(0, q)−4ut
n1(1, q)+ut

n1(2, q)+2h̄∂zvn1(z, q)|z=−L1

]
)]l̄/

(
4h̄+3l̄

)
. (46)

Here z0 = −L1, and ut
n1 (k, m) ≈ ut

n1 (zk, tm) and vn1 (k, m) ≈
vn1 (zk, tm) are the grid functions corresponding to the amplitudes
ut

n1 (z, t) and vn1 (z, t), respectively. The values of the total field at
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the boundary points, U (j, 0,m + 1), are obtained using (2c):

U (j, 0, m + 1) =
∑

n

µn1 (ρj) ut
n1 (0,m + 1), b1 ≤ ρj ≤ a1,

n =
{

1, 2, . . . , Ng,w; TE0nwaves
0, 1, . . . , Ng,w; TM0nwaves . (47)

Here Ng,w is the number of the modes taken into account. Together
(46) and (47) are the discretization of the EAC (16). In (46),
∂z vn1 (z,m + 1)|z=−L1

are computed from

vn1 (0,m + 1) = −l̄
m∑

q=1

(
J0 (λn1 tm+1−q ) ∂zvn1 (z, q)|z=z0

)

− l̄

2
∂zvn1 (z, m + 1)|z=z0

(48)

which is obtained by discretizing (17).
Discretized EACs are integrated in the FDTD scheme in the

following way:

i. At the time step m the FDTD routine computes the total field
values at all inner points of the grid, U (j, k, m + 1).

ii. The values of the spatio-temporal amplitudes at the points
adjacent to the virtual boundary L1, ut

n1 (1,m + 1) and
ut

n1 (2,m + 1) (z1 = −L1 + h̄ and z2 = −L1 + 2h̄), are computed
using (3).

iii. The values of the spatio-temporal amplitudes at the boundary
points, ut

n1 (0,m + 1) (z0 = −L1), are computed using (46), and
saved for the future use.

iv. The values of the total field at the boundary points, U (j, 0,m + 1),
are reconstructed from ut

n1 (0, m + 1) using (47). Then proceed to
the next time step.

The EAC (18) on the virtual boundary L2 is discretized and
integrated in the FDTD scheme similarly; but one should remember
that on this boundary U i (ρ, z, t) = 0 and U (ρ, z, t) = U s (ρ, z, t).

2.3.2. Discretization of Local EACs (25) and (26)

Here the discretization of the EAC (25) on the virtual boundary L1 is
derived first. The discretization of the EAC (26) on L2 can be done
in a similar way. On L1 the total field is a sum of the scattered field
and the incident wave: U (ρ, z, t) = U s (ρ, z, t) + U i (ρ, z, t), and one
should remember that (25) is formulated for the scattered field and
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the problem (45) is being solved for the total field. Approximating
the derivatives in the left side of the auxiliary initial-boundary value
problem in (25) with the central differences, and using the second-
order one-sided differences to approximate the derivatives in the right-
hand side, an explicit three-step scheme that updates the grid function
W1 (j,m, n) ≈ W1 (ρj , tm, ϕn); n = 0, 1, . . . , Nϕ, ϕn = nπ/2Nϕ, is
obtained:
W1 (j,m + 1, n) = A+

j,n W1 (j + 1,m, n) + A−j,n W1 (j − 1,m, n)

+ A0
j,nW1 (j, m, n)−W1 (j, m− 1, n)

− l̄2

2h̄
(3U (j, 0,m)−4U (j, 1,m)+U (j, 2,m))+ ∂zU

i (j, z, m)
∣∣
z=z0

;

b1 < ρj < a1, j (b1)=0 < j < J =j (a1) , J =a1

/
h̄, 0 < m ≤ M

W1 (j, 0, n) = W1 (j, 1, n) = 0, z0 = −L1, z1 = −L1 + h̄

TE0n : W1 (0,m, n) = W1 (J,m, n) = 0

TM0n : W1 (0,m, n) =
b1

b1 + h̄
W1 (1,m, n) ,

W1 (J,m, n) =
a1

a1 + h̄
W1 (J − 1,m, n) .

(49)

Here A±j,n= l̄2 sin2ϕn(2ρj±h̄)/(2ρj h̄), A0
j,n=2−l̄2 sin2ϕn(2ρ2

j +h̄2)/(ρ2
j h̄

2),
and ∂zU

i (j, z, m)
∣∣
z=z0

≈ ∂zU
i(ρj , z, tm)

∣∣
z=z0

is the grid function
corresponding to ∂zU

i (ρ, z, t). The time derivative of W1 (j, m, n) is
approximated using the second-order one-sided difference:

∂tW1(j, t, n)|t=tm+1
≈ 3W1(j, m+1, n)−4W1(j,m, n)+W1(j, m−1, n)

2l̄
.

(50)
The values of the total field at the boundary points, U (j, 0,m + 1),

are obtained integrating (50) with respect to ϕ using any numerical
integration method that can provide the required accuracy. It is
clear that W1 (j, m + 1, n), W1 (j,m, n), and W1 (j, m− 1, n) should
be stored in the memory.

The Equation (17) (or to be more precise, its discrete version (48))
is utilized for precomputation of the concerted values of the amplitudes
of the incident wave and its derivative. As the whole field rather
than its amplitudes is utilized in the discretization of the local EAC
(25), the incident wave and its derivative are reconstructed from their
amplitudes using (2a).

(49) and (50) are integrated in the FDTD scheme in the following
way:

i. At the time step m the FDTD routine computes the total field
values at all inner points of the grid, U (j, k, m + 1).
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ii. The values of the auxiliary variable, W1 (j, m + 1, n), are
computed using (49).

iii. The time derivative of the auxiliary variable with respect to time,
∂t W1 (j, t, n)|t=tm+1

, is computed using (50).

iv. The values of the total field at the boundary points, U (j, 0,m + 1),
are computed by numerically integrating of the time derivatives
obtained at step (iii). Then proceed to the next time step.
The EAC (26) on the virtual boundary L2 is discretized and

integrated in the FDTD scheme similarly; but one should remember
that on this boundary U i (ρ, z, t) = 0 and U (ρ, z, t) = U s (ρ, z, t).

2.3.3. Computational Complexity

Obviously, the computational complexity of the FDTD-based solution
of (45) depends on the type (nonlocal or local) of the EACs being
discretized. In what follows, the computational complexity of the
solution is derived for the most general case, namely, an open radiating
end of a coaxial waveguide with an elongated central conductor over
an infinite perfectly conducting plane (Fig. 3). This example includes
both a local/nonlocal EAC on the planar boundary L1 and a nonlocal
EAC on the semispherical boundary L2. If the explicit three-step
O(h̄2)-accurate FDTD scheme [4] is used and the nonlocal EACs (16)

1
b

1
a

I
1

L

1
z L= −      0                    d                         

2
z L=        φ      z

L
Q                                    I I

ρ

                                      

  ϑ

                               r

2
L

Figure 3. Geometry of the test problem — an open end of coaxial
waveguide with elongated central conductor over infinite perfectly
conducting plane.
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and (44) on L1 and L2 are discretized as described above, then the
total computational cost of the solution can be written as:

S ≈ O (PM)︸ ︷︷ ︸
CFDTD

+O
(
Ng,wM2

)
︸ ︷︷ ︸

CPR
L1

+O
(
Ng,wM2

)
︸ ︷︷ ︸

CNL
L1

+O
(
Ng,rM2

)
︸ ︷︷ ︸

CNL
L2

(51)

Here the terms CFDTD, CPR
L1

, CNL
L1

, and CNL
L2

represent the
computational costs of the FDTD solution, precomputation of the
incident field’s derivative, and the numerical implementation of the
nonlocal EACs on L1 and L2, respectively. CPR

L1
, CNL

L1
, and CNL

L2
are

obtained by counting the numbers of additions and multiplications in
discrete versions of (17), (16) and (44), respectively. Integers P , M ,
Ng,w and Ng,r are the total numbers of the FDTD cells in the domain
of computation, the time steps, and the modes taken into account in
the discretization of the nonlocal EACs (16) and (44), respectively.

Replacing the nonlocal EAC (16) on the virtual boundary L1 with
its local equivalent, EAC (25), yields a new estimate for the total
computational cost:

S ≈ O (PM)︸ ︷︷ ︸
CFDTD

+O
(
Ng,wM2

)
︸ ︷︷ ︸

CPR
L1

+O (NϕM )︸ ︷︷ ︸
CL

L1

+O
(
Ng,rM2

)
︸ ︷︷ ︸

CNL
L2

(52)

In (52), CL
L1

represents the computational cost of the numerical
implementation of the local EAC, integer Nϕ is the number of
points needed to compute the integral over ϕ in the local EAC
(numerical integration of (50)). CL

L1
is obtained by counting the

numbers of additions and multiplications in discrete version of (25).
Comparing CL

L1
in (52) with CNL

L1
in (51), it is clear that for large

M utilization of the local EACs might lead to a significant reduction
in computational resources provided that Ng,wM À Nϕ. However,
numerical experiments show that this condition may not always be
satisfied; to obtain accurate results especially when analyzing resonant
wave interactions, Nϕ must be very high. In addition, CNL

L2
and CPR

L1
,

which are present both in (51) and (52), might dominate the overall
computational costs for large M . During the analysis of resonant wave
interactions, one can still utilize the nonlocal EACs efficiently provided
that the temporal convolutions pertinent to nonlocal conditions are
computed fast. To this end, the blocked-FFT based acceleration
scheme presented in [16–22] is used here.

The blocked-FFT based acceleration algorithm makes use of the
temporal invariance of the convolutions present in the nonlocal EACs
(16), (18), and (44). The algorithm is applied to the discretized
version of these EACs, where now the temporal convolutions are
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summations over discrete time samples. The operating principles of
the algorithm are better explained using an example. Consider the
discrete convolution in (46)

m∑

q=1

J0 (λn2tm+1−q) [3un2 (K, q)− 4un2 (K − 1, q) + un2 (K − 2, q)]

=
m∑

q=1

J (m + 1− q) u′ (q) = u (m) , m = 1, 2, . . . M (53)

where J (m + 1− q) = J0 (λn2tm+1−q), u′ (q) = 3un2 (K, q) −
4un2 (K − 1, q)+un2 (K − 2, q), and u (m) is represents the result of the
convolution. Writing explicitly the terms in the second summation in
(53) as presented in (54) below, it becomes clear that this summation
represents the multiplication of a block-Toeplitz matrix with vector
u′ (q). This multiplication can be performed block by block, where
multiplication of a block with the part of u′ (q) that corresponds to
that block is accelerated using FFTs. This is explained in more detail
next.




u (2)
u (3)
u (4)
u (5)
u (6)
u (7)
u (8)
. . .




=




∣∣∣J(1)
∣∣∣∣∣∣J (2) J (1)

∣∣∣ 0∣∣∣J (3) J (2)
∣∣∣

∣∣∣J(1)
∣∣∣∣∣∣J (4) J (3) J (2) J (1)

∣∣∣
J (5) J (4) J (3) J (2)

∣∣∣J(1)
∣∣∣

J (6) J (5) J (4) J (3)
∣∣∣J (2) J (1)

∣∣∣∣∣∣J (7) J (6) J (5) J (4)
∣∣∣

∣∣∣J (3) J (2)
∣∣∣

∣∣∣J(1)
∣∣∣

. . . . . . . . . . . . . . . . . . . . . . . .




×




u′ (1)
u′ (2)
u′ (3)
u′ (4)
u′ (5)
u′ (6)
u′ (7)
. . .




(54)

At time step 1, the 1×1 block J (1) multiplies u′ (1) to yield u (2).
At time step 2, the 2× 2 block (see (54)) multiplies the column vector
[ u′ (1) u′ (2) ]T to yield u (3) and update u (4) (u (4) still needs to
be updated at time step 3). At time step 3, the 1 × 1 block J (1)
multiplies u (3) to update u (4). At time step 4, the 4 × 4 block
multiplies the column vector [ u′ (1) u′ (2) u′ (3) u′ (4) ]T to yield
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u (5) and update u (6), u (7) and u (8). At time step 5, the 1 × 1
block J (1) multiplies u (5) to yield u (6). At time step 6, the 2 × 2
block multiplies [ u′ (5) u′ (6) ]T yield u (7) and update u (8). At
time step 7, the 1 × 1 block J (1) multiplies u (7) to yield u (8). This
block-by-block multiplication scheme is executed until the end of the
simulation time t. In this scheme, the multiplication of a matrix
block with a vector can be accelerated using FFTs. Consider, for
example, the multiplication at time step 4: The result of multiplying
the 4×4 block with the column vector [ u′ (1) u′ (2) u′ (3) u′ (4) ]T

is equal to the last four elements of the circular convolution
of Jin = {J (1) , J (2) , J (3) , J (4) , J (5) , J (6) , J (7)} with uin =
{u′ (1) , u′ (2) , u′ (3) , u′ (4) , 0, 0, 0}. This convolution can be computed
exactly using discrete Fourier transforms (DFTs) [35], i.e., computing
DFT−1 [DFT [Jin]DFT [uin]]. In this expression, DFTs are replaced
with FFTs without any numerical approximation for speed up. Since
the large blocks are multiplied less often than the small ones and
each block, which bigger than 1 × 1, is multiplied using FFTs, the
computational complexity of the block-by-block multiplication (i.e.,
the discrete convolution in (46)) is reduced to O

(
M log2 M

)
from

O
(
M2

)
.

Using the FFT-based acceleration technique described above for
computing all temporal convolutions pertinent to nonlocal EACs, the
computational complexity of the FDTD solution is reduced to

S ≈ O (PM)︸ ︷︷ ︸
CFDTD

+O
(
Ng,wM log2 M

)
︸ ︷︷ ︸

CPR,FFT
L1

+O
(
Ng,wM log2 M

)
︸ ︷︷ ︸

CNL,FFT
L1

+O
(
Ng,rM log2 M

)
︸ ︷︷ ︸

CNL,FFT
L2

(55)

Comparing (55) with (51) one concludes that CNL,FFT
L1

¿ CNL
L1

,
CNL,FFT

L2
¿ CNL

L2
, and CPR,FFT

L1
¿ CPR

L1
especially for large M . This

results in significant savings in computational resources. Comparing
(55) with (52), one can conclude that that for CNL,FFT

L1
< CL

L1
,

Ng,w log2 M < Nϕ should be satisfied. This is possible to achieve
for resonant structures where Nϕ is very large.

Looking at the comparisons provided above, one can conclude the
following: (i) The implementation of EACs on spherical boundaries
should always be accelerated using the blocked-FFT based algorithm.
(ii) The precomputation of the incident field’s derivative on virtual
boundaries should always be accelerated using the blocked-FFT based
algorithm. (iii) The implementation of nonlocal EACs on planar
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boundaries can be accelerated using the blocked-FFT based algorithm
or localization. One can compare Ng,w log2 M and Nϕ to see which one
will be more efficient. It should be emphasized here again that neither
blocked-FFT based algorithm nor localization introduces additional
numerical errors. Both of these methods are exact.

3. NUMERICAL RESULTS

This section presents numerical results that demonstrate the efficiency
and accuracy of the blocked-FFT accelerated FDTD scheme with
nonlocal/local EACs detailed in this paper. Since the accuracy of
EACs has been the subject of several other publications (see [14]
for example), the emphasis here is on the accuracy and efficiency of
the blocked-FFT acceleration. Two different examples are considered.
Both examples are run on a workstation with a 2.67GHz Xeon CPU
and 23.4 GB of RAM.

3.1. Efficiency of the Blocked-FFT Based Acceleration
Scheme

In the first example, the computational complexity estimates for
CPR,FFT

L1
and CPR

L1
are verified and compared (without the FDTD

grid). To this end, a planar virtual boundary in the cross-section of a
coaxial waveguide with the outer conductor radius a1 = 1.5 and the
inner conductor radius b1 = 0.9 is considered and (17) is computed on
this boundary (to be more precise, its discrete version (48)). The space
step is h̄ = 0.01, and the time step is l̄ = 0.005. The number of modes
used for expanding the field is Ng,w = 6, the number of grid cells
used for discretizing the boundary is Jw = 61. Fig. 4(a) presents
the CPU times required by the blocked-FFT accelerated and non-
accelerated computation while the number of time steps, M , is changed
from 1000 to 2 000 000. As clearly shown in the figure, theoretical
estimates of the computational complexity are in good agreement with
numerical experiment results. Also, figure clearly shows that blocked-
FFT accelerated computation becomes undoubtedly faster than non-
accelerated computation when M > 4000.

3.2. Efficiency and Accuracy of the Blocked-FFT Based
Accelerated FDTD Scheme

The second example is designed to demonstrate the efficiency and
accuracy of the blocked-FFT accelerated FDTD scheme. For this
purpose, the same radiator, which was used as an example in the
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(a)

(b)

( )2
O M

( )2logO M M

Figure 4. CPU times versus number of time steps: (a) Comparison
of CPU times for FFT-accelerated and nonaccelerated EACs. (b)
Comparison of total CPU times for FDTD schemes with FFT-
accelerated and nonaccelerated EACs and only FDTD updates for the
radiator problem.

previous section to derive the computational complexity estimates is
considered (see Fig. 3). The feeding structure is a coaxial waveguide
with the outer conductor radius a1 = 1 and the inner conductor radius
b1 = 0.3, the length of the elongated central conductor is d = 1.57. The
space step is h̄ = 0.02, and the time step is l̄ = 0.01. The structure
is excited by a quasi-monochromatic signal v01 (0, t) = cos (f t), where
f = 7.5 is the central frequency. The virtual boundaries (planar) L1

and (spherical) L2 are located at z = −L1 = −1 and r = L2 = 8,
respectively. L1 is discretized using Jw = 36 grid cells, and the field
on L1 is expanded using Ng,w = 5 modes. L2 is discretized using
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Jr = 565 arc segments and the field on L2 is expanded using Ng,r = 30
modes. The total number of grid cells in the computation domain QL

is P = 127350.
Figure 4(b) presents the CPU times required by the FDTD scheme

with blocked-FFT accelerated EACs (see (55) for the computational
complexity estimate), FDTD scheme with non-accelerated EACs (see
(51) for the computational complexity estimate), and the FDTD
scheme itself (only the FDTD updates) while the number of time steps,
M , is changed from 1000 to 500 000. Fig. 4(b) clearly demonstrates
the efficiency of the blocked-FFT accelerated FDTD scheme.

To demonstrate that the blocked-FFT acceleration introduces
only numerical noise in the solution, the Hφ component computed at
{ρ = 95; z = 270} by the FFT-accelerated and non-accelerated FDTD
schemes are compared in Fig. 5. For this simulation the same structure
as in the previous one is utilized. M = 8000 and the structure is excited
by a pulse v01 (0, t) = cos

[
f

(
t− T̃

)]
sin

[
∆f

(
t− T̃

)]/(
t− T̃

)
, here

f = 7.5 is the central frequency, ∆f is the bandwidth, and T̃ = 30 is
the delay. As expected the difference between two results is on the
level of 10−13, which is far below the error of the FDTD discretization
scheme. For the sake of completeness, for this simulation, snapshots
of the Hφ component computed at times t = 33, t = 35, t = 39, and
t = 40 on the whole computation domain QL are presented in Figs.
6(a), (b), (c), and (d), respectively.

Figure 5. Comparison of the normalized magnitude of |Hφ| computed
at the observation point using FDTD schemes with FFT-accelerated
and non-accelerated EACs.
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Figure 6. Hφ pattern: (a) t = 33 — the pulse is leaving the radiator.
(b) t = 35 — the pulse is propagating freely. (c) t = 39 — the pulse is
crossing the virtual boundary. (d) t = 40 — the pulse has just crossed
the boundary without reflection.

4. CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

An accurate and efficient method for transient analysis of wave
interactions on axially symmetric structures is presented. The pillars of
the method are the nonlocal/local EACs and the blocked-FFT based
acceleration scheme. Being imposed on the virtual boundaries, the
EACs allow reduction of unbounded physical domain of interest to
a bounded computation domain without loss of exactness. Spatially
and temporally nonlocal EACs are derived on the planar boundaries
inside the regular waveguides and on the semispherical boundary
in the open space. Localization technique is applied to the EACs
imposed on planar boundaries to reduce the computational resources
required. When localization is not possible or inefficient, the presented
blocked-FFT based scheme is used to accelerate the computation of the
temporal convolutions present in the nonlocal EACs. Both localization
and blocked-FFT acceleration schemes are numerically exact.

The method presented in this paper is a novel and efficient
approach to reliable transient analysis of wave interactions on resonant
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structures. Methods capable of accurate and efficient characterization
of long-duration field interactions on such structures are indispensible
for analysis and synthesis of microwave energy compressors and
radiators of high-power short radio pulses. Several problems involving
the design of microwave energy compressors and radiators will be
studied in the subsequent papers.

REFERENCES

1. Kuzmitchev, I. K., P. M. Melezhyk, V. L. Pazynin, K. Y. Sirenko,
Y. K. Sirenko, O. S. Shafalyuk, and L. G. Velychko, “Model
synthesis of energy compressors,” Radiophysics and Electronics:
Sci. Works Collection, Vol. 13, No. 2, 166–172, NAS of Ukraine, A.
Usikov Institute of Radiophysics and Electronics, Kharkiv, 2008.

2. Tantawi, S. G., R. D. Ruth, A. E. Vlieks, and M. Zolotorev,
Active high-power RF pulse compression using optically switched
resonant delay lines,” IEEE Trans. Microwave Theory Tech.,
Vol. 45, No. 8, 1486–1492, 1997.

3. Vikharev, A. L., A. M. Gorbachev, O. A. Ivanov, V. A. Isaev,
S. V. Kuzikov, B. Z. Movshevich, J. Hirshfield, and S. H. Gold,
“Active Bragg compressor of 3-cm wavelength microwave pulses,”
Radiophys. Quantum Electron., Vol. 51, No. 7, 539–555, 2008.

4. Taflove, A. and S. C. Hagness, Computational Electrodynamics:
The Finite-Difference Time-Domain Method, Artech House,
Boston, 2005.

5. Keller, J. B., “Exact non-reflecting boundary conditions,” J.
Comput. Phys., Vol. 82, 172–192, 1989.

6. Hagstrom, T., “Radiation boundary conditions for the numerical
simulation of waves,” Acta Numerica, Vol. 8, 47–106, 1999.

7. Olivier, J. C., “On the synthesis of exact free space absorb-
ing boundary conditions for the finite-difference time-domain
method,” IEEE Trans. Antennas Propag., Vol. 40, No. 4, 456–
460, 1992.

8. De Moerloose, J. and D. De Zutter, “Surface integral
representation radiation boundary condition for the FDTD
method,” IEEE Trans. Antennas Propag., Vol. 41, No. 7, 890–
896, 1993.

9. Ziolkowski, R. W., N. K. Madsen, and R. C. Carpenter, “Three-
dimensional computer modeling of electromagnetic fields: A global
lookback lattice truncation scheme,” J. Comput. Phys., Vol. 50,
360–408, 1983.

10. Hagstrom, T. and H. B. Keller, “Exact boundary conditions at an



Progress In Electromagnetics Research, Vol. 111, 2011 363

artificial boundary for partial differential equations in cylinders,”
SIAM J. Math. Anal., Vol. 17, No. 2, 322–341, 1986.

11. Grote, M. J. and J. B. Keller, “Nonreflecting boundary conditions
for Maxwell’s equations,” J. Comput. Phys., Vol. 139, 327–342,
1998.

12. Lubich, C. and A. Shadle, “Fast convolution for nonreflecting
boundary conditions,” SIAM J. Sci. Comput., Vol. 24, No. 1, 161–
182, 2002.

13. Alpert, B., L. Greengard, and T. Hagstrom, “Rapid evaluation
of nonreflecting boundary kernels for time-domain wave propaga-
tion,” SIAM J. Numer. Anal., Vol. 37, No. 4, 1138–1164, 2000.

14. Sirenko, Y. K., S. Strom, and N. P. Yashina, Modeling and
Analysis of Transient Processes in Open Resonant Structures —
New Methods and Techniques, Springer, Berlin, 2007.

15. Sirenko, K. Y. and Y. K. Sirenko, “Exact “absorbing” conditions
in the initial boundary-value problems of the theory of open
waveguide resonators,” Comput. Math. Math. Phys., Vol. 45,
No. 3, 490–506, 2005.

16. Hairer, E., C. H. Lubich, and M. Schlichte, “Fast numerical
solution of nonlinear Volterra convolution equations,” SIAM J.
Sci. Stat. Comput., Vol. 6, No. 3, 532–541, 1985.

17. Yilmaz, A. E., D. S. Weile, B. Shanker, J.-M. Jin, and
E. Michielssen, “Fast analysis of transient scattering in lossy
media,” IEEE Antennas Wireless Propag. Lett., Vol. 1, No. 1,
14–17, 2002.

18. Bagci H., A. E. Yilmaz, and E. Michielssen, “A fast hybrid
TDIE-FDTD-MNA scheme for analyzing cable-induced transient
coupling into shielding enclosures,” Proc. IEEE Int. Symp.
Electromagn. Compat., Vol. 3, 828–833, 2005.

19. Bagci, H., A. E. Yilmaz, V. Lomakin, and E. Michielssen, “Fast
solution of mixed-potential time-domain integral equations for
half-space environments,” IEEE Trans. Geosci. Remote Sensing,
Vol. 43, No. 2, 269–279, 2005.

20. Bagci, H., A. E. Yilmaz, and E. Michielssen, “FFT-accelerated
MOT-based solution of time-domain BLT equations,” Proc. IEEE
Int. Antennas Propagat. Symp., 1175–1178, 2006.

21. Bagci, H., A. E. Yilmaz, J.-M. Jin, and E. Michielssen, “Fast and
rigorous analysis of EMC/EMI phenomena on electrically large
and complex structures loaded with coaxial cables,” IEEE Trans.
Electromagn. Compat., Vol. 49, No. 2, 361–381, 2007.

22. Bagci, H., A. E. Yilmaz, and E. Michielssen, “An FFT-accelerated



364 Sirenko et al.

time-domain multiconductor transmission line simulator,” IEEE
Trans. Electromagn. Compat., Vol. 52, No. 1, 199–214, 2010.

23. Sirenko, Y. K., L. G. Velychko, and F. Erden, “Time-
domain and frequency-domain methods combined in the study
of open resonance structures of complex geometry,” Progress In
Electromagnetics Research, Vol. 44, 57–79, 2004.

24. Velychko, L. G., Y. K. Sirenko, and O. S. Shafalyuk, “Time-
domain analysis of open resonators. Analytical grounds,” Progress
In Electromagnetics Research, Vol. 61, 1–26, 2006.

25. Velychko, L. G. and Y. K. Sirenko, “Controlled changes in spectra
of open quasi-optical resonators,” Progress In Electromagnetics
Research B, Vol. 16, 85–105, 2009.

26. Ladyzhenskaya, O. A., The Boundary Value Problems of
Mathematical Physics, Springer-Verlag, New York, 1985.

27. Vladimirov, V. S., Equations of Mathematical Physics, Dekker,
New York, 1971.

28. Korn, G. A. and T. M. Korn, Mathematical Handbook for
Scientists and Engineers, McGraw-Hill, New York, 1961.

29. Bateman, H. and A. Erdelyi, Higher Transcendental Functions,
Vol. 2, McGraw-Hill, New York, 1953.

30. Prudnikov, A. P., Y. A. Brychkov, and O. I. Marichev, Integrals
and Series, Vol. 2, Gordon and Breach, New York, 1986.

31. Von Hurwitz, A., Allgemeine Funktionentheorie und Elliptische
Funktionen, Von Courant, R., Geometrische Funktionentheorie,
Springer-Verlag, Berlin, 1964 (in German).

32. Abramowitz, M. and I. A. Stegun, Ed., Handbook of Mathematical
Functions, Dover, New York, 1972.

33. Kantartzis, N. V. and T. D. Tsiboukis, High Order FDTD schemes
for Waveguide and Antenna Structures, Morgan&Claypool, San
Rafael, CA, 2006.

34. Gerald, C. F. and P. O. Wheatley, Applied Numerical Analysis,
Addison-Welsley, Boston, 1999.

35. Oppenheim, A. V., R. W. Schafer, and J. R. Buck, Discrete-Time
Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, 1999.


