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Ruąera Boškovića 32, HR-21000 Split, Croatia

V. Boras

Faculty of Natural Sciences
University of Split
Teslina 12, HR-21000 Split, Croatia

S. Vujević
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Abstract—Exact formulas for internal impedance per unit length
of tubular cylindrical conductors energized by time-harmonic current
involve Bessel functions. These functions are defined by infinite series,
which yield unstable and often erroneous results for complex arguments
of large magnitudes. Although it is well known how to evaluate
Bessel functions numerically and many routines are now available to
perform the actual computation, the available software routines often
fail when computing equations that consist of a product and a quotient
of Bessel functions under large complex or real arguments. For such
cases, different approximate formulas can be used. In this paper,
three types of approximate formulas for internal impedance of tubular
cylindrical conductors are compared with respect to numerical stability
and accuracy.
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1. INTRODUCTION

In numerical analysis of various electromagnetic problems, computa-
tion formulas are often based on Bessel functions. Typical exam-
ple of such a problem is the computation of internal impedance per
unit length of tubular cylindrical conductors, which are energized by
time-harmonic current. This impedance, sometimes called surface
impedance [1], needs to be computed in the numerical analysis of var-
ious electromagnetic problems such as time-harmonic and transient
grounding grid analysis [2], time-harmonic and transient analysis of
electric power lines [3], electrical interference from electric power lines
to gas pipelines [4] and analysis of wire antennas [5].

The exact formulas for internal impedance per unit length of
solid and tubular cylindrical conductors, which take the skin effect
into account but ignore the proximity effect, can be expressed by
Bessel functions, by modified Bessel functions, by a combination
of Bessel and modified Bessel functions or by Kelvin functions [6–
11]. Kelvin functions represent the real and imaginary parts of
modified Bessel functions. All of these functions are defined by
infinite series, which are rapidly convergent only for low function
arguments. Therefore, in case of low frequency values, magnitudes of
Bessel function arguments are low and the exact formulas for internal
impedance can be successfully employed. However, if the magnitudes
of Bessel functions arguments are large, convergence difficulties appear.
In such cases, which generally occur at high frequencies, exact formulas
for the computation of internal impedance with infinite Bessel series
yield unstable and often erroneous results. Excluding high frequency
values, other parameters that can lead to large magnitudes of Bessel
functions arguments are high permeability and large dimensions of the
conductor.

The problem of Bessel functions computation, especially for
large parameters, has engaged the attention of a number of authors
in recent years, and consequently, a variety of methods is now
available. Although it is well known how to evaluate Bessel functions
numerically and many routines are now available to perform the
actual computation [12, 13], the available software routines fail when
computing equations that consist of a product and a quotient of
Bessel functions under large complex or real arguments. An additional
numerical problem is numerical overflow, which appears when the large
arguments are complex and approximate formulas include sine and
cosine functions.

The internal impedance of solid conductors for large parameters
can be computed by a number of approximate formulas that can
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be categorized as low accuracy formulas [14–16] and high accuracy
formulas [17–19].

On the other hand, the expression for internal impedance of
tubular cylindrical conductors is more complicated to approximate
accurately for large parameters. In this paper, three approximate
formulas for internal impedance of tubular cylindrical conductors will
be compared: Vujević et al. formula [17] which is based on Hankel
asymptotic approximations of complex-valued Bessel functions, Mingli
and Yu formula [18] which is based on polynomial approximation
of complex-valued Bessel functions and formula based on Amos
subroutines that approximate Bessel functions [12, 13].

2. EXACT FORMULAS FOR INTERNAL IMPEDANCE
OF TUBULAR CYLINDRICAL CONDUCTORS

Exact formulas for internal impedance per unit length of tubular
cylindrical conductors, which take the skin effect into account but
ignore the proximity effect, can be expressed by Bessel functions of
the first and second kind, by modified Bessel functions of the first and
second kind, by a combination of Bessel and modified Bessel functions
or by Kelvin functions of the first and second kind. Schelkunoff
first developed the exact formula for internal impedance of tubular
conductors in 1934 [20]. The formula was expressed by modified Bessel
functions of the first and second kind:

Z̄ =
k̄

2πσre

Ī0(k̄e)K̄1(k̄i) + Ī1(k̄i)K̄0(k̄e)
Ī1(k̄i)K̄1(k̄e)− Ī1(k̄e)K̄1(k̄i)

(1)

where Ī0 and Ī1 are the complex-valued modified Bessel functions of
the first kind of order zero and order one respectively [7–9], K̄0 and K̄1

are the complex-valued modified Bessel function of the second kind of
order zero and order one respectively, σ is the electrical conductivity
of the conductor material, re is the external radius of the conductor
and k̄ is the complex wave number defined by the following expression:

k̄ = ke−j π
4 =

√
ωµσe−j π

4 (2)

with µ being the permeability of the conductor material, j the
imaginary unit, ω = 2πf the circular frequency and f the time-
harmonic current frequency. In (1), k̄e = k̄re and k̄i = k̄ ri where
ri represents the internal radius of the conductor.

The exact formula (1) can be rewritten using Bessel functions of
the first and second kind [17]:

Z̄ =
k̄

2πσre

J̄1(k̄i)Ȳ0(k̄e)− Ȳ1(k̄i)J̄0(k̄e)
J̄1(k̄i)Ȳ1(k̄e)− Ȳ1(k̄i)J̄1(k̄e)

(3)
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where J̄0 and J̄1 are the complex-valued Bessel function of the first
kind of order zero and order one respectively [7–9] whereas Ȳ0 and Ȳ1

are the complex-valued Bessel function of the second kind of order zero
and order one respectively.

Another widely used exact formula for internal impedance of
tubular cylindrical conductors is based on Kelvin functions of the first
and second kind [18].

3. APPROXIMATE FORMULAS FOR INTERNAL
IMPEDANCE OF TUBULAR CYLINDRICAL
CONDUCTORS

3.1. Approximate Formula Proposed by Vujević et al.

In paper [17], a highly accurate formula for computation of internal
impedance per unit length of tubular cylindrical conductors was
developed. If the magnitudes of the argument ke < 8, then the internal
impedance of tubular cylindrical conductors is computed using the
exact formula given by (3) defined by infinite Bessel series. In this case,
infinite Bessel series are rapidly convergent and internal impedance is
computed with high accuracy if the infinite series are approximated
with 17 terms. For arguments of large magnitudes ke ≥ 8 and
ke − ki ≥ 5, the internal impedance of tubular cylindrical conductors
can be accurately computed using the following equation:

Z̄ =
k̄

2πσre

P̄0

(
k̄e

)
+ jQ̄0

(
k̄e

)

Q̄1

(
k̄e

)− jP̄1

(
k̄e

) (4)

where the functions P̄0

(
k̄e

)
, P̄1

(
k̄e

)
, Q̄0

(
k̄e

)
and Q̄1

(
k̄e

)
are given

in Appendix A.
In this case, the skin depth is relatively small, which makes the

internal impedance of a tubular conductor approximately equal to the
internal impedance of a solid cylindrical conductor [17].

In the remaining case when ke ≥ 8 and ke − ki < 5, due to
numerical reasons, novel approximations were introduced, which have
lead to the next approximate formula:

Z̄ =
jk̄

2πσre

cos a + j sin a + e−a

cos a + j sin a− e−a
+ F̄

(
k̄e

)
(5)

where:
a =

√
2 (ke − ki) (6)

The function F̄
(
k̄e

)
is a linear correction function defined by:

F̄
(
k̄e

)
= c̄1 +

ke − ke1

ke2 − ke1
(c̄2 − c̄1) (7)
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with:

k̄e1 = k̄1 · re = (1− j)
8√
2
; k̄e2 = k̄2 · re = (1− j)

5re√
2 (re − ri)

(8)

c̄1 = Z̄A

(
k̄e1

)− Z̄B

(
k̄e1

)
; c̄2 = Z̄C

(
k̄e2

)− Z̄B

(
k̄e2

)
(9)

The function Z̄A

(
k̄e1

)
represents the internal impedance per unit

length of a tubular cylindrical conductor computed using the exact
formula (3) and infinite Bessel series; in this case the magnitude of
the argument ke1 = 8. The function Z̄C

(
k̄e2

)
represents the internal

impedance per unit length of a tubular cylindrical conductor computed
using the approximate formula (4); in this case the magnitude of the
argument k2 · (re − ri) = 5.

Finally, the internal impedances per unit length of a tubular
cylindrical conductor Z̄B

(
k̄e1

)
and Z̄B

(
k̄e2

)
are computed using next

approximate formula:

Z̄B =
jk̄

2πσre

cos a + j sin a + e−a

cos a + j sin a− e−a
(10)

where a is defined by (6).

3.2. Approximate Formula Proposed by Mingli and Yu

In paper [18], using the polynomial approximations of complex-
valued Bessel functions, the following approximate formula for the
computation of internal impedance of tubular cylindrical conductors
under large complex parameters was developed:

Z̄ =
jk

2πreσ

1 + eĀ Φ̄(ki)
Φ̄(−ki)

Φ̄ (ke)− eĀ Φ̄(ki)
Φ̄(−ki)

Φ̄ (−ke)
if ki ≥ 8 (11)

where the functions Φ̄ and Ā are given in Appendix B.
If the magnitudes of the argument ki < 8, then the internal

impedance of tubular cylindrical conductors is computed using the
exact formula given by (3) and infinite Bessel series.

3.3. Formula that Utilizes the Bessel Functions
Approximation Based on Amos Subroutines

The previous two approximate formulas evaluated the entire expression
for the internal impedance of tubular conductors to obtain a solution
for large parameters. On the other hand, Amos subroutines
approximate Bessel functions themselves [12, 13]. This approximation
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of Bessel functions for large arguments is also employed in the program
package MATLAB.

Although the Amos subroutines yield stable and accurate results
when computing only Bessel functions, they fail when computing
the formula for internal impedance that consists of a product and a
quotient of Bessel functions under large complex or real arguments.

4. NUMERICAL COMPARISON OF FORMULAS

In this section, numerical comparison of presented formulas will be
conducted. Skin effect internal impedance ratios will be computed
according to the next equation:

f̄z = fze
jϕz = f̄z

(
k̄e, s

)
=

Z̄

RDC
(12)

where RDC is the per unit length direct current internal resistance
of a cylindrical conductor and s = ri/re represents the radius ratio.
In a general case, the skin effect internal impedance ratio f̄z can be
presented as a function of two arguments: k̄e and the radius ratio s,
where s = 0 for a solid conductor. The argument ke is connected with
the conductor skin depth δ [1] by the following equation:

ke =
√

2
re

δ
(13)

The magnitudes and phase angles of the skin effect internal
impedance ratios will be computed using the approximate formulas
based on Amos subroutines, by Mingli and Yu and by Vujević et al.
and then compared to the truncated exact formula where the Bessel
infinite series will be approximated with 100 terms. The truncated
exact formula based on infinite Bessel series with 100 terms yields
erroneous results for large parameters. Increasing the number of
infinite Bessel series terms cannot improve numerical accuracy, but
can, in fact, cause numerical overflow. The approximate formulas were
compared for multiple values of the radius ratio s. For this paper,
three typical values of s were chosen to demonstrate the behavior of
different approximate formulas: s ∈ {0.1, 0.4, 0.95}.

4.1. Comparison of Formulas for s = 0.1

The magnitudes and phase angles of the skin effect internal impedance
ratios of tubular cylindrical conductors with a radius ratio s = 0.1 are
computed using the presented approximate formulas and the truncated
exact formula where the Bessel infinite series are approximated with
100 terms. The results are plotted relative to the argument ke

(Figure 1).
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Figure 1. Comparison of skin effect internal impedance ratios for
tubular cylindrical conductors with a radius ratio s = 0.1.

Observing Figure 1, one can conclude that the truncated exact
formula exerts significant numerical instability and gives erroneous
results at function arguments as low as ke = 45. The approximate
formula proposed by Mingli and Yu displays similar instabilities as the
truncated exact formula, but results eventually restabilize for extra
large arguments. The formula based on Amos subroutines which are
also used in MATLAB becomes unstable at ke = 225. Only the Vujević
et al. formula is stable throughout the entire interval of observation.

In the interval of observation where the truncated exact formula
is stable and accurate, all approximate formulas yield highly accurate
results with a maximum percent error of 0.005% for the magnitude of
the skin effect internal impedance ratios (Vujević et al. formula).

4.2. Comparison of Formulas for s = 0.4

The magnitudes and phase angles of the skin effect internal impedance
ratios of tubular cylindrical conductors with a radius ratio s = 0.4 are
computed using the presented approximate formulas and the truncated
exact formula where the Bessel infinite series are approximated
with 100 terms. The results are plotted relative to the argument
ke (Figure 2).

Again, the truncated exact formula exerts significant numerical
instability and gives erroneous results at function arguments as low
as ke = 32. The approximate formula employing Amos subroutines
becomes unstable at ke = 60. The approximate formulas proposed by
Mingli and Yu and by Vujević et al. yield stable results throughout the
entire interval of observation.

In the interval of observation where the truncated exact formula
is stable and accurate, all approximate formulas yield highly accurate
results with a maximum percent error of 0.125% for the phase angle of
the skin effect internal impedance ratios (Vujević et al. formula).
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Figure 2. Comparison of skin effect internal impedance ratios for
tubular cylindrical conductors with a radius ratio s = 0.4.

Figure 3. Comparison of skin effect internal impedance ratios for
tubular cylindrical conductors with a radius ratio s = 0.95.

4.3. Comparison of Formulas for s = 0.95

The magnitudes and phase angles of the skin effect internal impedance
ratios of tubular cylindrical conductors with a radius ratio s = 0.95 are
computed using the presented approximate formulas and the truncated
exact formula where the Bessel infinite series are approximated
with 100 terms. The results are plotted relative to the argument
ke (Figure 3).

The truncated exact formula exerts significant numerical
instability and gives erroneous results at function arguments as low
as ke = 20. The approximate formula employing Amos subroutines
becomes unstable at ke = 25. The approximate formulas proposed by
Mingli and Yu and Vujević et al. yield stable results throughout the
entire interval of observation, but the inaccuracy of the Mingli and Yu
formula is significant for this s (Figure 3).

To better analyze the accuracy of the presented formulas, the
percent errors of the formula based on Amos subroutines, Vujević et al.
formula and the Mingli and Yu formula relative to the truncated exact
formula are presented in Figure 4. The interval of observation extends
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Figure 4. Percent errors of the skin effect internal impedance ratios
of approximate formulas relative to the truncated exact formula for
tubular cylindrical conductors with a radius ratio s = 0.95.

to the limits where the truncated exact formula starts to display
instabilities. For this s, the Mingli and Yu formula displays the highest
percent error of all approximate formulas both for the magnitude of the
skin effect internal impedance ratios (11%) and for the phase angle of
the skin effect internal impedance ratios (1200%). On the other hand,
the results computed by the formula proposed by Vujević et al. and
formula based on Amos subroutines are highly accurate in this interval
although the formula based on Amos subroutines becomes unstable
shortly after the truncated exact formula.

4.4. Overview of the Numerical Stability and Accuracy of
the Presented Formulas

Evidently, the presented formulas yield results of varying accuracy and
numerical stability depending on the ke and s. A concise summary
of the accuracy and stability features of presented formulas is given
in Table 1. Naturally, the accuracy of the approximate formula is
observed in the interval where the truncated exact formula yields
numerically stable results.

The truncated exact formula is numerically stable up to a certain
value of ke depending on the radius ratio s. As the conductor becomes
thinner (s increases), the results become numerically unstable at a
smaller value of ke (Figure 1, Figure 2 and Figure 3).

The Mingli and Yu formula is numerically stable for all ke if the
radius ratio s > 0.1. In the case of thick conductors (s ≤ 0.1), it
displays instabilities similar to those of the truncated exact formula
(Figure 1). Furthermore, although it yields highly accurate results for
most values of s, it yields highly inaccurate results for thin conductors
(s ≥ 0.9) as shown in Figure 3 and Figure 4.

The formula employing Amos subroutines, which are used in the
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program package MATLAB, displays similar behavior as the truncated
exact formula. It becomes numerically unstable for every s but at a
greater value of ke than for the truncated exact formula. On the other
hand, it yields the most accurate results in the interval where it is
stable, but it does not solve the basic problem of stability under large
parameters.

The Vujević et al. formula yields numerically stable and highly
accurate results for all values of s and ke, which makes it the
optimal all-around method. Due to the introduction of a linear
correction function, this approximate formula yields highly accurate
results especially for extra-large parameters, even for extremely thin
conductors.

Table 1. Overview of the numerical stability and accuracy of the
presented formulas.

Formula Numerical stability
Accuracy in

stable interval

Truncated exact
stable up to a certain

ke depending on s
-

Mingli and Yu
unstable for s ≤ 0.1;

stable otherwise
high for small s;
low for large s

Amos (MATLAB)
stable up to a certain

ke depending on s
High

Vujević et al. stable for all ke and s High

5. CONCLUSION

The computation of internal impedance per unit length of solid and
tubular cylindrical conductors energized by time-harmonic current,
which takes the skin effect into account, requires the use of Bessel
functions of the first and second kind. Due to the inherent instabilities
of these functions under large parameters, approximation formulas are
developed to circumvent this problem.

In this paper, three approximate formulas for the computation
of internal impedance of tubular cylindrical conductors are presented
and compared. The approximate formula proposed by Mingli and
Yu are based on polynomial approximation of complex-valued Bessel
functions, whereas the formulas proposed by Vujević et al. are based on
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Hankel asymptotic approximations of complex-valued Bessel functions.
The third formula utilizes Amos subroutines for approximation of the
Bessel functions themselves, which are used in the program package
MATLAB.

Approximate formulas are compared to the truncated exact
formula for different types of cylindrical conductors. The exact
formula, the Mingli and Yu formula and the formula based on Amos
subroutines all have stability issues whereas the Vujević et al. formula is
numerically stable in all cases. Furthermore, the Vujević et al. formula
also displays the most accurate results for thin conductors while the
Mingli and Yu formula is highly inaccurate for these cases (percent
error of the phase angle of the skin effect internal impedance ratios is
higher than 1000%).

APPENDIX A.

The functions P̄ν

(
k̄e

)
and Q̄ν

(
k̄e

)
; where ν = 1, 2; are computed

using the following expressions [17]:

P̄ν

(
k̄e

)
= 1 +

∞∑

n=1

(−1)n

2n∏
m=1

[
4ν2 − (2m− 1)2

]

(2n)!
(
8k̄e

)2n (A1)

Q̄ν

(
k̄e

)
=

∞∑

n=0

(−1)n

2n∏
m=0

[
4ν2 − (2m + 1)2

]

(2n + 1)!
(
8k̄e

)2n+1 (A2)

On a basis of large number of numerical tests, it has been
determined that for large magnitudes of the argument ke ≥ 8 infinite
sums in (A1) and (A2) can be accurately approximated by following
expressions:

P̄0(k̄e)=1− 0.0703125
k̄2

e

+
0.1121521

k̄4
e

− 0.572501421
k̄6

e

(A3)

P̄1(k̄e)=1 +
0.1171875

k̄2
e

− 0.144195557
k̄4

e

+
0.676592588

k̄6
e

(A4)

Q̄0(k̄e)=−0.125
k̄e

+
0.0732421875

k̄3
e

− 0.227108002
k̄5

e

+
1.72772750258

k̄7
e

(A5)

Q̄1(k̄e)=
0.375

k̄e
− 0.1025390625

k̄3
e

+
0.277576447

k̄5
e

− 1.99353173375
k̄7

e

(A6)
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APPENDIX B.

The function Φ̄ used in (11) is described by the following expression:

Φ̄(x) = (0.7071068+j0.7071068)+(−0.0625001− j0.0000001)(8/x)
+(−0.0013813 + j0.0013811)(8/x)2

+(0.0000005 + j0.0002452)(8/x)3

+(0.0000346 + j0.0000338)(8/x)4

+(0.0000117− j0.0000024)(8/x)5

+(0.0000016− j0.0000032)(8/x)6 (B1)

The function Ā, also used in (11), is given by:

Ā = −
√

2 (1 + j) (ke − ki)− Θ̄ (ke)+ Θ̄ (−ke)+ Θ̄ (ki)− Θ̄ (−ki) (B2)

with:

Θ̄(x) =−j0.3926991+(0.0110486−j0.0110485)(8/x)−j0.0009765(8/x)2

+(−0.0000906− j0.0000901)(8/x)3

+(−0.0000252 + j0.0000000)(8/x)4

+(−0.0000034 + j0.0000051)(8/x)5

+(0.0000006 + j0.0000019)(8/x)6 (B3)
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Distribution, Vol. 151, No. 1, 67–72, 2004.
19. Knight, D. W., “Practical continuous functions and formulae for

the internal impedance of cylindrical conductors,” March 2010,
http://www.g3ynh.info/zdocs/comps/Zint.pdf.

20. Schelkunoff, S. A., “The electromagnetic theory of coaxial
transmission lines and cylindrical shields,” Bell System Technical
Journal, 532–578, 1934.


