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Abstract—Light scattering from small spherical particles has
applications in a vast number of disciplines including astrophysics,
meteorology optics and particle sizing. Mie theory provides an exact
analytical characterization of plane wave scattering from spherical
dielectric objects. There exist many variants of the Mie theory where
fundamental assumptions of the theory has been relaxed to make
generalizations. Notable such extensions are generalized Mie theory
where plane waves are replaced by optical beams, scattering from
lossy particles, scattering from layered particles or shells and scattering
of partially coherent (non-classical) light. However, no work has yet
been reported in the literature on modifications required to account
for scattering when the particle or the source is in motion relative to
each other. This is an important problem where many applications can
be found in disciplines involving moving particle size characterization.
In this paper we propose a novel approach, using special relativity,
to address this problem by extending the standard Mie theory for
scattering by a particle in motion with a constant speed, which may be
very low, moderate or comparable to the speed of light. The proposed
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technique involves transforming the scattering problem to a reference
frame co-moving with the particle, then applying the Mie theory in
that frame and transforming the scattered field back to the reference
frame of the observer.

1. INTRODUCTION

Applications of light scattering from small spherical particles can
be found in a vast number of disciplines such as astrophysics,
meteorological optics, particle sizing and many other areas. The
problem of scattering of electromagnetic waves by moving particles
is encountered in many different disciplines of science. For example,
scattering by celestial particles such as the solar corona and the solar
wind, and scattering of radio waves by rocket-exhaust plasmas which is
an important problem in space technology [1]. Aerosols play a critical
role in a range of scientific disciplines [2]. Scattering of light by these
aerosol droplets provides information about their size, composition,
morphology and temperature [2]. Accurate determination of the
location and flow velocity of moving particles in highly scattering
media has applications in a diverse range of disciplines. Another
discipline which considers the scattering of electromagnetic waves by
moving particles is the investigation of dynamic processes in sprays
and dusts [3]. In this field particle sizes are measured using optical
techniques to achieve high resolution in space and time while keeping
the behaviour of the dispersion undisturbed [3].

In addition to the aforementioned potential applications of this
work in different disciplines, we plan to use the results of this work to
improve the accuracy of Laser Doppler flowmeters, which are routinely
used in flow rate analysis of blood vessels. It is interesting to note
that at present Laser Doppler flowmeters fail to give accurate results
at high flow rates due to nonlinear dependency of flow velocity with
Doppler shift. Especially, this becomes a problem when flow rates are
measured through scattering media. This problem can be addressed
by modifying the photon transport equation to account for scattering
of light by moving targets. This approach requires a phase function [4]
to be derived for electromagnetic scattering by a moving particle. The
derivation of such a phase function based on the results of Mie theory
motivated us to extend the standard Mie theory to account for motion
of the particle, without any additional assumptions. Therefore, we
decided to look at the Mie scattering problem in its most general
terms using a special relativity framework and then come up with
approximations of that exact result at a later stage to describe the
corrections for much lower speeds associated with flow rates in kidneys
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etc. Thus, this paper describe the full-blown analysis in its complete
form which may be approximated, disregarding higher order terms of
the speed of the particle (v) to speed of light (c) ratio (i.e., higher order
v/c terms), to address the specific Doppler flowmetry issue and photon
transport equation modifications. Nevertheless, the present work does
not contain any approximations and provides a complete analysis of
the problem in the frame work of special relativity. Hence, the results
of this work can be applied in a vast number of disciplines as previously
outlined, with or without approximations that disregard higher order
(v/c) terms, as desired.

Mie theory provides a general solution to Maxwell’s equations and
it can be applied rigorously to solve the problem of electromagnetic
wave scattering by a particle whose size is comparable to the incident
wavelength [2]. Mie theory is widely used in practice to characterize
scattering by spherical particles because it provides an exact solution
to the Maxwell’s equations when an electromagnetic wave interact with
a stationary spherical particle [5]. The original Mie theory formulation
assumes that the medium surrounding the scatterer is non-absorbing,
the scatterer is spherical, homogeneous and isotropic and the size of the
scatterer is comparable to the incident wavelength [2, 6, 7]. However,
many variants of this theory has been reported in the literature. There
are techniques developed for modifying the Mie theory for spheres
immersed in an absorbing medium [6]. The Generalized Lorenz-Mie
theory [7] is used to deal with scattering of waves by spheres whose
sizes are not small enough with respect to the beam diameter of the
wave. (Note: the Generalized Mie theory involves an optical beam
instead of a plane wave). The Mie theory had been modified to study
the scattering of waves by non-spherical particles [8, 9] as well.

All of these variants of the Mie theory were developed to study
electromagnetic wave scattering by stationary particles. However, as
stated previously, the problem of wave scattering by moving particles is
an important problem in many disciplines. There are some techniques
and theories proposed in the literature to model the scattering of
electromagnetic waves by particles in motion. For example, Censor [10]
proposed a technique to solve the problem of scattering of a plane wave
by a moving sphere using Lorentz force formulas. In this technique, the
boundary conditions were derived from Lorentz force formulas, which
agree only to the first order v/c terms. Therefore, his technique is
valid only for moderate speeds relative to the speed of light [10]. The
implementation of the technique proposed by Censor is much more
complicated compared to implementing Mie problem in the absence
of motion [10]. His technique involves investigation of the behaviour
of the plane waves for a stationary sphere and exploiting Sommerfeld-
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type integrals [11] for the vector spherical waves [12]. The calculation
of the scattering coefficients is a tedious process involving expressing
the fields in a series of vector spherical harmonics [10]. Shiozawa [1]
investigated the problem of scattering of a plane wave by a small
particle moving uniformly in vacuum. He obtained the scattered field
and the scattering cross section based on the covariance of Maxwell’s
equations and the principle of phase invariance. In his technique, he
used the assumption that the particles are much smaller than the
wavelength of the incident wave and described the scattering using
electric and magnetic dipole moments induced on it [1].

Zutter [13] investigated the problem of time harmonic plane
wave scattering by objects in translational motion. In his work, the
scattered fields were expressed in terms of the precursor position of
the scatterer. He used Lorentz transformations to transform the
problem of scattering by a moving object to that of a stationary
object in a reference frame co-moving with the particle. To evaluate
the scattered field he then used a dipole-moment approach [13].
Chu et al. [14] analyzed the scattering of two crossed coherent plane
waves by a moving spherical particle based upon an exact solution to
Maxwell’s equations for the scattered wave fields that can be integrated
over a signal collection aperture that is centered along either the
forward or backward scattering direction. Konig et al. [3] proposed
a light-scattering technique for measuring the diameter of transparent
droplets. In their technique, light scattering was approximated by ray
optics.

To the best our knowledge, the Mie theory in its original form
has not been applied to the problem of light scattering by a moving
spherical particle previously. However, having a formulation which
uses the Mie theory is very much desired because of its popularity and
the vast amount of numerical software techniques available. In this
paper, we propose a technique to determine the scattered field of a
plane wave due to scattering from a particle in motion, while closely
following the steps of the standard Mie theory. Our approach is to first
transform the problem to a reference frame co-moving with the particle
using Lorentz transformations and then apply the standard Mie theory
in this frame. Once the scattered field is calculated in the reference
frame co-moving with the particle, it is then transformed back to a
reference frame which is stationary relative to the observer.

Since this extension of the Mie theory is carried out taking
relativistic effects into account, it can be used in any application
irrespective of the speed of the scatterer compared to that of light.
For example, the results of this work can be applied in astrophysics
where the particles move at speeds comparable to the speed of light.
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For other applications where the speed of the scatterer is much smaller
compared to that of light the results can be approximated by neglecting
higher order terms of the ratio (v/c). In order to present the proposed
technique without an increased mathematical complexity that might
mask the main theme of the work, we consider a lossless medium and
a lossless particle throughout this paper.

This paper is organized as follows. In Section 2, a novel technique
is proposed to solve the problem of plane wave scattering by particles
involving a relative motion between the particle and the source which
emits the plane wave. In Section 3, we show that the proposed
generalized solution reduces to the standard Mie theory when the
particle is stationary, clearly demonstrating the accuracy and the
versatility of the proposed theory. In addition, we show that the
proposed theory is compatible with the relativistic Doppler formula
under scattering free conditions. This result also shows that our
formulation is well behaved under limiting cases and thus has a wide
applicability in varying conditions. Section 4 provides simulation
results followed by some concluding remarks in Section 5.

2. SCATTERING OF A PLANE WAVE INVOLVING
MOVING PARTICLES AND SOURCES

In this section, we extend the Mie theory to a spherical particle
stationary with respect to a moving inertial reference frame relative
to the electromagnetic source. This section is further divided into
four subsections. In Section 2.1, we present the proposed theory
considering a stationary source and a moving particle relative to the
observer. In Section 2.2, we show how this result can be used for
an application involving a moving source and a stationary particle
and in Section 2.3, we show how the proposed theory can be applied
to a system with a moving source and a moving particle. In order
to reduce the mathematical complexity, in all these three cases we
deal with parallel motion between the plane wave and the particle.
In Section 2.4, we provide a discussion on how to apply the proposed
technique to systems involving non-parallel motion.

2.1. Stationary Source and Moving Particle

Consider an x-polarized plane wave Ei hitting a small particle moving
(relative to an observer in an inertial reference frame [15, 16]) with
velocity v along the z-axis, as shown in Fig. 1.

Consider two inertial frames S and S′ in standard configura-
tion [17] with a relative velocity v along the z-axis , as shown in
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Figure 1. Plane wave incident on a moving particle.
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Figure 2. Two inertial frames in standard configuration.

Fig. 2. Frame S is stationary relative to the observer and frame S′
is stationary relative to the particle.

The plane wave relative to frame S can be written as

Ei (x, y, z, t) = E0e
jkze−jωtux. (1)

In order to apply the Mie theory to determine the scattered field,
we first transform the incident plane wave given above to frame S′.
Using the Lorentz transformations [17, 18] (1) can be written in the
coordinates of inertial frame S′ as,

E′i
(
x′, y′, z′, t′

)
= E0e

jγ(k−ωv/c2)z′e−jγ(ω−kv)t′ux′ ,

= E0e
jk′z′e−jω′t′ux′ , (2)

where v denotes the magnitude of v, k′ = γ
(
k − ωv/c2

)
and ω′ = γ (ω − kv). γ is the Lorentz factor where γ =
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1/(
√

1− v2/c2). E′i (x
′, y′, z′, t′) is time harmonic and can be expressed

as E′i (x
′, y′, z′, t′) = E′i (x

′, y′, z′) e−jγ(ω−kv)t′ .
Writing E′i (x

′, y′, z′) in spherical coordinates results in

E′i
(
x′, y′, z′

)
= E0e

jk′r′ cos θ′ux′ , (3)

where ux′ = Sθ′Cφ′ur′ + Cθ′Cφ′uθ′ − Sφ′uφ′ and Sθ′ = sin θ′, Cθ′ =
cos θ′, Sφ′ = sinφ′ and Cφ′ = cosφ′. We use this notation throughout
this paper. We can expand E′i in spherical harmonics as [19],

E′i = E0

∞∑

n=1

jn 2n + 1
n(n + 1)

(
M(1)

o1n − jN(1)
e1n

)
, (4)

where Mo1n = Cφ′πnzn(ρ)ûθ′ − Sφ′τnzn(ρ)ûφ′ , Ne1n = Cφ′n(n +
1)Sθ′πnzn(ρ)/ρûr′+Cφ′τnD[ρzn(ρ)]/ρûθ′−Sφ′πnD[ρzn(ρ)]/ρûφ′ , Ne1n =
∇′ ×Me1n/k′, No1n = ∇′ ×Mo1n/k′. Thus, Me1n =
−Sφ′πnzn(ρ)ûθ′−Cφ′τnzn(ρ)ûφ′ , No1n = Sφ′n(n+1)Sθ′πnzn(ρ)/ρû′r +
Sφ′τnD[ρzn(ρ)]/ρûθ′ + Cφ′πnD[ρzn(ρ)]/ρûφ′ . Superscripts appended
to the functions M and N denote the kind of the spherical Bessel
function zn: (1) denotes jn(k1r) (i.e., spherical Bessel functions of
the first kind [20]) and (3) denotes h

(1)
n (kr) (i.e., spherical Bessel

functions of the third kind, or spherical Hankel functions [20]). The
angle-dependent functions πn = P 1

n(Cθ′)/Sθ′ and τn = dP 1
n(Cθ′)/dθ′

where P 1
n are the associate Legendre polynomials of order 1 and de-

gree n. These functions can be computed by upward recurrence us-
ing πn = (2n− 1/n− 1)Cθ′πn−1 − (n/n− 1)πn−2, τn = nCθ′πn −
(n + 1)πn−1, beginning with π0 = 0 and π1 = 1. ρ = k′r′ and
∇′ ≡ ∂/∂x′ux′ + ∂/∂y′uy′ + ∂/∂z′uz′ denotes the gradient operator
with respect to inertial frame S′. k′1 is the wave number of the wave
inside the scatterer (moving particle) and k′ is the wave number of
the wave outside the scatterer. D represents the first derivative with
respect to ρ. (A complete derivation of the expansion of the electric
field using spherical harmonics can be found in [19]).

From (2) we have ∂/∂t′ ≡ −jω′. Thus, from Maxwell’s equations

∇′ ×E′ = jω′B′,

B′ = −j
1
ω′
∇′ ×E′.

(5)

In frame S′, Minkowski constitutive relations hold. These are given by
the following two equations [21].

D′ +
v ×H′

c2
− εE′ − εv ×B′ = 0, (6)

B′ − v ×E′

c2
− µ0H′ + µ0v ×D′ = 0. (7)
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Eliminating D from the above two equations and using the identity
A× (B×C) = B (A ·C)−C (A ·B) results in
µ0

c2
v

(
v ·H′)− µ0

c2
v2H′ − εµ0v ×E′ − εµ0v

(
v ·B′) + εµ0v

2B′ −B′

+
1
c2

v ×E′ + µ0H′ = 0. (8)

Since the velocity of the particle is perpendicular to B, H, D and E
(in addition, the magnetic field is perpendicular to the electric field
due to the properties of the plane wave), v ·H′ = 0 and v · B′ = 0.
Then, (8) becomes

−µ0

c2
v2H′ − εµ0v ×E′ + εµ0v

2B′ −B′ +
1
c2

v ×E′ + µ0H′ = 0. (9)

Using (5) in (9) and assuming free-space propagation we can
express the incident magnetic field using spherical harmonics as (see
Appendix A)

H′
i =

1
µ0

P̃0

∞∑

n=1

En

(
v ×M(1)

o1n − jv ×N(1)
e1n

)

− k′c2

µ0ω′
Q0

∞∑

n=1

En

(
M(1)

e1n + jN(1)
o1n

)
, (10)

where P̃0 =
(
c2ε0µ0 − 1

)
/

(
c2 − v2

)
, Q0 =

(
1− ε0µ0v

2
)
/

(
c2 − v2

)
and En = jn (2n + 1) / (n(n + 1)) E0.

Let the expansion of the electric field, E′1, inside the sphere relative
to frame S′ be

E′1 =
∞∑

n=1

En

(
cnM

(1)
o1n − jdnN

(1)
e1n

)
. (11)

Then the magnetic field, H′
1, inside the sphere is

H′
1 = 1/µ0P̃1v ×E′1 − j

c2

µ0ω′
Q1∇′ ×E′1,

= 1/µ0P̃1

∞∑

n=1

En

(
cnv ×M(1)

o1n − jdnv ×N(1)
e1n

)

− k′1c
2

µ0ω′
Q1

∞∑

n=1

En

(
dnM

(1)
e1n + jcnN

(1)
o1n

)
, (12)

where P̃1 = (c2ε1µ0 − 1)/(c2 − v2), Q1 = (1− ε1µ0v
2)/(c2 − v2). Let

the expansion of the scattered electric field with respect to frame S′
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be [19]

E′s =
∞∑

n=1

En

(
janN

(3)
e1n − bnM

(3)
o1n

)
. (13)

Then the scattered magnetic field will be

H′
s =

1
µ0

P̃0v ×E′s − j
c2

µ0ω′
Q0∇′ ×E′s,

=
1
µ0

P̃0

∞∑

n=1

En

(
janv ×N(3)

e1n − bnv ×M(3)
o1n

)

+
k′c2

µ0ω′
Q0

∞∑

n=1

En

(
jbnN

(3)
o1n + anM

(3)
e1n

)
. (14)

On the scatterer-medium boundary (i.e., on the surface of the
scatterer) we have the following boundary conditions [19](

E′i + E′s −E′1
)× ur′ =

(
H′

i + H′
s −H′

1

)× ur′ = 0. (15)

That is, the tangential components of E′ and H′ are continuous across
a boundary separating two media of different properties [19]. The
above boundary conditions can be written in component form as (for
each n)

F′iβ + F′sβ = F′1β, (16)

where F = E,H and β = θ, φ. On the boundary r′ = a where a is the
radius of the spherical scatterer. Let χ represents ρ on the boundary
where χ = k′a, χ1 = k′1a and m = k′1/k′.

Equations (4), (11) and (13) can be written in component form
and used in the boundary condition given by (16) to obtain two
equations relating the four scattering coefficients, an, bn, cn and dn

(see Appendix B). Similarly, (10), (12) and (14) can be written in
component form and used in the boundary condition given by (16)
to obtain two equations relating the four scattering coefficients (see
Appendix B). By solving these four equations we obtain the four
scattering coefficients that are required to calculate the Mie solution.

an =
Ψ
Ω

, (17)

bn =
Y

Z
, (18)

cn =
1

MaZ
(ZJa −HaY ) , (19)

dn =
m

BaΩ
(AaΩ− IaΨ) , (20)
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where

Ω =
(

jP0ΓIa − jP0ΛHa − k′Q0∆Haχ− jP1ΓIa + jP1Λ
MaIa

Ba

+k′1Q1∆mχ
MaIa

Ba

)
,

Ψ =
(

jP0ΓAa − jP0ΛJa − k′Q0∆Jaχ− jP1ΓAa + jP1Λ
MaAa

Ba

+k′1Q1∆
mχMaAa

Ba

)
,

Y =
(

P0ΓJaχ− jP0XJa − jk′Q0∆Aa + jP0XHa
Ψ
Ω
− P1ΓJaχ

+jP1
XMaAa

Ba
− jP1

XMaIa

Ba

Ψ
Ω

+ jk′1Q1∆
BaJa

mMa

)
,

Z =
(

P0ΓHaχ− jk′Q0∆Ia − P1ΓHaχ + jk′1Q1∆
BaHa

mMa

)
,

P0 = v × P̃0, P1 = v × P̃1, Π = πn(Cθ′), Ja = jn(χ), Ma = jn(χ1) =
jn(mχ), Aa = D[χjn(χ)] = (d/dχ) [χjn(χ)], Ba = D[χ1jn(χ1)] =
D[mχjn(mχ)] = (d/dχ) [mχjn(mχ)], T = τn(Cθ′), Ha = h

(1)
n (χ),

Ia = D[χh
(1)
n (χ)], Γ = Cθ′(Π×Π−T ×T ), ∆ = c2/ω′(Π×Π−T ×T ),

Λ = n(n + 1)S2
θ′Π× T and X = n(n + 1)S2

θ′Π×Π.
Thus, we have calculated the scattering coefficients an, bn, cn and

dn. Hence, the scattered field and the field inside the scatterer are
known with respect to frame S′. We then need to transform these
fields to reference frame S, which is stationary relative to the observer.
We first write the field components with respect to the Cartesian
coordinate system and then use the standard field transformations from
frame S′ to frame S.

The Cartesian field components can be constructed from the
spherical field components using the following transformations

F ′
x = F ′

rSθ′Cφ′ + FθCθ′Cφ′ − F ′
φSφ′ , (21)

F ′
y = F ′

rSθ′Sφ′ + F ′
θCθ′Sφ′ + F ′

φCφ′ , (22)

F ′
z = F ′

rCθ′ − F ′
θSθ′ , (23)

where F = E, H.
Using the expression for the scattered electric field (i.e., (13)) in

(21) to (23), we obtain the Cartesian components of the electric field
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as

E′
s,x =

∞∑

n=1

En

[
jan

(
N

(3)
e1n,rSθ′Cφ′ + N

(3)
e1n,θCθ′Cφ′ −N

(3)
e1n,φSφ′

)

−bn

(
M

(3)
o1n,θCθ′Cφ′ −M

(3)
o1n,φSφ′

)]
, (24)

E′
s,y =

∞∑

n=1

En

[
jan

(
N

(3)
e1n,rSθ′Sφ′ + N

(3)
e1n,θCθ′Sφ′ + N

(3)
e1n,φCφ′

)

−bn

(
M

(3)
o1n,θCθ′Sφ′ + M

(3)
o1n,φCφ′

)]
, (25)

E′
s,z =

∞∑

n=1

En

[
jan

(
N

(3)
e1n,rCθ′ −N

(3)
e1n,θSφ′

)
+ bnM

(3)
o1n,θSθ′

]
. (26)

Similarly, using the expression for the scattered magnetic field
(i.e., (14)) in (21) to (23), we obtain the Cartesian components of the
magnetic field as,

H ′
s,x =

P0

µ0

∞∑

n=1

En

[
jan

(
−N

(3)
e1n,φCφ′ −N

(3)
e1n,θCθ′Sφ′ −N

(3)
e1n,rSθ′Sφ′

)

+bn

(
M

(3)
o1n,φCφ′ + M

(3)
o1n,θCθ′Sφ′

)]

+
k′c2

µ0ω′
Q0

∞∑

n=1

En

[
jbn

(
N

(3)
o1n,rSθ′Cφ′+N

(3)
o1n,θCθ′Cφ′−N

(3)
o1n,φSφ′

)

an

(
M

(3)
e1n,θCθ′Cφ′ −M

(3)
e1n,φSφ′

)]
, (27)

H ′
s,y =

P0

µ0

∞∑

n=1

En

[
jan

(
−N

(3)
e1n,φSφ′ + N

(3)
e1n,θCθ′Cφ′ + N

(3)
e1n,rSθ′Cφ′

)

+bn

(
M

(3)
o1n,φSφ′ −M

(3)
o1n,θCθ′Cφ′

)]

+
k′c2

µ0ω′
Q0

∞∑

n=1

En

[
jbn

(
N

(3)
o1n,rSφ′Sθ′+N

(3)
o1n,θCθ′Sφ′+N

(3)
o1n,φCφ′

)

+an

(
M

(3)
e1n,θCθ′Sφ′ + M

(3)
e1n,φCφ′

)]
, (28)
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H ′
s,z=

P0

µ0

∞∑

n=1

En

[
− jan

(
N

(3)
e1n,φSθ′Cθ′ + N

(3)
e1n,θCθ′Sθ′ + N

(3)
e1n,rS

2
θ′

)

+bn

(
M

(3)
o1n,φSθ′Cθ′ + M

(3)
o1n,θCθ′Sθ′

) ]

+
k′c2

µ0ω′
Q0

∞∑

n=1

En

[
jbn

(
N

(3)
o1n,rCθ′−N

(3)
o1n,φSθ′

)
−anM

(3)
e1n,φSθ′

]
, (29)

where P0 = v × P̃0.
These components of the scattered electromagnetic field with

respect to frame S′ should then be transformed back to the inertial
reference frame S of the observer. Using the Minkowski constitutive
relations [21] in the standard field transformation equations [22] we
obtain the following field transformations between the two inertial
frames (see Appendix C)

Ex = γ

(
E′

x +
v

c
µ0L1L2H

′
y +

v2

c
L1L3E

′
x

)
, (30)

Ey = γ

(
E′

y −
v

c
µ0L1L2H

′
x +

v2

c
L1L3E

′
y

)
, (31)

Ez = E′
z, (32)

Hx = γ

(
L1L2H

′
x −

v

µ0
L1L3E

′
y −

v

µ0c
E′

y

)
, (33)

Hy = γ

(
L1L2H

′
y +

v

µ0
L1L3E

′
x +

v

µ0c
E′

x

)
, (34)

Hz = L1L2H
′
z, (35)

where L1 = 1/(1− ε0µ0v
2), L2 = 1− (v2/c2) and L3 = 1/c2 − ε0µ0.

Hence, using (24) to (26) and (27) to (29) in (30) to (35), we
can calculate all the components of electric and magnetic fields with
respect to inertial frame S.

2.2. Moving Source and Stationary Particle

Consider a source moving with a velocity vs along the z-axis, relative to
an observer. The source is emitting x-polarized plane waves Ei which
hit a small stationary particle (relative to the observer), as shown in
Fig. 3. Consider two inertial frames S and S′ in standard configuration
with a relative velocity vs. Frame S is stationary relative to the source
and frame S′ is stationary relative to the particle and the observer, as
shown in Fig. 3. The plane wave with respect to frame S can be written
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Figure 3. Two inertial frames in standard configuration.

as
Ei(x, y, z, t) = E0e

jkze−jωtux. (36)
Equation (36) can be transformed to frame S′ using the Lorentz
transformations [17, 18] as

E′i
(
x′, y′, z′, t′

)
= E0e

j(γk+vsωγ/c2)z′e−jγ(vsk+ω)t′ux′ ,

= E0e
jk′z′e−jω′t′ux′ ,

where vs denotes the magnitude of vs, k′ = γ
(
k + ωvs/c2

)
, ω′ =

γ (vsk + ω) and γ = 1/
√

1− v2
s/c2.

Now consider frame S′′ which is stationary with respect to frame
S′ but whose origin is situated at the centre of the scatterer (so that we
can have the same boundary conditions as in the standard Mie theory).
The incident wave can be written with respect to frame S′′ as

E′′i
(
x′′, y′′, z′′, t′′

)
= E0e

jk′(z′′−cz)e−jω′t′′ux′′ ,

= E0e
−jk′czejk′z′′e−jω′t′′ux′′ , = E′′

0ejk′z′′e−jω′t′′ux′′ .

E′′i can be expanded in spherical harmonics as follows [19].

E′′i = E′′
0

∞∑

n=1

jn 2n + 1
n(n + 1)

(
M(1)

o1n − jN(1)
e1n

)
. (37)
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From Maxwell’s equations

B′′ = −j
1
ω′
∇′′ ×E′′. (38)

In frame S′′ the following relation holds:

B′′ = µ0H′′. (39)

Using (39) and (37) in (38), for the incident magnetic field, we get

H′′
i = − k′

µ0ω′

∞∑

n=1

E′′
n

(
M(1)

e1n + jN(1)
o1n

)
. (40)

From the format of (37) and (40) it is evident that we can obtain the
scattered field by replacing k by k′, ω by ω′ and En by E′′

n in the results
of the standard Mie theory (which is derived for a stationary source
and a stationary particle). Thus, the scattered field is

E′′s =
∞∑

n=1

E′′
n

(
janN

(3)
e1n − bnM

(3)
o1n

)
,

H′′
s =

k′

ω′µ0

∞∑

n=1

E′′
n

(
jbnN

(3)
o1n + anM

(3)
e1n

)
,

where

an =
m2jn(mχ)D[χjn(χ)]− jn(χ)D[mχjn(mχ)]

m2jn(mχ)D[χh
(1)
n (χ)]− h

(1)
n (χ)D[mχjn(mχ)]

,

bn =
jn(mχ)D[χjn(χ)]− jn(χ)D[mχjn(mχ)]

jn(mχ)D[χh
(1)
n (χ)]− h

(1)
n (χ)D[mχjn(mχ)]

,

and χ = k′a, m = k′1/k′.

2.3. Source and Particle Both in Motion

Consider a source moving with a velocity vs along the z-axis relative to
an observer. This source is emitting x-polarized plane waves Ei which
hit a small particle moving (relative to an observer) with velocity v
along z-axis, as shown in Fig. 4. Consider three inertial frames S, S′
and S′′ in standard configuration. Frame S′′ is stationary relative to
the observer, frame S′ is stationary relative to the particle and frame
S is stationary relative to the source, as shown in Fig. 4. The incident
plane wave with respect to frame S can be written as

Ei(x, y, z, t) = E0e
jkze−jωtux. (41)
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Figure 4. Two inertial frames in standard configuration.

Equation (41) can be transformed to frame S′′ as

E′′i (x
′′, y′′, z′′, t′′) = E0e

jγ1(k+vsω/c2)z′′e−jγ1(ω+vsk)t′′ux′′ ,

= E0e
jk′′z′′e−jω′′t′′ux′′ , (42)

where k′′ = γ1

(
k + vsω/c2

)
, ω′′ = γ1 (ω + vsk) and γ1 =

1/
√

1− v2
s/c2. Equation (42) can then be transformed to frame S′

as
E′i(x

′, y′, z′, t′) = E0e
jγ2(k′′−vω′′/c2)z′e−jγ2(ω′′−vk′′)t′ux′ ,

= E0e
jk′z′e−jω′t′ux′ ,

where k′ = γ2

(
k′′ − vω′′/c2

)
= γ1γ2

((
1− vsv/c2

)
k +

(
vs/c2 − v/c2

)
ω
)
,

ω′ = γ2 (ω′′ − vk′′) = γ1γ2

((
1− vsv/c2

)
ω + (vs − v) k

)
and γ2 =

1/
√

1− v2/c2 ·E′i can be expanded using spherical harmonics as

E′i = E0

∞∑

n=1

jn 2n + 1
n(n + 1)

(
M(1)

o1n − jN(1)
e1n

)
. (43)

From Maxwell’s equations

B′ = −j
1
ω′
∇′ ×E′. (44)
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In frame S′ Minkowski constitutive relations hold. Using (44), (6) and
(7), we get

H′ =
1
µ0

P̃v ×E′ − j
c2

µ0ω′
Q∇′ ×E′, (45)

where P̃ =
(
c2εµ0 − 1

)
/

(
c2 − v2

)
and Q =

(
1− εµ0v

2
)
/

(
c2 − v2

)
.

Using (43) in (45) we get

H′
i =

1
µ0

P̃0

∞∑

n=1

En

(
v ×M(1)

o1n − jv ×N(1)
e1n

)

− k′c2

µ0ω′
Q0

∞∑

n=1

En

(
M(1)

e1n + jN(1)
o1n

)
. (46)

Equations (43) and (46) are exactly similar to (4) and (10).
Therefore, following a similar argument (and using the same boundary
conditions) as in Section 2.1, we can determine the scattered field
relative to frame S′. In addition, the Cartesian components of electric
and magnetic fields relative to frame S′ can be obtained using (24) to
(26) and (27) to (29). Since the observer is stationary relative to frame
S′′, we should convert these fields to frame S′′. Using the Minkowski
constitutive relations [21] in the standard field transformations [22], we
obtain the scattered field as seen by the observer using the following
transformations

E′′
x = γ2

(
E′

x +
v

c
µ0L1L2H

′
y +

v2

c
L1L3E

′
x

)
, (47)

E′′
y = γ2

(
E′

y −
v

c
µ0L1L2H

′
x +

v2

c
L1L3E

′
y

)
, (48)

E′′
z = E′

z, (49)

H ′′
x = γ2

(
L1L2H

′
x −

v

µ0
L1L3E

′
y −

v

µ0c
E′

y

)
, (50)

H ′′
y = γ2

(
L1L2H

′
y +

v

µ0
L1L3E

′
x +

v

µ0c
E′

x

)
, (51)

H ′′
z = L1L2H

′
z. (52)

where L1 = 1/(1− εµ0v
2), L2 = 1− (v2/c2) and L3 = 1/c2 − εµ0.

2.4. Non-parallel Motion between the Wave and the Particle

In all the three cases discussed in the previous three sections, we have
considered the relative motion of the plane wave and the particle in
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the same direction. This configuration made it possible for us to
closely follow the standard Mie theory derivation in reference frame S′.
However, the proposed method can be easily adopted to non-parallel
motion between the wave and the particle as described in this section.

Consider the case discussed in Section 2.1 where the source is
stationary and the particle is in motion relative to the observer. For the
non-parallel case we prefer to choose the coordinate axes of reference
frame S such that the z-axis makes an angle α with the direction
of propagation of the wave, where cosα = (k · v)/(kv) as shown by
Fig. 5. The z′-axis of frame S′ is chosen to be along the direction
of motion of the particle. This choice of coordinate axes makes it
possible for us to use the standard simple Lorentz transformations and
field transformations due to the fact that the two reference frames are
in standard configuration.

Equation of the plane wave relative to frame S is

Ei(x, y, z, t) = E0e
jk(sin αy+cos αz)e−jωtux. (53)

Relative to frame S′ (53) can be written as

E′i(x
′, y′, z′, t′) = E0e

j(k sin αy′+γ(k cos α−ωv/c2)z′)e−jγ(ω−kv cos α)t′ux′ ,

= E0e
j(k′yy′+k′zz′)e−jω′t′ux′ . (54)

In spherical coordinates (54) can be written as

E′i
(
x′, y′, z′

)
= E0e

j(k′yr′Sθ′Sφ′+k′zr′Cθ′)ux′ . (55)

v
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y

x
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v
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Figure 5. Non-parallel relative motion between the wave and the
particle.
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The next step is to expand the plane wave in spherical harmonics.

E′i =
∞∑

n=1

(
Bo1nM

(1)
o1n + Ae1nN

(1)
e1n

)
. (56)

The form of (55) is different to that of (3) of Section 2.1. The
form of the transformed equation of the plane wave in Section 2.1 is
similar to that of the standard Mie theory and therefore the spherical
harmonic expansion coefficients Bo1n and Ae1n were equal to those of
the standard Mie theory. (i.e., Bo1n = jnE0(2n + 1)/(n(n + 1)) and
Ae1n = −jE0j

n(2n + 1)/(n(n + 1))). However, for the non-parallel
case these coefficients will not be the same and the integrals involved
in the determination of these coefficients are much more complicated
than those involved in the parallel motion case. Nevertheless, once
these coefficients are evaluated, the scattered field can be obtained
using the method discussed in Section 2.1. That is, once Bo1n and
Ae1n are evaluated, the same steps and field transformations can be
used to determine the scattered field relative to the observer.

3. VALIDATION OF THE SCATTERING THEORY
RESULTS

In this section, we carryout two tests to validate the results of the
proposed theory. First, we show that the expressions derived for a
plane wave scattering by a moving particle reduces to those of the
standard Mie theory when the relative velocity is set to zero. Second,
we show that when the refractive index of the particle is equal to that
of the medium, no scattering takes place, as expected, and the field
experienced by an observer moving with the particle is the same as
that predicted by the relativistic Doppler formula [23].

3.1. Reduction to Standard Mie Theory When the Relative
Velocity is Zero

Consider setting the relative velocity v to zero in the problem discussed
in Section 2.1 so that the particle is stationary relative to the observer.
Transformations given by (30) to (35) then reduce to

Ex = γE′
x, (57)

Ey = γE′
y, (58)

Ez = E′
z, (59)

Hx = γL1L2H
′
x, (60)

Hy = γL1L2H
′
y, (61)
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Hz = L1L2H
′
z. (62)

In addition, when v = 0, γ = 1, L1 = 1 and L2 = 1. Therefore, (57)
to (62) further reduce to

Fn = F ′
n, (63)

where F = E, H and n = x, y, z. Thus, when v = 0

E = E′, (64)
H = H′. (65)

It is also evident that in this special case the two inertial reference
frames S and S′ are the same and thus the spherical harmonics M and
N would remain unchanged. Using (13) and (14) in (64) and (65) with
v = 0, for the scattered field with respect to frame S when the particle
is stationary, we get

Es =
∞∑

n=1

En

(
janN

(3)
e1n − bnM

(3)
o1n

)
, (66)

Hs =
k′c2

µ0ω′
Q

∞∑

n=1

En

(
jbnN

(3)
o1n + anM

(3)
e1n

)
. (67)

Q =
(
1− εµ0v

2
)
/

(
c2 − v2

)
. (68)

With respect to frame S, εµ0 = 1/c2. Hence,

Q =
(
1− v2/c2

)
/

(
c2 − v2

)
= 1/c2.

When v = 0, k′ = k and ω′ = ω. Equation (67) thus reduces to

Hs =
k

µ0ω

∞∑

n=1

En

(
jbnN

(3)
o1n + anM

(3)
e1n

)
. (69)

Using a similar argument for the field inside the scatterer, we get

E1 =
∞∑

n=1

En

(
cnM

(1)
o1n − jdnN

(1)
e1n

)
, (70)

H1 = − k1

µ0ω

∞∑

n=1

En

(
dnM

(1)
e1n + jcnN

(1)
o1n

)
. (71)

Thus, it is evident from (66), (69), (70) and (71) that the expressions
for the scattered electric and magnetic fields have reduced to the
standard expressions (of Mie theory), given that the expressions for
coefficients an, bn, cn and dn reduce to the standard expressions when
v is set to zero.
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3.1.1. Reduction of Scattering Coefficients When the Particle is
Stationary

When v = 0, P0 = 0 and P1 = 0. In addition, k′ = k and k′1 = k1.
Hence (17) reduces to

an =
m2MaAa−JaBa

m2MaIa−HaBa

=
m2jn(mχ)D[χjn(χ)]−jn(χ)D[mχjn(mχ)]

m2jn(mχ)D[χh
(1)
n (χ)]−h

(1)
n (χ)D[mχjn(mχ)]

. (72)

Equation (18) reduces to

bn =
MaAa−JaBa

MaIa−HaBa
=

jn(mχ)D[χjn(χ)]−jn(χ)D[mχjn(mχ)]

jn(mχ)D[χh
(1)
n (χ)]−h

(1)
n (χ)D[mχjn(mχ)]

. (73)

Equation (19) reduces to

cn =
JaIa−HaAa

MaIa−HaBa
=

jn(χ)D[χh
(1)
n (χ)]− h

(1)
n D[χjn(χ)]

jn(mχ)D[χh
(1)
n (χ)]− h

(1)
n (χ)D[mχjn(mχ)]

. (74)

Equation (20) reduces to

dn =
mJaIa −mHaAa

m2MaIa −HaBa

=
mjn(χ)D[χh

(1)
n (χ)]−mh

(1)
n (χ)D[χjn(χ)]

m2jn(mχ)D[χh
(1)
n (χ)]− h

(1)
n (χ)D[mχjn(mχ)]

. (75)

Equations (66), (69), (70) and (71) together with (72) to (75) are the
expressions for the scattered field of a plane wave scattered by a small
stationary spherical particle [19]. Thus, the modified theory for the
moving particle has been reduced to the standard Mie theory when
the velocity of the particle is set to zero.

In the problem of moving source and stationary particle (relative
to the observer) discussed in Section 2.2, when the relative velocity vs

is set to zero, γ = 1, k′ = k and ω′ = ω. Hence, the problem reduces
to the standard Mie scattering problem.

In the problem where both the source and the particle are in
motion, as discussed in Section 2.3, when vs and v is set to zero,
γ1 = 1, γ2 = 1, k′ = k and ω′ = ω. In addition, in the transformations
of the field given by (47) to (52), L1 = 1 and L2 = 1. Then, those
field transformations reduce to the same form as in (63). Therefore,
using the same argument as for the case of the stationary source and
the moving particle, we have the expressions reduced to those of the
standard Mie theory when vs = v = 0.
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3.2. Comparison with Doppler Shift Formula

In this section, we show that the proposed formulation is comparable
with the Doppler shift formula. We consider a particle with the same
refractive index as that of the medium so that no scattering takes place
and the whole system behaves as if there is a non-scattering object
present. We show that, in this scenario, no scattering takes place and
the field inside the particle is equal to the incident field. In addition, we
show that an observer moving with the particle experiences a frequency
shift of the plane wave equal to that predicted by the Doppler shift
formula, as expected. For this comparison, we consider the case
discussed in Section 2.1, where the source is stationary while the
particle is in motion.

When the refractive index of the particle is equal to that of the
medium, ε1 = ε0. Then in (17) to (20), k′1 = k′, m = 1, Q1 = Q0 and
P1 = P0. In addition, since ρ1 = ρ, χ1 = χ, Ba = Aa and Ma = Ja

(see Appendix B). Then,

Ψ =
(

jP0ΓAa − jP0ΛJa − k′Q0∆Jaχ− jP0ΓAa + jP0Λ
JaAa

Aa

+k′Q0∆
χJaAa

Aa

)
= 0.

Ω =
(

jP0ΓIa − jP0ΛHa − k′Q0∆Haχ− jP0ΓIa + jP0Λ
JaIa

Aa

+k′Q0∆χ
JaIa

Aa

)
=

(
jP0Λ + k′Q0∆χ

) (
JaIa

Aa
−Ha

)
6= 0.

Therefore,

an = Ψ/Ω = 0.

Y =
(

P0ΓJaχ− jP0XJa − jk′Q0∆Aa + jP0XHa
Ψ
Ω
− P0ΓJaχ

+jP0
XJaAa

Aa
− jP0

XJaIa

Aa

Ψ
Ω

+ jk′Q0∆
AaJa

Ja

)
= 0.

Z =
(

P0ΓHaχ− jk′Q0∆Ia − P0ΓHaχ + jk′Q0∆
AaHa

Ja

)

= jk′Q0∆
(

AaHa

Ja
− Ia

)
6= 0.

Therefore,

bn = Y/Z = 0.
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Then,
cn = 1/Ja (Ja −Habn) = 1,

dn = 1/Aa (Aa − Iaan) = 1.

Using an and bn in (13) and (14), for the scattered field with respect
to frame S′, we get

E′s = 0,

H′
s = 0.

Using cn and dn in (11) and (12) (and combining the time dependency
term), for the field inside the particle with respect to frame S′, we get

E′1
(
x′, y′, z′, t′

)
=

∞∑

n=1

En

(
M(1)

o1n − jN(1)
e1n

)
e−jω′t′ ,

= E′i
(
x′, y′, z′

)
e−jω′t′

H′
1

(
x′, y′, z′, t′

)
=

[
1
µ0

P̃0

∞∑

n=1

En

(
v ×M(1)

o1n − jv ×N(1)
e1n

)

− k′c2

µ0ω′
Q0

∞∑

n=1

En

(
M(1)

e1n + jN(1)
o1n

)]
e−jω′t′ ,

= H′
i

(
x′, y′, z′

)
e−jω′t′ .

From (2)
ω′ = γ(ω − kv) = γ (ω − ωv/vp) ,

=
c√

c2 − v2
(1− v/vp) ω,

where v is the speed of the observer, ω is the angular frequency of the
plane wave relative to the medium and vp is the phase velocity of the
plane wave relative to the medium.

Thus, when the refractive index of the particle is equal to that
of the medium, there is no scattered field, while the field inside the
particle, as seen by an observer moving with the particle, is equal
to the incident field in magnitude, but the frequency is shifted by the
amount predicted by the special relativistic Doppler formula [23]. This
shows that the derived formula is well-behaved even under the limiting
conditions, making it widely usable for both strong and weak scattering
scenarios.

4. NUMERICAL RESULTS AND DISCUSSION

In this section we present some numerical results that were obtained
by simulating the proposed derivation.
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(a) (b)

Figure 6. Distribution of the z-component of the Poynting vector
within the xy-plane when the particle is stationary. (a) At z = −a
(plane for incoming radiation), (b) at z = a (plane for outgoing
radiation).

(a) v=0 (b) v=10 m.s

(c) v=1000 m.s (d) v=0.5× c

−1

−1

Figure 7. Distribution of the z-component of the Poynting vector
within the xz-plane for different velocities.
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Figure 6 shows the distribution of the z-component of the Poynting
vector within the xy-plane at z = −a and z = a planes, when v is set
to zero (i.e., the particle is stationary). For this figure we have set the
simulation parameters to those used for Fig. 4 of [24]. In [24], Wang
et al. obtained Fig. 4 using the classical Mie theory. Hence, Fig. 6
illustrates that the theory proposed in this paper produces the results
of the classical Mie theory when the velocity of the particle is set to
zero.

Figure 7 shows the distribution of the z-component of the Poynting
vector within the xz-plane, around the particle, for different velocities.
For this simulation we have set E0 = 1 V/m, a/λ = 3/4π and a
non-magnetic particle with relative permittivity 12 was considered.
Figs. 7(a), 7(b), 7(c) and 7(d) were obtained for v = 0, v = 10 m · s−1,
v = 1000 m · s−1 and v = 0.5 times the speed of light, respectively.
Hence, Fig. 7 illustrates the versatility of the proposed theory, which
is accurate from very low to very high velocities. A comparison of
Figs. 7(a) and 7(b) shows that the standard Mie theory is not a good
approximation even at very low speeds, such as 10m · s−1.

5. CONCLUSION

In this paper, we addressed the problem of electromagnetic scattering
by particles involving relative motion between the source and the
particle. The proposed technique involves first transforming the
problem to a reference frame co-moving with the particle using the
Lorentz transformations. Then the Mie theory is applied relative
to this frame. We have closely followed the steps of the standard
derivation and obtained the scattered field relative to the reference
frame co-moving with the particle. Field transformations were then
used to transform this field to the reference frame of the observer.
When the velocity of the particle and the source were set to zero
relative to the observer, the results reduced to those of the standard
Mie theory. Using simulations we showed that the standard Mie
theory is not a good approximation even at very low speeds such as
10m·s−1. By assuming that the refractive index of the particle is equal
to that of the medium, we showed that the results of the derivation
are compatible with the relativistic Doppler formula.

APPENDIX A. EXPANSION OF THE MAGNETIC
FIELD USING SPHERICAL HARMONICS

Here, we show how to express the magnetic field in terms of spherical
harmonics using the expression for the electric field.
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Using (5) in (9) and simplifying, we get

H′ =
1
µ0

(
c2εµ0 − 1
c2 − v2

)
v ×E′ − j

c2

µ0ω′

(
1− εµ0v

2

c2 − v2

)
∇′ ×E′,

=
1
µ0

P̃v ×E′ − j
c2

µ0ω′
Q∇′ ×E′, (A1)

where P̃ =
(
c2εµ0 − 1

)
/

(
c2 − v2

)
and Q =

(
1− εµ0v

2
)
/

(
c2 − v2

)
.

We then replace the terms v×E′ and∇′×E′ using spherical harmonics.

v ×E′i =
∞∑

n=1

En

[
v ×M(1)

o1n − jv ×N(1)
e1n

]
, (A2)

∇′ ×E′i = −jk′
∞∑

n=1

En

(
M(1)

e1n + jN(1)
o1n

)
, (A3)

where En = jn (2n + 1) / (n(n + 1))E0.
The velocity v can be decomposed into components as v = vuz′ =

vCθ′ur′ − vSθ′uθ′ . Using (A2) and (A3) in (A1) the incident magnetic
field can be written using spherical harmonics as

H′
i =

1
µ0

P̃0

∞∑

n=1

En

(
v ×M(1)

o1n − jv ×N(1)
e1n

)

− k′c2

µ0ω′
Q0

∞∑

n=1

En

(
M(1)

e1n + jN(1)
o1n

)
.

APPENDIX B. SOLUTION FOR THE SCATTERING
COEFFICIENTS

Here, we present a detailed solution procedure for obtaining the
scattering coefficients from the boundary conditions, as mentioned in
Section 2.1.

Let Π = πn(Cθ′), J = jn(ρ), M = jn(ρ1) = jn(mρ),
A = D[ρjn(ρ)] = d

dρ [ρjn(ρ)], B = D[ρ1jn(ρ1)] = D[mρjn(mρ)] =
d
dρ [mρjn(mρ)], T = τn(Cθ′), H = h

(1)
n (ρ), I = D[ρh

(1)
n (ρ)], and let

us use the subscript a assigned to the above notation to denote the
evaluation of those functions on the boundary, where r′ = a and hence
ρ = χ = k′a and ρ1 = χ1 = k′1a. (e.g., Ja = jn(χ) = jn(k′a) where as
J = jn(ρ) = jn(k′r′)).

Using F = E and β = θ in the boundary condition given by (16)
we get,

ΠJa − jT
Aa

χ
+ janT

Ia

χ
− bnΠHa − cnΠMa + jdnT

Ba

mχ
= 0. (B1)
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Using F = E and β = φ in the boundary condition given by (16), we
get,

−TJa + jΠ
Aa

χ
− janΠ

Ia

χ
+ bnTHa + cnTMa − jdnΠ

Ba

mχ
= 0. (B2)

Using F = H and β = θ in the boundary condition given by (16), we
get,

P0Cθ′TJa − jP0Cθ′Π
Aa

χ
+

k′c2

ω′
Q0ΠJa − j

k′c2

ω′
Q0T

Aa

χ

+jP0anCθ′Π
Ia

χ
− P0bnCθ′THa + j

k′c2

ω′
Q0bnT

Ia

χ
− k′c2

ω′
Q0anΠHa

−P1cnCθ′TMa + jP1dnCθ′Π
Ba

mχ
− k′1c

2

ω′
Q1dnΠMa

+j
k′1c

2

ω′
Q1cnT

Ba

mχ
= 0. (B3)

Using F = H and β = φ in the boundary condition given by (16), we
get,

P0Cθ′ΠJa − jP0Cθ′T
Aa

χ
− jP0n(n + 1)S2

θ′Π
Ja

χ
+

k′c2

ω′
Q0TJa

−j
k′c2

ω′
Q0Π

Aa

χ
+ jP0anCθ′T

Ia

χ
+ jP0ann(n + 1)S2

θ′Π
Ha

χ

−P0bnCθ′ΠHa + j
k′c2

ω′
Q0bnΠ

Ia

χ
− k′c2

ω′
anQ0THa − P1cnCθ′ΠMa

+jP1dnCθ′T
Ba

mχ
+ jP1dnn(n + 1)S2

θ′Π
Ma

mχ
− k′1c

2

ω′
Q1dnTMa

+j
k′1c

2

ω′
Q1cnΠ

Ba

mχ
= 0 (B4)

Multiplying (B1) by T and (B2) by Π and adding the two resulting
equations we get

mIaan + Badn = mAa. (B5)

Multiplying (B1) by Π, multiplying (B2) by T and adding the resulting
two equations, we get

Macn + Habn = Ja. (B6)

Multiplying (B3) by T , multiplying (B4) by Π and taking the difference
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of the resulting two equations, we get

−P0Cθ′Ja(ΠΠ− TT ) + jP0n(n + 1)S2
θ′ΠΠ

Ja

χ

+j
k′c2

ω′
Q0

Aa

χ
(ΠΠ− TT )− jP0ann(n + 1)S2

θ′ΠΠ
Ha

χ

+P0bnCθ′Ha(ΠΠ− TT )− j
k′c2

ω′
Q0bn

Ia

χ
(ΠΠ− TT )

+P1cnCθ′Ma(ΠΠ− TT )− jP1dnn(n + 1)S2
θ′ΠΠ

Ma

mχ

−j
k′1c

2

ω′
cnQ1

Ba

mχ
(ΠΠ− TT ) = 0. (B7)

where ΠΠ = Π×Π, TT = T × T . Multiplying (B3) by Π, multiplying
(B4) by T and taking the difference of the resulting two equations, we
get

−jP0Cθ′
Aa

χ
(ΠΠ− TT ) + jP0n(n + 1)S2

θ′ΠT
Ja

χ

+
k′c2

ω′
Q0Ja(ΠΠ− TT ) + jP0anCθ′

Ia

χ
(ΠΠ− TT )

−jP0ann(n + 1)S2
θ′TΠ

Ha

χ
− k′c2

ω′
Q0anHa(ΠΠ− TT )

+jP1dnCθ′
Ba

mχ
(ΠΠ− TT )− jP1dnn(n + 1)S2

θ′TΠ
Ma

mχ

−k′1c
2

ω′
Q1dnMa(ΠΠ− TT ) = 0. (B8)

Let Γ = Cθ′(ΠΠ − TT ), ∆ = c2

ω′ (ΠΠ − TT ), Λ = n(n + 1)S2
θ′ΠT ,

X = n(n + 1)S2
θ′ΠΠ. Using (B5) in (B8) (i.e., substituting for dn in

terms of an), we get

an =
Ψ
Ω

, (B9)

where

Ω =
(

jP0ΓIa − jP0ΛHa − k′Q0∆Haχ− jP1ΓIa + jP1Λ
MaIa

Ba

+k′1Q1∆mχ
MaIa

Ba

)
,
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Ψ =
(

jP0ΓAa − jP0ΛJa − k′Q0∆Jaχ− jP1ΓAa + jP1Λ
MaAa

Ba

+k′1Q1∆
mχMaAa

Ba

)
.

Using (B9) in (B5) we get

dn =
m

Ba

(
Aa − IaΨ

Ω

)
. (B10)

Using (B6), (B9) and (B10) in (B7), we get

bn =
Y

Z
,

where

Y =
(

P0ΓJaχ− jP0XJa − jk′Q0∆Aa + jP0XHa
Ψ
Ω
− P1ΓJaχ

+jP1
XMaAa

Ba
− jP1

XMaIa

Ba

Ψ
Ω

+ jk′1Q1∆
BaJa

mMa

)
,

Z =
(

P0ΓHaχ− jk′Q0∆Ia − P1ΓHaχ + jk′1Q1∆
BaHa

mMa

)
.

Then

cn =
1

Ma

(
Ja −Ha

Y

Z

)
.

APPENDIX C. FIELD TRANSFORMATIONS BETWEEN
FRAMES S AND S′

Here we show how the Cartesian field components of inertial frame S′
are transformed to those of inertial frame S.

The electromagnetic field transformations between the two inertial
reference frames S and S′, which are in standard configuration, are
given by [22]

Ex = γ
(
E′

x +
v

c
B′

y

)
,

Ey = γ
(
E′

y −
v

c
B′

x

)
,

Ez = E′
z,

Bx = γ
(
B′

x −
v

c
E′

y

)
,

By = γ
(
B′

y +
v

c
E′

x

)
,

Bz = B′
z.
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From Minkowski constitutive relations (i.e., from (6) and (7)) we can
determine B′ from E′ and H′ as follows.

B′=
1

1− εµ0v2

(
−µ0v

2

c2
H′−εµ0v ×E′+

1
c2

v ×E′+µ0H′
)

. (C1)

v ×E′=−vE′
yux′ + vE′

xuy′ . (C2)

Using (C2) in (C1), for the x, y and z-components of magnetic flux
density with respect to frame S′ we have,

B′
x =

1
1− εµ0v2

(
µ0

(
1− v2

c2

)
H ′

x − v

(
1
c2
− εµ0

)
E′

y

)
,

B′
y =

1
1− εµ0v2

(
µ0

(
1− v2

c2

)
H ′

y + v

(
1
c2
− εµ0

)
E′

x

)
,

B′
z =

1
1− εµ0v2

µ0

(
1− v2

c2

)
H ′

z.

Therefore, the electromagnetic field transformations can be written as

Ex = γ

(
E′

x +
v

c
µ0L1L2H

′
y +

v2

c
L1L3E

′
x

)
,

Ey = γ

(
E′

y −
v

c
µ0L1L2H

′
x +

v2

c
L1L3E

′
y

)
,

Ez = E′
z,

Hx = γ

(
L1L2H

′
x −

v

µ0
L1L3E

′
y −

v

µ0c
E′

y

)
,

Hy = γ

(
L1L2H

′
y +

v

µ0
L1L3E

′
x +

v

µ0c
E′

x

)
,

Hz = L1L2H
′
z,

where L1 = 1/(1− εµ0v
2), L2 = 1− (v2/c2) and L3 = 1/c2 − εµ0.
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