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Abstract—Breast cancer detection using Ultra Wideband Radar
has been thoroughly investigated over the last decade. This breast
imaging modality is based on the dielectric properties of normal
and cancerous breast tissue at microwave frequencies. However, the
dielectric properties of benign and malignant tumours are very similar,
so tumour classification based on dielectric properties alone is not
feasible. Therefore, classification methods based on the Radar Target
Signature of tumours need to be further developed to classify tumours
as either benign or malignant. Several studies have addressed the issue
of tumour classification based on the size, shape and surface texture
of the tumour. In general, these studies examined the performance of
classification algorithms in primarily dielectrically homogeneous breast
models. These relatively simplistic models do not provide a realistic
test platform for the evaluation of tumour classification algorithms.
This paper examines the classification of tumours under realistic
dielectrically heterogeneous conditions. Four different heterogeneous
scenarios are considered, with varying levels of heterogeneity and
complexity. In this paper, the performance and robustness of tumour
classification algorithms under these realistic conditions are examined
and discussed.
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1. INTRODUCTION

Diagnosis of breast cancer has been investigated using Microwave
Imaging (MI) for over a decade [1–13]. MI is a promising alternative
to X-Ray Mammography, currently the most commonly used breast
imaging modality. In this context, MI is also an appealing imaging
method since it does not require the compression of the breast
and uses non-ionising radiation. The issue of accurate tumour
classification is of considerable clinical importance in order to reduce
the incidence of false-negative and false-positive diagnosis [6, 14, 15],
reducing unnecessary costs on the health system and distress to
patients. While recent MI techniques may be sufficient to detect
the presence of a tumour, further classification algorithms have to be
developed to obtain more accurate information on the tumour type.

In previous studies, such as Davis et al. [16], the breast tissues
and the tumours are modelled using a 3D Total-Field/Scattered-Field
(TF/SF) Finite Difference Time Domain (FDTD) model in which the
breast tissue is considered primarily homogeneous. This methodology
ensures that the tumour response is isolated in the backscattered
signals response, allowing for the simple extraction of the Radar Target
Signature of the tumour and its subsequent classification.

In previous studies by the authors [17–21], the homogeneous
models developed by Davis et al. [16] were replicated and new feature
extraction methods were investigated, such as Independent Component
Analysis (ICA) and Discrete Wavelet Transform (DWT), while various
classifiers were also compared, including Quadratic Discriminant
Analysis (QDA), Support Vector Machines (SVM) and Spiking Neural-
Networks (SNNs). These classifiers were applied to the selected
features by following up to eight different multi-stage classification
architectures.

In studies from Chen et al. [22–25] and Teo et al. [26], some
heterogeneity is introduced into the breast phantom by modelling
areas of clutter around the tumour models. The approach of these
studies is to extract and process the late-time or early-time responses
of the backscatter breast response so that tumour classification can be
accomplished. In these studies, 2D FDTD simulations are completed
and a database of tumour models is used, comprising of four different
tumour shapes at a constant size.

In this paper, the effect of dielectric heterogeneity within
the breast tissue is further examined by introducing a cluster
of fibroglandular breast tissue extracted from 3D MRI models of
the breast, taken from the UWCEM Numerical Breast Phantom
Repository [27]. The analysis pursued in this paper follows a similar
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structure to the authors’ previous papers [17, 18, 20, 21] as a 3D
database of tumours of different sizes and shapes based on Gaussian
Random Spheres (GRSs) are again modelled with dielectric properties
as reported by Lazebnik et al. [28, 29]. However, the inclusion of
fibroglandular tissue in the breast models in this paper presents a
much more challenging scenario for classification analysis than the
homogeneous breast models previously used.

The contributions of this paper are as follows:

• Use of a larger database with 480 tumour models comprising 30
models for each of the four sizes combined with the four shapes.

• Evaluation of one feature extraction method, Principal Compo-
nent Analysis (PCA), with a classification method, Support Vector
Machines (SVM), as well as with the following classification ar-
chitectures: Fine-Size-Coarse-Shape (FSCS) and Fine-Size-Fine-
Shape (FSFS), as these combinations provided better classification
performance in the previous authors’ studies [17, 18].

• Creation of four different dielectrically heterogeneous breast
scenarios: (I) breast model with a cluster of fibroglandular breast
tissue in a fixed location independent of the tumour location (as
used in [20]); (II) breast model with a cluster of fibroglandular
breast tissue, in a fixed location, possibly overlapping with
tumour; (III) breast model in which one cluster of fibroglandular
breast tissue is modelled across a range of random different
locations within the breast; and finally, (IV) breast model in which
two clusters of fibroglandular tissue are modelled across a range
of random different locations within the breast.

2. NUMERICAL SIMULATION

The numerical simulation for this paper is similar to that described
in previous papers [17–21]. Therefore, a brief overview of the main
considerations is presented here.

The tumour models used in this study are based on GRSs [30, 31],
similar to the method used in [17–21]. A database of 480 tumour
models was created with the purpose of replicating early-stage tumours
(less than 10mm in radius). The shapes vary between smooth,
macrolobulated (benign tumours), microlobulated and spiculated
(malignant tumours) and the average sizes of the radii of the spheres
take discrete values: 2.5, 5, 7.5 and 10 mm.

A 3D Finite-Difference Time-Domain (FDTD) model is used
to model the dielectric properties of the breast and the tumour
tissues. The FDTD model has a 0.5 mm cubic grid resolution. The
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backscattered signals are generated through a Total-Field/Scattered-
Field (TF/SF) region terminated by a Uniaxial Perfectly Matched
Layer (UPML) which suppresses any boundary reflections. The
tumours and the fibroglandular clusters included in this study are both
completely embedded in the Total Field (TF) [16–21].

All simulations are repeated for different heterogeneous scenarios,
in which one or two fibroglandular clusters are introduced at different
locations. The inclusion of clusters of fibroglandular breast tissue
in the breast models allow for the analysis of the effect of dielectric
heterogeneity on the tumour classification methods. This is an
important consideration as the inclusion of heterogeneity permits a
more realistic test platform for the classification algorithms. The
simulations are completed as follows:

• The Total Field (TF) is located at the centre of the Scattered
Field (SF) and is represented by a cube with 50 mm on each
side. Figure 1 shows a representation of the TF/SF grid, with the
location of the origin of the first incident plane wave and observer
point (filled circle) as well as the position of the tumour. All four
observation points are represented by small circles.

• A cluster of fibroglandular breast tissue is a block volume of 1 cm3

representing a well-defined fibroglandular structure taken from
a breast model from the UWCEM Numerical Breast Phantom
Repository [27]. A number of clusters are located within the
TF region at different locations, depending on the specific breast
model.

The block of fibroglandular breast tissue is extracted from a
geometrically and dielectrically accurate 3D breast model provided by
the UWCEM Numerical Breast Phantom Repository at the University
of Wisconsin repository [27], which provides the spatial distribution
of the different constituent tissues within the breast. These are 3D
MRI-derived models taken from patients lying in the prone position.
The different tissues within the breast are mapped to the dielectric
properties from Lazebnik et al. [28, 29]. For this study, a 1 cm3

grid is extracted from a breast phantom available in [27] (phantom
ID 071904). This grid represents a fibroglandular cluster, and its
size represents the median size of the considered tumours, which is
consistent with the 2D heterogenous models in [23–26] in which the
lesion size is similar to the size of each fibroglandular cluster.

The different tissues within the breast models are modelled
using Debye parameters for malignant tissue and for homogeneous
lossy adipose tissue, as established by Lazebnik et al. [28, 29]. For
the fibroglandular clusters which account for breast heterogeneity,
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Figure 1. Cross-section of the 3D FDTD space lattice partitioned
into Total Field (TF), Scattered Field (SF) and UPML regions,
for a heterogeneous breast model. In this example, the target, a
spiculated tumour located at the centre of the TF, is illuminated by
a pulsed plane wave propagating in the +z direction (represented by
a dark line) and backscatter is recorded at the first observer location:
(0, 0,−74)mm (represented by a filled circle). All four observation
points are represented by small circles in the image.

there are three different levels of fibroconnective/glandular tissue, as
established in [27]. The dielectric properties are shown in Table 1.

Two different configurations of fibroglandular tissue, with varying
levels of complexity, are considered in this paper. The first scenario,
represented by Models I and II, have a cluster of fibroglandular tissue
at a fixed location within the TF region of the breast model. For the
second scenario, the best feature extraction and classifier methods are
selected from the results from the first scenario and are applied to
Models III and IV. Models III and IV include one and two clusters
of fibroglandular tissue, respectively, at randomly and independently
located within the TF region of the breast model. Further detail on
the two scenarios is detailed in the following sections.
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2.1. Modelling with Fixed Fibroglandular Tissue Location

For this part of the results, there are two different Models (I and II) in
which a cluster of fibroglandular tissue is positioned at a fixed location
within the breast, as in studies by Chen et al. [23–26].

For Model I, the portion of heterogeneous breast tissue is located
within the cubic TF region in one of its vertices. For Model II, the
same block of heterogeneous breast tissue is also located within the TF
region, at a distance of 3

√
5mm from one vertex of the cubic TF region,

ie the block is moved 5 mm in each of the X, Y and Z axes towards
the centre of the TF region. In Figure 2, a representation of a sample
of benign tumours in Model I and Model II is shown.

For Models I and II, the feature extraction method (PCA) and
the classification approach (SVM) are applied. The Radial Basis

Table 1. Debye parameters for the FDTD model. Parameters
are established in: (1) Lazebnik et al. [28, 29] and (2) UWCEM
website [27].

Tissue ε∞ ∆ε σs (sm−1) τ (ps)

Lossy adipose tissue (1) 3.140 1.708 0.036 14.65

Fibroconnective/glandular

— low(2)
9.941 26.60 0.462 10.90

Fibroconnective/glandular

— median (2)
7.821 41.48 0.713 10.66

Fibroconnective/glandular

— high (2)
6.151 48.2 0.809 10.26

Malignant tissue (1) 6.749 50.09 0.794 10.50

Figure 2. Samples of different Gaussian Random Spheres representing
benign tumours. The (a) smooth and (b) macrolobulated tumour
models are represented in Model I and Model II, respectively.
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Figure 3. Classification architectures in which a 2-stage fine size
classification is applied before shape classification: FSCS and FSFS.

Function parameters, C and γ, for SVM are the same as those used in
previous studies by the authors [18, 20], so that tumour classification in
heterogeneous breast models can be tested. The following classification
architectures were utilised, as these were the ones found to perform
the best in the previous papers [17, 18, 20, 21]: Fine-Size Coarse-Shape
(FSCS) and Fine-Size Fine-Shape (FSFS). It must be noted that each
classification architecture consists of two “partial” sub-classifiers, one
for size and one for shape. In Figure 3, a block diagram of the FSCS
and FSFS classification architectures are shown.

2.2. Modelling with Varying Fibroglandular Tissue Location

For Models III and IV, the tumour database includes 160 models: i.e.,
10 tumour models for each of the four sizes and four shapes.

For Model III the cluster of heterogeneous breast tissue is
randomly located in one of ten locations spread within the TF region.
For Model IV two independent clusters of heterogeneous breast tissue
are randomly located in one of ten random pairs of locations. In
Figure 4, a representation of a sample of malignant tumours in
Model III and Model IV is shown.

For the second part of the results, PCA and SVM were also used
with the same two multi-stage classification architectures (FSCS and
FSFS).
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Table 2. Classification performance for Models I and II.

Architectures

of classifiers
Model

Partial size

classifier (%)

Partial shape

classifier (%)

Size-then-shape

classifier (%)

Fine-Size-

Coarse-Shape

I 85.83 92.71 79.57

II 85.62 91.25 78.13

Fine-Size-

Fine-Shape

I 85.83 73.96 63.48

II 85.62 75.42 64.57

Figure 4. Samples of different Gaussian Random Spheres representing
malignant tumours. The (a) microlobulated and (b) spiculated (10
spicules) tumour models are represented in samples of Model III and
Model IV, respectively.

3. RESULTS AND DISCUSSION

3.1. Classification with Fixed Location of Fibroglandular
Tissue

The results for Models I and II are shown in Table 2. In this table,
partial size and shape classifiers provide classification of tumours in
terms of either size or shape only, respectively, while the size-then-
shape classifiers attempt to classify a tumour in both size and shape.
Finally, the best performances for each stage of the classification
architectures are in boldface.

Comparing the results of Table 2 with the previous authors’
homogeneous studies [17, 18, 20], it is observed that the introduction
of a portion of fibroglandular breast tissue at a fixed location within
the breast model does not significantly degrade the classification
performance, suggesting that the algorithm is efficient under these
specific conditions.

It is also observed that there is no significant difference between
the two fibroglandular clusters location within the breast considered in
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Table 3. Classification performance for Models III and IV (one and
two randomly-located heterogeneous clusters, respectively).

Architectures

of classifiers

Number of

heterogeneous

clusters

(Model)

Partial size

classifier

(%)

Partial shape

classifier

(%)

Size-then-shape

classifier

(%)

Fine-Size-

Coarse-Shape

one (III) 83.12 90.62 75.33

two (IV) 80.00 85.00 68.00

Fine-Size-

Fine-Shape

one (III) 83.12 68.12 56.63

two (IV) 80.00 61.25 49.00

this study. In the fine shape classifiers, the classification performance
difference between Models I and II is 1.46%. For the coarse shape
classifiers, the difference of classification performance between the two
models is also 1.46%.

3.2. Classification with Varying Fibroglandular Tissue
Location

In Models III and IV, the fibroglandular tissue does not have a fixed
position within the breast model. The performance results of the
classifiers for Models III and IV are shown in Table 3, where the
best performances for each stage of the classification architectures are
highlighted. As noted earlier, in this section only results for SVM
combined with PCA are analysed.

Table 3 shows that a performance decrease is observed when
classifying the shape of tumours embedded in breast models with
varying locations of fibroglandular tissue, in Model III. It is also
observed that there is further shape classification performance decrease
when the number of fibroglandular clusters increases to two (as in
Model IV). The difference between coarse shape classifiers, where
benign and malignant tumours are divided, is slightly lower by 5.62%
(90.62% versus 85.00%). This is particularly noticeable in the fine
shape classifiers, in which the fine shape of tumours is detected, as the
difference can be as high as 6.87% (68.12% versus 61.25% for FSFS). It
is also worth noting that the overall size-then-shape classifier failed to
classify tumours in both size and shape in Model IV as the performance
was only 49%.

For the results presented in both Sections 3.1 and 3.2, the number
of misclassified tumours in terms of size is recorded at each step of the
two classification architectures. These results illustrate the potential
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of the proposed approach to classify the smallest lesions possible, as
this compromises the effectiveness of treatment. Table 4 shows the
percentage of correctly classified tumours for each of the four sizes.

Table 4. Percentage of tumours correctly classified in terms of radius
size in Models I, II, III and IV.

Models

Percentage of Tumours Correctly Classified

in Terms of Radius Size (%)

Coarse Size Classifier Fine Size Classifier

2.5 and

5mm

7.5 and

10mm
2.5mm 5mm 7.5mm 10mm

I 94.58 95.00 96.67 87.50 79.17 80.83

II 94.17 95.42 96.67 85.83 80.83 79.17

III 96.25 96.25 92.50 87.50 75.00 77.50

IV 93.75 90.00 97.50 82.50 60.00 80.00

In the table above, it can be observed that the coarse size of the
tumours is always classified with accuracy over 90%. As far as fine
size classification is concerned, the classifier is more accurate with the
smallest tumours, 2.5 and 5mm. In particular, 2.5 mm tumours are
classified always with accuracy over 92.50% disregarding the breast
model in which tumours are embedded. It must also be noted that
while largest tumours are coarsely classified with accuracy of at least
90%, classifying the largest tumours into fine classes of 7.5 and 10 mm
result in poorer classification when they are embedded in breast models
with randomly located fibroglandular clusters, Models III and IV. In
particular 40% of the 7.5 mm tumours are missed by the fine classifier
when embedded in Model IV.

4. CONCLUSION

The performance of classification algorithms in a dielectrically
heterogeneous breast is investigated. A database of tumours with
varying size and shape is classified in two different scenarios,
with variations regarding breast heterogeneity, using a feature
extraction method and a classification algorithm with two multi-stage
classification architectures. Four breast models were considered with
varying levels of heterogeneity.

A feature extraction method, PCA, was used to extract the
most significant features. A SVM classifier with two classification
architectures (FSCS and FSFS) were used to classify the tumours.
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For the first scenario with fibroglandular tissue fixed in one
location, SVM was the most accurate classifier for both partial size and
shape classifiers, being the more robust to breast heterogeneity. For
Model I, the coarse and fine shape classification achieved a performance
as high as 92.71% and 73.96%, respectively. For Model II the coarse
and fine shape classification achieved a performance as high as 91.25%
and 75.42%, respectively.

For Model III, where the fibroglandular tissue randomly positioned
in one of ten different locations within the homogeneous breast model,
the coarse and fine shape classification achieved a performance as
high as 90.62% and 68.12%, respectively. Finally, for Model IV (two
fibroglandular clusters randomly located within the breast), the coarse
and fine shape classification achieved a performance as high as 85.00%
and 61.25%, respectively.

Overall, the best classification accuracy results are comparable,
independent of the breast model in which the tumours are embedded.
In fact, the introduction of a fixed structure of fibroglandular
tissue does not introduce any significant changes in the classification
performance when compared to results for a homogeneous breast
model. However, the introduction of cluster(s) of fibroglandular tissue
in varying locations within the breast produces a slight decrease in the
system performance, more noticeable when two varying fibroglandular
clusters are introduced in the breast model at once.

The results presented here are promising for breast tumour
classification, within the context of UWB radar imaging, since the
feature extraction methods and the classification methods previously
analysed have shown to be relatively robust to different tumour sizes,
and with the inclusion of clusters of fibroglandular tissue in fixed
locations or varying locations within the breast. Future work may
include the inclusion of multiple clusters of fibroglandular tissue within
the breast model for even more realistic simulations.
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