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Abstract—Passive source localization has wide applications in array
signal processing. In the practical applications, the observations
collected by an array may be “arbitrary”-field signals, i.e., which are
either mixed near-field and far-field signals or multiple near-field signals
or multiple far-field signals. With a cross array, a two-stage separated
steering vector-based algorithm is developed to localize “arbitrary”-
field narrowband sources in the spherical coordinates. The key points
of this paper are: i) different physical steering vectors of near-field
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and far-field sources are transformed into the virtual ones with the
same form, thus linearizing the quadratic phases of near-field sources
and allowing the same operations for near-field and far-field sources;
ii) the virtual steering vector is separated into two parts and restored
by introducing a special phase angle, and thus it is used to estimate
the azimuth-elevation arrival-angles of “arbitrary”-field sources; and
iii) special Hermitian matrices are constructed using the separated
physical steering vector and their eigenvalue decomposition (EVD) are
performed, thus the ranges of near-field sources are easily obtained
from the eigenvector being corresponding to the smallest eigenvalue.
The proposed algorithm can localize “arbitrary”-field sources without
pairing parameters and multidimensional search. Simulation results
are provided to validate the performance of the proposed method.

1. INTRODUCTION

Passive source localization is a key problem of array signal
processing involved in radar, sonar, electronic surveillance, and
seismic exploration applications [1]. The waves emitted by far-field
sources [2, 3] can be considered as plane ones at the sensor array [4–
10]. However, for near-field (Fresnel region) sources, the wavefronts
are no longer planar [2, 3]. Unlike far-field sources, near field sources
introduce quadratic phases, which are functions of both azimuth angle
and range [11–21]. Therefore, the existing far-field source localization
algorithms [4–10] cannot be utilized.

1.1. Related Work

Many localization methods for near-field sources [11–24] have
already been developed, including the Wigner-Ville distribution-based
method [11], the maximum likelihood method [12], the linear prediction
methods [13–15], the two-dimensional (2-D) MUSIC methods [16–19],
and the ESPRIT-like methods [20, 21]. However, all these methods are
limited to localize near-field sources only in azimuth angle and range.

Recently, some algorithms [25–29] are presented to localize near-
field sources in the spherical coordinates (i.e., joint azimuth-elevation-
range estimation problem). The expectation-maximization (EM)
algorithm based on the maximum likelihood criterion is proposed
in [25], but it requires search computation and iteration process
and cannot give the estimations with closed analytic solution.
In [26], Challa and Shamsunder developed a Unitary ESPRIT
algorithm, in which an additional parameter pairing procedure is
required. The method in [27] depends heavily on different carrier
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frequencies, approximated sinusoidal signals, and extremely high
sampling narrowband data. The spectral search-based method in [28]
is applied to localize near-field sources only in underwater environment
by exploiting the characteristics of vector hydrophones [28]. Although
it is of low computational complexity, the second-order statistics-based
algorithm in [29] suffers heavy aperture loss and requires a complicated
quadratic phase transformation method [30] to pair the separately
estimated parameters.

1.2. Main Difficulties in Localizing “Arbitrary”-field Sources

In the practical applications, the observations collected by an array
may be “arbitrary”-field signals [31–39], i.e., which are either mixed
near-field and far-field signals or multiple near-field signals, or multiple
far-field signals, as in passive target localizations in radar, sonar,
and electronic surveillance. Therefore, it is necessary to develop an
algorithm with the flexibility to localize “arbitrary”-field sources.

There are two different signal models for near-field and far-field
sources due to their different phase forms. Can the near-field source
localization algorithms be applied to far-field case? When more
than one far-field source exists, the virtual steering matrix defined
in Eq. (13) of [29] no longer has full column rank and thus the
second-order statistics-based algorithm will break down. Although the
Unitary ESPRIT algorithm developed for near-field source localization
can be applied to localize “arbitrary”-field sources (elaborated in
Part IV), it requires pairing parameters and suffers array aperture
loss since it deals with the two subarrays of a cross array separately. It
seems that the extended three-dimensional MUSIC algorithm [4] can
localize “arbitrary”-field sources without any matching operation or
array aperture loss. However, it suffers from the heavy computational
load due to search computation as that of the EM algorithm [25].
Can the far-field source localization algorithms be applied to near-field
case? Since the far-field signal model does not incorporate the range
information, the far-field source localization algorithms does not suit
near-field situation, such as the ESPRIT algorithm [6] for azimuth-
elevation arrival-angles estimation.

Based on the aforementioned discussion, the main difficulties of
passive source localization consist in: i) alleviating heavy aperture loss;
ii) eliminating the matching operation; iii) avoiding multidimensional
search; and iv) localizing “arbitrary”-field sources.



20 Liang et al.

1.3. Key Points and Contributions

In contrast to the two-stage MUSIC method in [39], where the sensor
array and sources are in the same plane (i.e., jointly estimating azimuth
angles and ranges for near-field sources, and azimuth angles for far-
field sources), the proposed algorithm pays attention to localizing
“arbitrary”-field sources in the spherical coordinates [25–29], i.e.,
jointly estimating azimuth-elevation arrival-angles and ranges for near-
field sources, and azimuth-elevation arrival-angles for far-field sources.

The key points and contributions of this paper are summarized as
follows:

Constructing a special cumulant matrix: Similar to [26, 29], a
cross-array is discussed in this paper, which is often adopted in
microphone array configuration. Near-field and far-field sources have
different signal models. The intuition then is to explore two methods
respectively for the two types of sources. Obviously it is difficult
to apply two methods to the same array observations for localizing
“arbitrary”-field sources. In order to develop a flexible algorithm to
localize “arbitrary”-field sources, we derive a special cumulant matrix
that is the product of three components. In the first component, virtual
steering matrix, the quadratic phase terms of near-field sources are
canceled by exploiting the multiple degrees of freedom available from
cumulants [40–44] whereas the linear phase characteristic inherent is
retained for far-field sources. Therefore, near-field and far-field sources
share the common phase form in the virtual steering matrix, allowing
efficient processing via the same computations. The third component,
containing the range information of near-field sources, is just the
physical steering matrix of the actual sensor array. Moreover, from the
left and right singular-vectors of the cumulant matrix, two respective
orthogonal bases for the range space of the virtual steering matrix and
the null space of the physical steering matrix can be simultaneously
obtained to facilitate the preceding two-stage separated steering vector-
based algorithm.

Restoring the virtual steering vector: Since the virtual steering
vectors of “arbitrary”-field sources possess linear phase property, it
is possible to obtain their azimuth-elevation arrival-angles from the
vectors. In Part III, we develop a new approach to restore the
virtual steering vector from the cumulant matrix. We separate the
virtual steering vector into two parts by introducing a new phase
angle, where the first part is the functional matrix of the introduced
phase angle whereas the second part is the functional vector of other
parameters. The general ESPRIT algorithm [45] is applied to the
transformed subarrays for estimating the introduced phase angle. With
the estimated phase angle, the second part of the separated steering
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vector is restored using the eigenvalue decomposition (EVD) of some
particular Hermitian matrices. By combining the first and second
parts, the virtual steering vector is recovered and the azimuth-elevation
arrival-angles of “arbitrary”- field sources can be easily obtained.

We stress that unlike the general ESPRIT algorithms of [28, 45],
the presented approach does not require the subarrays have general
rotational invariance geometry, but transforms two orthogonal
subarrays (in the virtual steering vector of the cumulant matrix) of
the cross array to two new ones with general rotational invariance
geometry (with respect to the introduced phase angle). In addition, it
pays attention to separating and restoring the virtual steering vector
so as to estimate azimuth-elevation arrival-angles from the restored
one [28, 45]. Therefore, it can be considered as the extension from one-
dimensional arrival-angle estimation algorithm [45] to two-dimensional
one. Moreover, unlike [28], it has wider applications since it uses omni-
directional sensors instead of the vector hydrophone only in underwater
environment.

Estimating ranges of near-field sources by separating the physical
steering vector: Using two intermediate parameters we separate the
physical steering vector into two parts, the functional matrix of these
two parameters and the vector containing the range information of
near-field sources. The combinations of the first part and the right
singular-vectors of the cumulant matrix yield a special Hermitian
matrix. From its eigenvector corresponding to the smallest eigenvalue,
we can restore the second part of the separated physical steering vector
and obtain the ranges of near-field sources.

Notation is as follows. Vectors and matrices are referred
to as lowercase and uppercase bold letters, respectively. The
transpose matrix is denoted by superscript (•)T , the conjugate
transpose by superscript (•)H , and the conjugate by superscript (•)∗.
diag{•, . . . , •} stands for a square diagonal matrix (↘, going from
the upper left corner to the lower right corner of the main diagonal),
andadiag{•, . . . , •} represents a square anti-diagonal matrix(↗, going
from the lower left corner to the upper right corner of the main
diagonal).

The rest of this paper is organized as follows. The signal model is
introduced in Section 2. A two-stage separated steering vector-based
algorithm is developed in Section 3. Simulation results are presented
in Section 4. Conclusions are drawn in Section 5.
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Figure 1. Centro-symmetric cross array configuration.

2. “ARBITRARY”-FIELD SIGNAL MODEL

Consider L (near-field† or far-field) narrowband, independent radiating
sources impinging upon a centro-symmetric cross-array aligned with
the x and y axes, as shown in Fig. 1. The cross one is chosen as
the phase reference point. Subarray in each axis consists of 2N + 1
omni-directional sensors with uniform element spacing d. The sampled
signals collected by the (j, 0)th and (0,m)th sensors can be respectively
expressed as [1–3]:

xj,0(k) =
L∑

l=1

sl(k)eiτxl(j) + nj,0(k),

i =
√−1 ; j = −N, . . . ,−1, 0, 1, . . . , N, (1)

and

x0,m(k)=
L∑

l=1

sl(k)eiτyl(m)+n0,m(k), m = −N, . . . ,−1, 1, . . . , N, (2)

where sl(k) denotes the lth narrowband source signal at time k, and
{nj,0(k), n0,m(k)} represents the additive Gaussian noise. In addition,
τxl(j) is the propagation delay associated with the lth source between
the (0, 0)th and (j, 0)th sensors; while τyl(m) is the propagation
delay associated with the lth source between the (0, 0)th and (0,m)th
sensors. If the lth source lies in the near field, the signal phases τxl(j)
and τyl(m) are parameterized in terms of the intermediate parameters
(γxl, φxl, γyl, φyl), and have the following forms‡ respectively:

τxl(j) = jγxl + j2φxl, (3)
† Note that Fresnel zone (i.e., near-field) lies in the radiating zone [λ/(2π), 2D2/λ], where
D is the array dimension (see [2, 3] for details). However, the radiating zone in the far-field
case is one beyond [0, 2D2/λ].
‡ The second-order Taylor series approximation is found in many references on near-field
source localization [3, 11–15, 19–29]. The effect of this approximation on the estimation
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and
τyl(m) = mγyl + m2φyl. (4)

In this case, φxl and φyl cannot be neglected. In turn
(γxl, φxl, γyl, φyl) are functions of the lth source’s elevation angle
αl, azimuth angle βl, and range rl, and have the following forms
respectively:

γxl = −2πd sinαl cosβl

λ
, (5)

φxl =
πd2

(
1− sin2 αl cos2 βl

)

λrl
, (6)

γyl = −2πd sinαl sinβl

λ
, (7)

and

φyl =
πd2

(
1− sin2 αl sin2 βl

)

λrl
. (8)

From Eqs. (5)–(8), we can see that the parameters (αl, βl, rl)
can be obtained by firstly estimating the intermediate parameters
(γxl, φxl, γyl, φyl) and then solving Eqs. (5)–(8).

Otherwise, if the lth source lies in the far field, τxl(j) and τyl(m)
have the following forms respectively [2–10]:

τxl(j) = jγxl, (9)

and
τyl(m) = mγyl. (10)

In Eqs. (9) and (10), both φxl and φyl are approximated as zero
due to farther ranges of far-field sources [2, 3]. Therefore, far-field
sources can be considered as a special case of near-field sources, where
φxl = 0 and φyl = 0.

In a matrix form, the sensor output can be written as

x(k) = As(k) + n(k), k = 0, . . . , K − 1, (11)

where

n(k) = [n−N,0(k) n−N+1,0(k) . . . n−1,0(k)
n1,0(k) . . . nN−1,0(k) nN,0(k) n0,0(k)
n0,−N (k) n0,−N+1(k) . . . n0,−1(k)

n0,1(k) . . . n0,N−1(k) n0,N (k)]T (12)

performance is elaborated in [11], where it was shown that for range greater than ten times
the array length, the error introduced is less than 0.5%.
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s(k) = [s1(k) s2(k) . . . sL(k)]T , (13)
x(k) = [x−N,0(k) x−N+1,0(k) . . . x−1,0(k)

x1,0(k) . . . xN−1,0(k) xN,0(k) x0,0(k)
x0,−N (k) x0,−N+1(k) . . . x0,−1(k)

x0,1(k) . . . x0,N−1(k) x0,N (k)]T (14)

and the (4N + 1)× L-dimensional physical steering matrix

A=[a(γx1, φx1, γy1, φy1)a(γx2, φx2, γy2, φy2) . . . a(γxL, φxL, γyL, φyL)]
(15)

Note that the form of the steering vector a(γxl, φxl, γyl, φyl) in (15)
depends on whether the lth source is in the far field or near field. If
this source is in the near field, a(γxl, φxl, γyl, φyl) has the following
quadratic phase form:

a(γxl, φxl, γyl, φyl)

=
[
ei[(−N)γxl+(−N)2φxl] ei[(−N+1)γxl+(−N+1)2φxl] . . . ei[−γxl+φxl]

ei[γxl+φxl] . . . ei[(N−1)γxl+(N−1)2φxl] ei[Nγxl+N2φxl] 1
ei[(−N)γyl+(−N)2φyl] ei[(−N+1)γyl+(−N+1)2φyl] . . . ei[−γyl+φyl]

ei[γyl+φyl] . . . ei[(N−1)γyl+(N−1)2φyl] ei[Nγyl+N2φyl]
]T

(16)

Otherwise, if the lth source is in the far field, a(γxl, φxl, γyl, φyl) has
the following linear phase form due to φxl = 0 and φyl = 0 [2–10]:

a(γxl, φxl, γyl, φyl)

=
[
ei[(−N)γxl] ei[(−N+1)γxl] . . . ei[−γxl] ei[γxl] . . . ei[(N−1)γxl] ei[Nγxl] 1

ei[(−N)γyl] ei[(−N+1)γyl] . . . ei[−γyl] ei[γyl] . . . ei[(N−1)γyl] ei[Nγyl]
]T

. (17)

The objective of our algorithm is to jointly estimate the 3-D
parameters (αl, βl, rl) for near-field sources and the 2-D parameters
(αl, βl) for far-field sources, given the array data x(k) for k =
0, . . . , K − 1.

Throughout the rest of the article, these hypotheses are assumed
to hold:

1) The source signals are statistically mutually independent,
narrowband stationary processes with nonzero kurtosis;

2) The sensor noise is assumed to be additive and zero mean circu-
larly symmetric complex Gaussian distributed, and independent
of the source signals;
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3) In order to avoid the phase ambiguity of 2γxl or 2γyl estimated
later, the centro-symmetric cross array with element spacing
d ≤ λ/4 is required (see Paragraph 1 of Part B in Section 3,
or see [26, 29] for details);

4) 2γyp − 2γxp 6= 2γyq − 2γxq + 2hπ, h ∈ {−1, 0, 1}, or 2
√

2d sinαp

cos(βp + π
4 ) 6= 2

√
2d sinαq cos(βq + π

4 ) + hλ, p, q ∈ {1, . . . , L} for
p 6= q is required to uniquely distinguish the introduced L phase
angles (see the parts between (39) and (40), and between (46) and
(47) in Section 3 for detailed analyses);

5) In this paper, the source number L < 2N + 1 is required, given
a centro-symmetric two-dimensional cross-array§ with 4N + 1
sensors.

3. PROPOSED ALGORITHM

Note that the quadratic phase of near-field sources is a nonlinear
function of (αl, βl, rl), as shown in Eq. (16). An alternative indirect
method for estimating (αl, βl, rl) is to firstly obtain four matched
intermediate parameters (γxl, φxl, γyl, φyl) and then solve Eqs. (5)–(8).

To obtain (γxl, φxl, γyl, φyl) by applying the conventional high-
resolution search-free algorithm, it is necessary to transform the
quadratic phase inherent in the near-field signal model into a linear
phase. Note that the common characteristics of near-field and far-field
sources consist in that γxl 6= 0 and γyl 6= 0, and their difference lies
in that (φxl 6= 0, φyl 6= 0) for near-field sources but (φxl = 0, φyl = 0)
for far-field sources. In addition, the above-mentioned transformation
should retain the linear phase characteristic inherent for far-field
sources so that both near-field and far-field sources share the same
linear phase form to facilitate the solution and allow the same
computations.

3.1. Constructing a Special Cumulant Matrix C

Cumulants can extend the array aperture and form virtual sensors
using their available multiple degrees of freedom [40–44]. Motivated
by this, the cumulant is chosen as the key technique for achieving the
above transform, i.e., changing the quadratic phase inherent in the
§ The propagation delay associated with the lth source between the (0, 0)th and (j, m)th
sensor has the following complicated form: τ = jγxl + j2φxl + mγyl + m2φyl −
jmd2 sin2 αl sin2 βl/(λrl). Therefore, the sensors on the x and y axes (i.e., (j, 0) and (0, m))
are selected to construct a cross array rather than rectangular array, which is helpful to
simplify the phase form of near-field sources and develop search-free estimation algorithms
(see Eq. (5) of [25] and Eq. (4) of [29] for details).
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near-field signal model into linear one, and keeping the linear phase of
the far-field signal model.

Define the fourth-order cumulants from the outputs of the sensors
in Fig. 1 as follows:

cum
{
xm,0(k), x∗n,0(k), x0,0(k), x∗p,q(k)

}

= cum

{
L∑

l=1

sl(k)ei(mγxl+m2φxl),

(
L∑

l=1

sl(k)ei(nγxl+n2φxl)

)∗

,

L∑

l=1

sl(k),

(
L∑

l=1

sl(k)ei(pγxl+p2φxl+qγyl+q2φyl)

)∗}

=
L∑

l=1

ei{[(m−n)]γxl+[(m2−n2)]φxl}cum {sl(t), s∗l (t), sl(t), s∗l (t)}

×e−i(pγxl+p2φxl+qγyl+q2φyl)

=
L∑

l=1

ei{[(m−n)]γxl+[(m2−n2)]φxl}c4,sle
−i(pγxl+p2φxl+qγyl+q2φyl)

m,n ∈ {−N,−N + 1, . . . ,−1, 1, 2, . . . , N, 0} ,

(p, q) ∈
{

(−N, 0), . . . , (−1, 0), (1, 0), . . . , (N, 0),
(0,−N), . . . , (0,−1), (0, 1), . . . , (0, N), (0, 0)

}
,(18)

where c4,sl = cum{sl(t), s∗l (t), sl(t), s∗l (t)} is the kurtosis of the lth
signal, and the superscript ( )∗ denotes the complex conjugate.

To retain the linear phase term (i.e., the common term γxl in
both the near-field and far-field signal models) and to remove the
quadratic phase term (i.e., the term φxl only in the near-field signal
model) in exp

{
i
{
[(m− n)]γxl + [(m2 − n2)]φxl

}}
, both m−n 6= 0 and

m2 − n2 = 0 are required. Let n = −m, and Eq. (18) becomes

cum{xm,0(k), x∗−m,0(k), x0,0(k), x∗p,q(k)}

=
L∑

l=1

ei{2mγxl}c4,sle
−i(pγxl+p2φxl+qγyl+q2φyl)

m ∈ {−N,−N + 1, . . . ,−1, 1, 2, . . . , N, 0}
(p, q) ∈

{
(−N, 0), . . . , (−1, 0), (1, 0), . . . , (N, 0),
(0,−N), . . . , (0,−1), (0, 1), . . . , (0, N), (0, 0),

}
. (19)

Since there are (2N + 1) and (4N + 1) possible values for m and
(p, q) respectively, we define two functions h = g1(m) and j = g2 ((p, q))
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to represent the following unique mappings:{
m = −N,−N + 1, . . . ,−1 ⇔ h = g1(m) = 1, 2, . . . , N
m = 1, 2, . . . , N ⇔ h = g1(m) = N + 1, N + 2, . . . , 2N
m = 0 ⇔ h = g1(m) = 2N + 1

, (20)

and



(p, q) = (−N, 0) , (−N + 1, 0) , . . . , (−1, 0)
⇔ j = g2 ((p, q)) = 1, 2, . . . , N

(p, q) = (1, 0) , (2, 0) , . . . , (N, 0)
⇔ j = g2 ((p, q)) = N + 1, N + 2, . . . , 2N

(p, q) = (0, 0) ⇔ j = g2 ((p, q)) = 2N + 1
(p, q) = (0,−N) , (0,−N + 1) , . . . , (0,−1)

⇔ j = g2 ((p, q)) = 2N + 2, 2N + 3, . . . , 3N + 1
(p, q) = (0, 1) , (0, 2) , . . . , (0, N)

⇔ j = g2 ((p, q)) = 3N + 2, 3N + 3, . . . , 4N + 1

. (21)

Based on Eqs. (19)–(21), we define a special cumulant matrix C1

(its rows and columns are indexed by h and j, respectively), whose
(h, j)th element can be given by

C1(h, i) = cum
{

xg−1
1 (h),0(k), x∗−g−1

1 (h),0
(k), x0,0(k), x∗

g−1
2 (j)

(k)
}

h ∈ {1, 2, . . . , 2N + 1} , j ∈ {1, 2, . . . , 4N + 1} , (22)
where g−1

1 (h) and g−1
2 (j) represent the inverse functions of h = g1(m)

and j = g2 ((p, q)), respectively.
Note that the (2N + 1)× (4N + 1)-dimensional cumulant matrix

C1 can be represented in a compact form as:
C1 = B1C4sAH , (23)

where the physical steering matrix A is defined in Eq. (15), C4s =
diag[c4,s1, c4,s2, . . . , c4,sL], B1 = [b1(γx1) b1(γx2) . . .b1(γxL)], and
(2N + 1)× 1-dimensional column vector

b1(γxl)

=
[
e−i2Nγxl e−i2(N−1)γxl . . . e−i2γxl ei2γxl . . . ei2(N−1)γxl ei2Nγxl 1

]T
,

l = 1, 2, . . . , L. (24)
Similar to Eq. (19), we define

cum
{
x0,m(k), x∗0,−m(k), x0,0(k), x∗p,q(k)

}

=
L∑

l=1

ei{2mγyl}c4,sle
−i(pγxl+p2φxl+qγyl+q2φyl)

m ∈ {−N,−N + 1, . . . ,−1, 1, 2, . . . , N} ,

(p, q) ∈
{

(−N, 0), . . . , (−1, 0), (1, 0), . . . , (N, 0),
(0,−N), . . . , (0,−1), (0, 1), . . . , (0, N), (0, 0),

}
, (25)
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where m 6= 0 is required to avoid the duplication of m = 0 in Eq. (19).
Similar to Eq. (22), we define a special cumulant matrix C2, whose
(h, j)th element can be given by

C2(h, j) = cum
{

x0,g−1
1 (h)(k), x∗

0,−g−1
1 (h)

(k), x0,0(k), x∗
g−1
2 (i)

(k)
}

h ∈ {1, 2, . . . , 2N} , j ∈ {1, 2, . . . , 4N + 1} , (26)

where h 6= 2N + 1 is required to avoid the duplication of m = 0 in
Eq. (19). Note that the (2N)× (4N +1)-dimensional cumulant matrix
C2 can be represented in a compact form as:

C2 = B2C4sAH , (27)

where B2 = [b2(γy1) b2(γy2) . . .b2(γyL)], and (2N) × 1-dimensional
column vector

b2(γyl)=[e−i2Nγyl e−i2(N−1)γyl . . . e−i2γyl ei2γyl . . . ei2(N−1)γyl ei2Nγyl ]T ,

l = 1, 2, . . . , L. (28)

Combining C1 and C2, we construct a (4N + 1) × (4N + 1)-
dimensional cumulant matrix C:

C =
[

C1

C2

]
= BC4sAH , (29)

where the virtual steering matrix

B =
[

B1

B2

]
= [b(γx1, γy1) b(γx2, γy2) . . .b(γxL, γyL)] , (30)

and the virtual steering vector

b(γxl, γyl) =
[
bT

1 (γxl) bT
2 (γyl)

]T
, l = 1, 2, . . . , L. (31)

Note that the cumulant matrix C has the following characteristics:
1) The cumulant matrix C is the product of three components, i.e.,

the virtual steering matrix B, the diagonal matrix C4s, and the
conjugate transpose of the physical steering matrix A;

2) On the virtual steering matrix B: The virtual steering matrix
B contains linear phase terms rather than the quadratic phase
terms of the physical steering matrix. In addition, B has full
column rank for “arbitrary”-field sources. Furthermore, no matter
whether the lth source be in the far-field or in the near-field,
the virtual steering vector b(γxl, γyl) has the same form, i.e., the
linear phase term is a function of the two common intermediate
parameters (γx, γy) in both near-field and far-field signal models.
The first intuition is to obtain (γxl, γyl) from the restored virtual
steering vector b(γxl, γyl) and then solve the azimuth-elevation
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arrival-angles (αl, βl) of the lth (near-field or far-field) source
independent of rl using (γxl, γyl). The remaining problem is how
to restore the virtual steering vector b(γxl, γyl).

3) On the physical steering matrix A: Note that A contains the
range information (or two intermediate parameters (φx, φy)) of
near-field sources. Therefore, the ranges of near-field sources can
be obtained from A. Another intuition is to obtain (φxl, φyl) from
the restored physical steering vector a(γxl, φxl, γyl, φyl) and then
estimate the range of the lth near-field source from (φxl, φyl). The
remaining problem is how to restore the physical steering vector
a(γxl, φxl, γyl, φyl).

To facilitate the derivation of the two-stage separated steering
vector-based algorithm, we implement the singular value decomposi-
tion (SVD) of (4N + 1)× (4N + 1)-dimensional cumulant matrix C as
follows:

C = BC4sAH = UΣVH = UsΣsVH
s + UnΣnVH

n

= [u1, . . . ,u4N+1]diag[σ1, . . . , σ4N+1][v1, . . . ,v4N+1]H , (32)

where Σ is the diagonal matrix with the singular values arranged
as |σ1| ≥ . . . ≥ |σL| > |σL+1| ≥ . . . ≥ |σ4N+1|, the diagonal
matrix Σs ∈ RL×L is composed of singular values σ1, σ2, . . . , σL, and
Us ∈ C(4N+1)×L consists of the left singular vectors u1,u2, . . . ,uL

related to σ1, σ2, . . . , σL In addition, Vs ∈ C(4N+1)×L, which spans
the same range as that of the physical steering matrix A, consists
of the right singular vectors v1,v2, . . . ,vL related to σ1, σ2, . . . , σL.
Similarly, the diagonal matrix Σn ∈ R(4N+1−L)×(4N+1−L) is composed
of singular values σL+1, σL+2, . . . , σ4N+1; Un ∈ C(4N+1)×(4N+1−L)

consists of the left singular vectors uL+1,uL+2, . . . ,u4N+1 related
to σL+1, σL+2, . . . , σ4N+1, orthogonal to the range space of B.
Vn ∈ C(4N+1)×(4N+1−L), consists of the right singular vectors
vL+1,vL+2, . . . ,v4N+1 related to σL+1, σL+2, . . . , σ4N+1, orthogonal to
the range space of A.

3.2. Estimating (αl, βl) by Introducing θl, Separating the
Virtual Steering Vector b(γxl, γyl) into Two Parts, and
Restoring b(γxl, γyl)

b(γxl, γyl) =
[
bT

1 (γxl) bT
2 (γyl)

]T can be considered as the steering
vector of the lth virtual far-field source observed by a cross array
with uniform element spacing 2d, resulting in bigger element spacing
in cumulant domain than that of the physical array (d). Therefore,
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Assumption 3 in Part II is required to avoid the phase ambiguity for
2γxl and 2γyl.

Although many high-resolution methods can be utilized to
estimate phase vectors {γx1, γx2, . . . , γxL} and {γy1, γy2, . . . , γyL}
separately [5–10], Eqs. (5) and (7) cannot be solved for azimuth-
elevation arrival-angles without the knowledge of the relative orders
of the vector elements. Consequently, any method for estimating
multi-dimensional source parameters should address the pairing
problem since the failure in pairing will cause severe performance
degradation [6–10]. For example, if the parameter (γxp) of the pth
source and the parameter (γyq) of the qth source are falsely associated,
(γxp, γyq) will result in wrong estimation and severe performance
degradation for azimuth-elevation arrival-angles. Since the cross
array consists of two orthogonal subarrays which results in no direct
association between {γx1, γx2, . . . , γxL} and {γy1, γy2, . . . , γyL}, pairing
them is a key problem in the proposed algorithm. To avoid any
matching operation, we consider estimating γxl and γyl from the
restored virtual steering vector b(γxl, γyl).

Define

zl = ei2γyl/ei2γxl = ei2(γyl−γxl), l = 1, . . . , L. (33)

Since |zl| = 1, zl can be represented in another form as:

zl = eiθl , θl ∈ [−π, π], l = 1, . . . , L. (34)

Although eiθl = ei2(γyl−γxl), θl may not equal 2(γyl − γxl) due to
2γyl, 2γxl ∈ [−π, π] (see Eqs. (5)–(7) and Assumption 3 in Section 2)
and thus 2(γyl − γxl) may exceed [−π, π], i.e., 2(γyl − γxl) cannot be
estimated from θl directly, but ei2(γyl−γxl) can be estimated from eiθl

uniquely (see Assumption 4 in Section 2).
Based on Eqs. (33) and (34), ei2γyl can be represented as ei2γyl =

eiθlei2γxl . Therefore, the virtual steering vector b(γxl, γyl) in Eq. (31)
can be written in another form as:

b(γxl, γyl)

=
[
e−i2Nγxl e−i2(N−1)γxl . . . e−i2γxl ei2γxl . . . ei2(N−1)γxl ei2Nγxl 1

e−i2Nγxl × e−iNθl e−i2(N−1)γxl × e−i(N−1)θl . . . e−i2γxl × e−iθl ei2γxl

×eiθl . . . ei2(N−1)γxl × ei(N−1)θl ei2Nγxl × eiNθl

]T
. (35)

It is noted that no related factor exists between the first 2N
elements and the last 2N elements in Eq. (31) (Or see Eqs. (24) and
(28) for details). However, there is a related factor ejθl between the
first 2N elements and the last 2N elements in Eq. (35). In such case,
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an alternative method for estimating (γxl, γyl) is to firstly estimate
(θl, γxl) from Eq. (35) and then combine θl and γxl, yielding γyl.

Since Us spans the same range as that of the virtual steering
matrix B, there must exist a unique invertible matrix T, such that
Us = BT [5]. To estimate θl, we implement the following divisions:

Us=
[

U1

Last (2N + 1) rows of Us

]
=

[
First (2N + 1) rows of Us

U2

]

=BT =
[

B̄1

Last (2N + 1) rows of B

]
T

=
[

First (2N + 1) rows of B
B2

]
T, (36)

where U1 and B̄1 (i.e., the first 2N rows of B1) are the first 2N rows
of Us and B, respectively. U2 and B2 are the last 2N rows of Us and
B, respectively.

Similar to the generalized ESPRIT algorithm for one-dimensional
arrival-angle estimation [45], we define a matrix

Ψ(eiθ)U1 −U2 =
(
Ψ(eiθ)B̄1 −B2

)
T, (37)

where

Ψ(eiθ) = diag
{

e−iNθ, e−i(N−1)θ, . . . , e−iθ,

eiθ, . . . , ei(N−1)θ, eiNθ
}

. (38)

From Eqs. (37) and (38), we can see that when eiθ = ei2(γyl−γxl),
the lth column of the matrix Ψ(eiθ)B̄1 − B2 changes to zero. In
such case, Ψ(eiθ)B̄1 − B2 will drop rank. As B̄1 and B2 are tall
matrices, we can obtain the estimate of ei2(γyl−γxl) for which L × L-
dimensional matrix

(
Ψ(eiθ)U1 −U2

)H (
Ψ(eiθ)U1 −U2

)
drops rank,

i.e., rank
(
(Ψ(eiθ)U1 −U2)H(Ψ(eiθ)U1 −U2)

)
< L. Or equivalently

the polynomial of eiθ equals zero, as shown in the following equation:

P
(
eiθ

)
= det

{(
Ψ

(
eiθ

)
U1 −U2

)H (
Ψ

(
eiθ

)
U1 −U2

)}
= 0.

(39)
Therefore, eiθ̂l can be found from the L roots of P (eiθ), which are
located closest to the unit circle [45, 46].

When 2γyp − 2γxp = 2γyq − 2γxq + 2hπ, h ∈ {−1, 0, 1}, p, q ∈
{1, . . . , L} or 2

√
2d sinαp cos(βp + π

4 ) = 2
√

2d sinαq cos(βq + π
4 ) + hλ

holds for the pth and qth sources, ei2(γyp−γxp) = ei2(γyq−γxq) and θp = θq.
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Therefore, it is difficult to distinguish the introduced L phase angles
{θ1, θ2, . . . , θL} uniquely using the objective function in Eq. (39) when
2γyp − 2γxp = 2γyq − 2γxq + 2hπ. It is clear that Assumption 4 in
Section 2 is required to ensure that the objective function in Eq. (39)
can distinguish the introduced L phase angles {θ1, θ2, . . . , θL} as well
as the L sources uniquely.

Let us consider the conventional spectral MUSIC algorithm [4]
that estimates the parameters {γxl, γyl}, l = 1, . . . , L from the L
deepest minima of the following function

f2(γx, γy) = bH(γx, γy)UnUH
n b(γx, γy). (40)

Note that the virtual steering vector b(γx, γy) can be represented
in a separate form as:

b(γx, γy) = B3

(
ejθ

)
b4 (γx) , (41)

where

b4 (γx) =
[(

ei2γx
)−N (

ei2γx
)−(N−1)

. . .
(
ei2γx

)−1

(
ei2γx

)
. . .

(
ei2γx

)(N−1) (
ei2γx

)N 1
]T

, (42)

and

B3(eiθ) =
[

I2N+1

Ψ(eiθ) 02N×1

]
. (43)

Inserting (41) into (40), we have

f2(γx, γy)

= bH
4 (γx)BH

3

(
eiθ

)
UnUH

n B3

(
eiθ

)
b4 (γx)

= bH
4 (γx)D1(eiθ)b4 (γx) , (44)

where
D1

(
eiθ

)
= BH

3

(
eiθ

)
UnUH

n B3

(
eiθ

)
(45)

is a (2N + 1)× (2N + 1)-dimensional Hermitian matrix.
Equations (40) and (44) imply that: substituting the estimate eiθ̂l

into B3(eiθ) in (40), then finding the minima of the following objective
function:

γ̂xl = min
γx

bH
4 (γx)D1

(
eiθ̂l

)
b4 (γx) , (46)

the minima of which indicates the estimate γ̂xl.
When 2γyp − 2γxp = 2γyq − 2γxq + 2hπ, h ∈ {−1, 0, 1}, p, q ∈

{1, . . . , L}, i.e., ei2(γyp−γxp) = ei2(γyq−γxq) and θp = θq, we have
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bH
4 (γxq)D1(eiθq)b4 (γxq) = bH

4 (γxp)D1(eiθq)b4 (γxp) which implies
that bH

4 (γx)D1(eiθq)b4 (γx) has not unique but two minimal values
at γx = γxp and γx = γxq. Therefore, Assumption 4 in Section 2 is
required to ensure that bH

4 (γx)D1(eiθq)b4 (γx) in Eq. (46) has unique
minimal value.

Additionally, Eq. (46) implies that b4 (γ̂xl
) is just the eigenvector

corresponding to the smallest eigenvalue of D1(eiθ̂l).
Once b4 (γ̂xl

) is obtained from the EVD of D1(eiθ̂l), b(γ̂xl, γ̂yl) is
easily restored from the following equation:

b(γ̂xl, γ̂yl) = B3

(
eiθ̂l

)
b4 (γ̂xl) . (47)

Based on b(γ̂xl, γ̂yl) and its linear phase characteristic, the
estimates (γ̂xl, γ̂yl) can be given as follows:

γ̂xl =
1

4N





N−1∑

j=1

∠
(

b(γ̂xl, γ̂yl)[j + 1]
b(γ̂xl, γ̂yl)[j]

)
+ ∠

(
b(γ̂xl, γ̂yl)[2N + 1]

b(γ̂xl, γ̂yl)[N ]

)

+
2N−1∑

j=N+1

∠
(

b(γ̂xl, γ̂yl)[j+1]
b(γ̂xl, γ̂yl)[j]

)
+∠

(
b(γ̂xl, γ̂yl)[N+1]
b(γ̂xl, γ̂yl)[2N+1]

)
 , (48)

γ̂yl =
1

4N





3N∑

j=2N+2

∠
(

b(γ̂xl, γ̂yl)[j+1]
b(γ̂xl, γ̂yl)[j]

)
+∠

(
b(γ̂xl, γ̂yl)[2N+1]
b(γ̂xl, γ̂yl)[3N+1]

)

+
4N∑

j=3N+2

∠
(
b(γ̂xl, γ̂yl)[j+1]
b(γ̂xl, γ̂yl)[j]

)
+∠

(
b(γ̂xl, γ̂yl)[3N+2]
b(γ̂xl, γ̂yl)[2N+1]

)
 , (49)

where b(γ̂xl, γ̂yl)[j] denotes the jth element of the vector b(γ̂xl, γ̂yl).
Based on (γ̂xl, γ̂yl), αl and βl can be solved from Eqs. (5) and (7)

as follows:

α̂l = arcsin
(

λ

2πd

√
γ̂2

xl + γ̂2
yl

)
, (50)

β̂l = arctan
(

γ̂yl

γ̂xl

)
. (51)

3.3. Estimating rl by Separating the Physical Steering
Vector a(γx, φx, γy, φy) into Two Parts, and Restoring
a2(φxl, φyl)

Let us consider the conventional spectral MUSIC algorithm [4] that
estimates the four-dimensional parameters (γxl, φxl, γyl, φyl) from the



34 Liang et al.

L deepest minima of the following objective function:

f3(γx, φx, γy, φy) = aH(γx, φx, γy, φy)VnVH
n a(γx, φx, γy, φy), (52)

Note that the physical steering vector a(γx, φx, γy, φy) can be
represented in a separate form as:

a(γx, φx, γy, φy) = A1(γx, γy)a2(φx, φy), (53)

where the second part

a2(φx, φy)=
[
eiN2φx ei(N−1)2φx . . . eiφx 1 eiN2φy ei(N−1)2φy . . . eiφy

]T

(54)
and the first part

A1(γx, γy) =




∆1 0 0
∆2 0 0
0 1 0
0 0 ∆3

0 0 ∆4


 . (55)

In Eq. (55),

∆1 = diag
{(

eiγx
)−N

,
(
eiγx

)−N+1
, . . . ,

(
eiγx

)−1
}

, (56)

∆2 = adiag
{(

eiγx
)N

,
(
eiγx

)N−1
, . . . , eiγx

}
, (57)

∆3 = diag
{(

eiγy
)−N

,
(
eiγy

)−N+1
, . . . ,

(
eiγy

)−1
}

, (58)

and
∆4 = adiag

{(
eiγy

)N
,
(
eiγy

)N−1
, . . . , eiγy

}
. (59)

Inserting (53) into (52), we have

f3(γx, φx, γy, φy) = aH(γx, φx, γy, φy)VnVH
n a(γx, φx, γy, φy)

= aH
2 (φx, φy)AH

1 (γx, γy)VnVH
n A1(γx, γy)a2(φx, φy)

= aH
2 (φx, φy)D2(γx, γy)a2(φx, φy), (60)

where
D2(γx, γy) = AH

1 (γx, γy)VnVH
n A1(γx, γy) (61)

is a (2N + 1)× (2N + 1)-dimensional Hermitian matrix.
Equations (52) and (60) imply that: substituting estimates

(γ̂xl, γ̂yl) into A1(γx, γy) in (53), then finding the minima of the
following objective function:

(φ̂xl, φ̂yl) = min
φx,φy

aH
2 (φx, φy)D2(γ̂xl, γ̂yl)a2(φx, φy), (62)
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the minima of which indicates the estimates (φ̂xl, φ̂yl).
Additionally, Eq. (62) implies that a2(φ̂xl, φ̂yl) is just the

eigenvector corresponding to the smallest eigenvalue of D2(γ̂xl, γ̂yl).
Therefore, a2(φ̂xl, φ̂yl) can be recovered from the EVD of D2(γ̂xl, γ̂yl).

Note that the phases in a2(φ̂xl, φ̂yl) are the quadratic functions of
the sensor indexes i and m (See Eq. (54) for details). To transform the
quadratic phases into linear ones and obtain (φ̂xl, φ̂yl) without spectral
search, we form two column vectors from a2(φ̂xl, φ̂yl) as follows:

el =




â2(φ̂xl, φ̂yl)[N ]â∗2(φ̂xl, φ̂yl)[N + 1]â∗2(φ̂xl, φ̂yl)[N ]â2(φ̂xl, φ̂yl)[N + 1]

â2(φ̂xl, φ̂yl)[N − 1]â∗2(φ̂xl, φ̂yl)[N ]â∗2(φ̂xl, φ̂yl)[N ]â2(φ̂xl, φ̂yl)[N + 1]

â2(φ̂xl, φ̂yl)[N−2]â∗2(φ̂xl, φ̂yl)[N−1]â∗2(φ̂xl, φ̂yl)[N ]â2(φ̂xl, φ̂yl)[N+1]
...

â2(φ̂xl, φ̂yl)[1]â∗2(φ̂xl, φ̂yl)[2]â∗2(φ̂xl, φ̂yl)[N ]â2(φ̂xl, φ̂yl)[N + 1]




=




1
ei2φ̂xl

ei4φ̂xl

...
ei2(N−1)φ̂xl




, (63)

fl =




â2(φ̂xl, φ̂yl)[2N+1]â∗2(φ̂xl, φ̂yl)[N+1]â∗2(φ̂xl, φ̂yl)[2N+1]â2(φ̂xl, φ̂yl)[N+1]

â2(φ̂xl, φ̂yl)[2N ]â∗2(φ̂xl, φ̂yl)[2N+1]â∗2(φ̂xl, φ̂yl)[2N+1]â2(φ̂xl, φ̂yl)[N+1]

â2(φ̂xl, φ̂yl)[2N−1]â∗2(φ̂xl, φ̂yl)[2N ]â∗2(φ̂xl, φ̂yl)[2N+1]â2(φ̂xl, φ̂yl)[N+1]
...

â2(φ̂xl, φ̂yl)[N+2]â∗2(φ̂xl, φ̂yl)[N+3]â∗2(φ̂xl, φ̂yl)[2N+1]â2(φ̂xl, φ̂yl)[N+1]




=




1
ei2φ̂yl

ei4φ̂yl

...
ei2(N−1)φ̂yl




(64)

Based on the vectors el and fl and their linear phase property,
(φ̂xl, φ̂yl) can be expressed as follows:

φ̂xl =
1

2N − 2

N−1∑

j=1

∠
(

el[j + 1]
el[j]

)
, (65)

φ̂yl =
1

2N − 2

N−1∑

j=1

∠
(

fl[j + 1]
fl[j]

)
. (66)
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Based on
(
α̂, β̂, φ̂xl, φ̂yl

)
, rl can be solved from Eqs. (6) and (8)

as follows:

r̂l =
1
2

{
πd2

λφ̂xl

(
1− sin2 α̂l cos2 β̂l

)
+

πd2

λφ̂yl

(
1− sin2 α̂l sin2 β̂l

)}
,

l = 1, . . . , L. (67)

In the ideal case, if the lth source is in the near-field, the estimate
r̂l lies in [λ/(2π), 2D2/λ]. Otherwise, if it is in the far-field, the estimate
r̂l approaches to infinite. In fact, there are some estimation error due
to finite snapshots and existing noise. For convenience, we set 2D2/λ
as the range threshold to determine whether the lth source is in the
far field or near field.

3.4. Description of the Proposed Algorithm

The proposed algorithm can be described as follows:

Step 1 : Construct the cumulant matrix C using Eqs. (19)–(31).
Implement SVD of C using Eq. (32) and obtain {Us,Un,Vn};
Step 2 : Partition Us into U1 and U2 using Eq. (36), and obtain
ejθ̂l and B3(ejθ̂l) using Eqs. (39) and (43);

Step 3 : Substitute ejθ̂l into D1(ejθ̂l) in (45), and obtain b4 (γ̂xl
)

from the eigenvector corresponding to the smallest eigenvalue of
D1(ejθ̂l). Therefore, α̂l and β̂l can be obtained from the restored
virtual steering vector b(γ̂xl, γ̂yl) using Eqs. (47)–(51);
Step 4: Substitute the estimates (γ̂xl, γ̂yl) into A1(γxl, γyl) and
obtain a2(φ̂xl, φ̂yl) from the EVD of D2(γ̂xl, γ̂yl) using Eqs. (60)–
(62). Therefore, r̂l can be obtained from a2(φ̂xl, φ̂yl) using
Eqs. (63)–(67).

4. SIMULATION RESULTS

In this section, we compare the proposed algorithm with the cumulant-
based algorithm in Refs. [6, 26] as well as the EM method [25] in two
ways, i.e., the computational complexity and estimation accuracy.

4.1. Computational Complexity

Regarding the computational complexity, we consider the major part,
namely, multiplications involved in cumulant matrix construction,
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Table 1. Computational complexity comparison.

Cumulant

matrix

computation

SVD/EVD
Iteratio

computation

Total

computational

complexity

Proposed

algorithm
7×(4N+1)2K

4
3
(4N+1)3

+ 8
3
L(2N+1)3

O




7×(4N+1)2K

+ 4
3
×(4N+1)3

+ 8
3
L(2N+1)3




Ref. [26] 350×(2N+1)2 200
3

(2N+1)2 O

(
350×(2N+1)2K

+ 200
3
×(2N+1)2

)

EM [25]
200L×(4N+1)2

+10×(4N+1)2K
O

(
200L×(4N+1)2

+10×(4N+1)2K

)

SVD (or EVD) and the iteration operation, The proposed method con-
structs one (4N+1)×(4N+1)-dimensional cumulant matrix C and im-
plements its SVD. In addition, it requires implementing EVD of (2N +
1) × (2N + 1)-dimensional matrices D1(ejθ) and D2(γx, γy) L times.
Therefore, the total computational complexity of the proposed al-
gorithm is O

(
7× (4N + 1)2K + 4

3 × (4N + 1)3 + 8
3L(2N + 1)3

)
. The

EM algorithm requires at least 10 iterations to obtain the
estimations, in each cycle of which the maximization sec-
tion requires at least 20 iterations [25]. Thus, it requires
O

(
10× (

20L× (4N + 1)2 + (4N + 1)2K
))

. The method in Ref. [26]
construct two (2N +1)2×25-dimensional cumulant matrices and corre-
sponding SVD, so it requires O

(
350× (2N + 1)2K + 200

3 × (2N + 1)2
)
.

Therefore, the EM algorithm has much higher computational complex-
ity.

The proposed algorithm and the method in Ref. [26] can obtain
the parameter estimations with closed analytic solution. However, the
EM algorithm requires iteration process to obtain the estimations [25].
The above-mentioned comparisons are shown in Table 1.

4.2. Estimation Accuracy

Some simulations are conducted to assess the estimation accuracy
of the proposed algorithm. We consider a 13-element centro-
symmetric cross-array with element spacing d = λ/4. Two equi-
power, statistically independent sources modeled as ejζt , where the
phases ζt are uniformly distributed in the interval [0, 2π]. The received
signals were polluted by zero-mean additive white Gaussian noises. For
comparison, we simultaneously execute the cumulant-based algorithms
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in Refs. [6, 26] and the EM method [25]. In addition, the related
CRLB on the variance of the estimated parameters are obtained
from the inverse of the Fisher information matrix by averaging 500
computations [47]. The DOA (azimuth and elevation) and range
estimations are scaled in units of degree and wavelength, respectively.
And the performances of these algorithms are measured by the
estimated root mean-square error (RMSE) of 500 independent Monte
Carlo runs.

In the first experiment, the proposed algorithm is used to deal
with pure near-filed sources. Two near-field sources are located at
{α1 = 20◦, β1 = 40◦, r1 = 1.5λ} and {α2 = 40◦, β2 = 30◦, r2 = 2.5λ},
respectively. In this case, φxl 6= 0 and φyl 6= 0, l = 1, 2, so both B
and A have full column rank (see Eqs. (30) and (15) of this paper
for details) and thus the proposed algorithm can be applied into pure
near-field source localization problem.

The snapshot number is set equal to 400. When the SNR varies
from 0 dB to 20 dB, the RMSE of the elevation, azimuth, and range
estimations of the two near-field sources from 500 independent Monte
Carlo runs using the method in Ref. [26] and the proposed method
are shown in Figs. 2, 3, and 4 for comparison. From Figs. 2, 3, and 4,
we can see that the proposed algorithm has higher estimation accuracy
than that of Ref. [26], but is slightly lower than the EM algorithm [25].
However, the EM algorithm obtains high estimation accuracy at the
expense of high computational complexity resulted from the iteration
process. As it is expected, when the SNR increases, the estimated
values approach to the true values. From Fig. 4, it can be seen that
the RMSE of range estimation of the first source (closer to the array)
is much lower than that of the second source for the two algorithms
and CRLB.

Figure 2. RMSE of elevation
estimations versus SNR.

Figure 3. RMSE of azimuth
estimations versus SNR.
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Figure 4. RMSE of range
estimations versus SNR.

Figure 5. RMSE of elevation
estimations versus snapshot num-
ber.

Figure 6. RMSE of azimuth esti-
mations versus snapshot number.

Figure 7. RMSE of range esti-
mations versus snapshot number.

The SNR is fixed at 15 dB. When snapshot number varies from
200 to 2000, the averaged performances (RMSE of elevation, azimuth,
and range estimations versus snapshot number for two sources) over
500 Monte Carlo runs are shown in Figs. 5, 6, and 7. From these
figures, it can be seen that RMSE of the elevation, azimuth, and range
estimations decrease as snapshot number increases. In addition, it
can be seen that the proposed algorithm improves estimation accuracy
than that of Ref. [26], and approaches the CRLB and the performance
of the EM algorithm [25].

In the second experiment, the proposed algorithm is used to deal
with one near-filed and one far-field sources. The near-field source
is located at {α1 = 20◦, β1 = 40◦, r1 = 1.5λ}; whereas the far-field
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source is localized at {α2 = 40◦, β2 = 30◦, r2 = ∞}. In this case,
φx1 6= 0, φy1 6= 0, φx2 = 0, and φy2 = 0, so both B and A still have
full column rank and the proposed algorithm can be applied into one
far-field and one near-field source localization problem. The ESPRIT
algorithm proposed by Liu and Mendel [6] can localize only the second
source (i.e., far-field source). In the method of Ref. [26], φx2 = 0
but tan(γx2) + i tan(φx2) 6= 0. Therefore, the algorithm in [26] can be
applied into one far-field and one near-field source localization problem.

The snapshot number is fixed at 400. When the SNR varies from
0dB to 20 dB, the RMSE of elevation, azimuth, and range (which is
only for near-field source ) estimations of one near-field and one far-field
sources from 500 independent Monte Carlo runs using the two methods
are shown in Figs. 8, 9, and 10, respectively. From Figs. 8, 9, and
10, it can be seen that the proposed algorithm has higher estimation
accuracy than that of Ref. [26], but slightly lower than the CRLB and
the EM algorithm [25].

Figure 8. RMSE of range esti-
mations versus snapshot number.

Figure 9. RMSE of azimuth
estimations versus SNR.

In the third experiment, the proposed algorithm is used to deal
with pure far-field sources. Two far-field sources are localized at
{α1 = 20◦, β1 = 40◦, r1 = ∞} and {α2 = 40◦, β2 = 30◦, r2 = ∞},
respectively. In this case, although φxl = 0 and φyl = 0, l = 1, 2, both
B and A still have full column rank and the proposed algorithm can be
applied into pure far-field source localization problem. The ESPRIT
algorithm proposed by Liu and Mendel [6] is suitable for pure far-
field sources. In the method of Ref. [26], φx1 = 0 and φx2 = 0 but
tan(γx1) + i tan(φx1) 6= 0 and tan(γx2) + i tan(φx2) 6= 0. Therefore,
the algorithm in Ref. [26] can be applied into two far-field source
localization problem.

The snapshot number is fixed at 400. When the SNR varies from
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Figure 10. RMSE of range
estimates versus SNR.

Figure 11. RMSE of elevation
estimations versus SNR.

Figure 12. RMSE of azimuth estimations versus SNR.

0 dB to 20 dB, the RMSE of the elevation and azimuth estimations of
two far-field sources from 500 independent Monte Carlo runs using the
proposed method and CRLB are shown in Figs. 11 and 12, respectively.
From Figs. 11 and 12, it can be seen that proposed algorithm has high
estimation accuracy.

From the above experiments, we can see that the proposed
algorithm with high estimation accuracy can deal with “any-field”
sources, i.e., the total received signals by an array consists of either
multiple near-field signals, or multiple far-field signals, or their
mixture. The method proposed in Ref. [6] can be only applied to pure
far-field source localization, and fails in localizing near-field sources.
The Unitary ESPRIT algorithm developed in [26] combines two real
matrices yields the complex-valued EVD with complex eigenvalues
tan(γxl)+i tan(φxl). Even if the l-th source is far-field one, φxl = 0 but
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tan(γxl) + i tan(φxl) 6= 0 and thus the method in Ref. [26] can localize
far-field sources. The method in Ref. [26] has lower estimation accuracy
than the proposed algorithm since it used half the array sensors
to estimate (γxl, φxl) or (γyl, φyl). The EM algorithm obtains high
estimation accuracy at the expense of high computational complexity
resulted from iteration process, and cannot provide the closed analytic
solution.

5. CONCLUSION

This paper constructs a special cumulant matrix by exploiting the
multiple degrees of freedom available from fourth-order cumulants.
Based on its left and right singular vectors, a two-stage separated
steering vector-based algorithm is proposed for passive localization of
“arbitrary”-field sources in the spherical coordinates. In order to avoid
the phase ambiguity, the quarter-wavelength constraint on interment
spacing is adopted. In addition, the cross array configuration rather
than other geometries is required to simplify the quadratic phase
of near-field sources. Since the azimuth-elevation arrival-angles and
ranges are estimated from the restored steering vectors, the proposed
algorithm can avoid any matching operation and spectral search. The
experiment results show that the proposed method is an attractive
alternative to localize mixed near-field and far-field sources with closed
analytic solution.
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