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Abstract—The Alfven-spin and helicon-spin waves are analyzed in
both sinusoidal periodic and layered periodic structures. These
periodic structures are composed of a single composite medium
having the properties of both magnetic and semiconducting materials.
Numerical analysis of the dispersion relations presented for these
periodic structures shows band-gap effects. The idea of these band-gap
effects could be utilized in the design of periodic structures operating at
microwave frequencies. Extreme cases for the decoupled independent
modes in the absence of magnetization or carriers are also discussed.

1. INTRODUCTION

The realization of the band-gap effects to the problems of wave
propagation is obtained by changing the longitudinal properties of the
medium. The periodic structures that exhibit the band-gap effects
can be described by two simple one-dimensional models, i.e., (i) a
sinusoidal periodic medium and (ii) a layered periodic medium. In
these cases, the modulation or inhomogeneity is characterized along
one coordinate about an average value of number density or dielectric
constant etc. (see, e.g., [1, 2] and references therein). Although
the literature survey reveals that the topic of the wave propagation
in periodic and multilayered media has been extensively addressed
but still some progress is going on in this direction. For example,
Choubani et al. [3] derived a method based on Hill’s equation and
matrix concept for the analysis of electromagnetic wave propagation
in multilayered structures with arbitrary profiles. Gürel and Öncü [4]
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investigated for the first time the electromagnetic wave propagation
through a plasma layer with equi-width sub-layers as an alternative
to the previous multilayered designs. He considered a linearly varying
electron density distribution with positive and negative slopes through
a magnetized plasma layer. The references [1–4] are limited to the
linear investigations, however, there has been a considerable progress
in the nonlinear theory of wave propagation in the layered media
and superlattices. For example, Shah et al. [5] and Ali and Shah [6]
used Kronig-Penney model to investigate helicon solitons in a layered
medium. The nonlinear wave propagation in the sinusoidal periodic
media is analyzed less extensively. The periodic structures consisting
of semiconductor and ferromagnetic layers combine different physical
properties which may be useful for obtaining magnetic systems in
semiconductor electronics and spintronics. In an external magnetic
field, the characteristics of these structures can easily be changed.
Shramkova [7] investigated the specific features of transverse electric
wave propagation in a structure fabricated by periodic alternating
ferrite and semiconducting layers. Similarly, the study of coupled
waves, e.g., Alfven-spin or helicon-spin waves in the composite
materials like magnetic-semiconducting media, has been the subject of
investigation for different experimental and theoretical reasons. Work
has been done by various authors in this direction [8–11].

In this paper, an analysis is presented to describe the parallel
propagating circularly polarized Alfven-spin and helicon-spin waves
in both sinusoidal periodic and layered periodic structures. These
periodic structures are composed of a single composite magnetic-
semiconducting medium. Standard analytical techniques for the
periodic structures are followed in these investigations (see, e.g.,
Achar [1], and references therein). This work may be of some
considerable interest because of its possible practical applications in the
design of structures operating at microwave frequencies. In Section 2,
the Alfven-spin wave in the sinusoidal and layered periodic structures is
investigated. It has been shown that coupling between the spin system
and the electron-hole system in a magnetic-semiconducting medium
can support Alfven-spin wave.

2. ALFVEN-SPIN WAVE IN THE PERIODIC
STRUCTURES

The parallel propagating circularly polarized Alfven-spin wave is
considered in the presence of an externally applied uniform magnetic
field Bo directed along the z-axis. By neglecting exchange
interactions [11], the following basic set of equations is considered
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for the propagation of Alfven-spin wave in the hydrodynamic
approximation:

∂

∂z
E± = ±i

∂

∂t
B±, (1)

∂

∂z
H± = ∓iJ± ∓ i

∂

∂t
D
±
, (2)

∂

∂t
M± = ±iµoγ [HoM± −MoH±] , (3)

∂

∂t
Ve± = − e

m∗
e

E± ± i
e

m∗
e

(BoVe±) , (4)

∂

∂t
Vh± =

e

m∗
h

E± ∓ i
e

m∗
h

(BoVh±) , (5)

where B± = µo(H± + M±), J± = −ene(z)Ve± + enh(z)Vh±, D± =
ε(z)E± = εoέ(z)E± and Bo = µo(Ho + Mo). The subscripts e and
h refer to the electron and hole, respectively. Here for the periodic
modulation, the number densities ne,h(z) and the dielectric constant
έ(z) are characterized along the z-axis. The perpendicular fluctuating
quantities have all been expressed in the form a± = ax ± iay. In
the above set of equations E±, B±, H±, D±, M±, Ve± and Vh±
are the fluctuating electric field, magnetic induction, magnetic field,
electric induction, magnetization and the electron and hole velocities,
respectively. Magnetic susceptibility, gyromagnetic ratio, effective
mass of electron and hole are given by µo, γ, m∗

e and m∗
h, respectively.

In order to discuss the Alfven-spin wave for a sinusoidal periodic
structure, the number densities and dielectric constant are modulated
along the z-axis and they are periodic of the forms given by the
following Equations (6) and (7). The layered periodic structure will be
discussed later. Since in the semiconductor plasma, number densities
of electron and hole are equal, therefore, ne(z) = nh(z) = n(z).

n(z) = no[1 + n̄ cos(Qz)], (6)
έ(z) = έ[1 + ε̄ cos(Qz)], (7)

where n̄ = ∆n
no
¿ 1 and ε̄ = ∆έ

έ ¿ 1 are modulation factors. Here ∆n,
∆έ are the modulation in number density and modulation in dielectric
constant, respectively, whereas no is the average uniform number
density. The quantity 2π/Q is taken as the period of modulation or
period of inhomogeneity. To obtain the expression for Bloch wave type
solution along the z-axis, a periodic time dependence of frequency ω for
all time dependant quantities is assumed. Therefore, using (6) and (7)
in Equations (1)–(5) and skipping the algebraic details, the equation
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for H± is obtained by eliminating all other fluctuating quantities as

d2

dz2
H± +

[[
e2nωµo

(ω ± ωce)(ω ∓ ωch)
± e2nωµ2

oγMo

(ω ± ωce)(ω ∓ ωch)(ω ± µoγHo)

]

·
[{
−(ω ± ωce)

m∗
h

− (ω ∓ ωch)
m∗

e

}
[1 + n̄ cos(Qz)]

]

+
[{

ω2µoε± ω2µ2
oγMoε

(ω ± µoγHo)

}
[1 + ε̄ cos(Qz)]

]]
H± = 0, (8)

where ωce = eBo/m∗
e, ωch = eBo/m∗

h and ε = εoέ. Using the conditions
ω ¿ ωce, ωch, a simplified expression can be written as

d2

dz2
H± +

[
ω2

V 2
A

[1 + n̄ cos(Qz)]

+ω2µoε[1 + ε̄ cos(Qz)]
] [

1± µoγMo

ω ± µoγHo

]
H± = 0, (9)

where V 2
A = B2

o/[µono(m∗
e + m∗

h)], VA is the Alfven wave velocity.
Let φ = Qz/2, the Equation (9) in the standard form of Mathieu’s

equation can be written as
d2

dφ2
H± + (αAS − β2

AS cos2 φ)H± = 0, (10)

where

αAS =
4ω2

Q2

[
1

V 2
A

(1− n̄) + µoε(1− ε̄)
] [

1± µoγMo

ω ± µoγHo

]
, (11)

β2
AS = −8ω2

Q2

[
1

V 2
A

n̄ + µoεε̄

] [
1± µoγMo

ω ± µoγHo

]
. (12)

If cos2 φ is a periodic function with a period of π, then H±(φ + π) is
also a solution of (10). Hence the solution H±(φ) satisfies the Floquet’s
theorem [1] and therefore can be written as

H±(φ) = eisASφP (φ),
where sAS depends upon αAS and βAS , and is the characteristic
constant which plays the role of a wave vector. Here P (φ) is a periodic
function of φ which stands for both types of circular polarizations. Now
considering a Fourier series for P (φ), the solution of (10) becomes

H±(φ) = eisASφ
∑

anei2nφ, (13)

By substituting (13) in (10), the basic recursion relation is obtained as

β2
ASan+1 +

[
2β2

AS − 4αAS + 16
(
n +

sAS

2

)2
]

an + β2
ASan−1 = 0. (14)
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The series (13) is convergent only for certain arbitrary chosen values
of ao, a1 and a−1. By substituting n = 0, the relation (14) becomes

s2
AS =

[
αAS − β2

AS

4

(
2 +

a1

ao
+

a−1

ao

)]
. (15)

The continued fractions a1/ao and a−1/ao can be obtained by using
the recursion relation (14). After skipping the rather messy algebra,
the continued fractions are given by

a1

ao
= −

[
β2

AS

2β2
AS−4αAS+16

(
1+ sAS

2

)2

]
−

[
β2

AS

2β2
AS−4αAS+16

(
2+ sAS

2

)2

]

+

[
β2

AS

2β2
AS−4αAS+16

(
3+ sAS

2

)2

]
, (16)

a−1

ao
= −

[
β2

AS

2β2
AS−4αAS+16

(
1− sAS

2

)2

]
−

[
β2

AS

2β2
AS−4αAS+16

(
2− sAS

2

)2

]

+

[
β2

AS

2β2
AS−4αAS+16

(
3− sAS

2

)2

]
. (17)

The Equation (15) is the required dispersion relation of Alfven-spin
wave in a sinusoidal periodic structure, which shows the Alfven-spin
wave dispersion and its variation with modulation amplitude.

Now the propagation of Alfven-spin wave in the layered
periodic structure is discussed. For this purpose, without going into
mathematical details from the beginning, the sinusoidal modulation is
ignored in Equation (9) and the resulting equation is

d2

dz2
H± + FAS(z)H± = 0, (18)

where

FAS(z) = ω2

[
1

V 2
A

+ µoε

] [
1± µoγMo

ω ± µoγHo

]
.

Equation (18) is Hill’s equation, which is a generalization of Mathieu’s
equation and FAS(z) is a periodic function of z. If the layered periodic
structure is composed of alternating homogeneous layers of thicknesses
d1 and d2 of the composite magnetic-semiconducting medium having
different densities and dielectric constants, the solutions of (18) can be
written as

H±1(z) = AeikAS1z + Be−ikAS1z, 0 ≤ z ≤ d1,

H±2(z) = CeikAS2z + De−ikAS2z, d1 ≤ z ≤ d = d1 + d2,
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where d is the period of the medium. Now applying the following
boundary conditions at the interface between layers 1 and 2:

|H±1|z=d1
= |H±2|z=d1

,
∣∣∣dH±1

dz

∣∣∣
z=d1

=
∣∣∣dH±2

dz

∣∣∣
z=d1

,

|H±1|z=0 = eiqASd |H±2|z=d ,
∣∣∣dH±1

dz

∣∣∣
z=0

= eiqASd
∣∣∣dH±2

dz

∣∣∣
z=d

.

These boundary conditions lead to the well known Kronig-Penney
dispersion equation, which is given by

cos(qASd) = cos(kAS1d1) cos(kAS2d2)

−
(

k2
AS1 + k2

AS2

2kAS1kAS2

)
sin(kAS1d1) sin(kAS2d2), (19)

where qAS is the Bloch wave vector for the Alfven-spin wave and the
values of the wave vectors kAS1 and kAS2 are given by

k2
AS1 = ω2

[
1

V 2
A1

+ µoε1

] [
1± µoγMo

ω ± µoγHo

]
, (20)

k2
AS2 = ω2

[
1

V 2
A2

+ µoε2

] [
1± µoγMo

ω ± µoγHo

]
. (21)

The Equation (19) is the dispersion relation describing the propagation
of Alfven-spin wave in a layered periodic structure. In Section 4,
Equations (15) and (19) will be analyzed numerically for the
propagation characteristics of the Alfven-spin wave in both the
sinusoidal and layered periodic structures, respectively.

3. HELICON-SPIN WAVE IN THE PERIODIC
STRUCTURES

In the above section, it has been shown that coupling between the
spin system and the electron-hole system in a magnetic-semiconducting
medium can support Alfven-spin wave. Similarly the spin system and
the single component electron system in a magnetic-semiconducting
medium are also capable of sustaining circularly polarized helicon-spin
wave. Thus the mathematical procedure used in the investigation of
helicon-spin wave for the sinusoidal and layered periodic structures is
qualitatively similar to that given in Section 2, but is presented here
for the sake of completeness since this is used in the numerical analysis
given in the Section 4.

For the propagation of helicon-spin wave in a sinusoidal periodic
structure, the Equations (1)–(4) along with (6) and (7) are solved to
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obtain the following expression in favour of H± for the Bloch wave
type solution.

d2

dz2
H± +

[
− ω2µoε

(
ω2

pe/ω

ω ± ωce

)
[1 + n̄ cos(Qz)]

+ω2µoε[1 + ε̄ cos(Qz)]
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]
H± = 0, (22)

where ω2
pe = e2no/εm∗

e.
If φ = Qz/2 (as has been assumed earlier in Section 2), then the

Equation (22) reduces to the Mathieu’s equation, that is
d2

dφ2
H± + (αHS − β2

HS cos2 φ)H± = 0, (23)

and the values of αHS and βHS for the helicon-spin wave are
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Q2
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(
ω2
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]
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Thus the dispersion relation describing the propagation of helicon-
spin wave in a sinusoidal periodic structure along with its continued
fractions is obtained as
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[
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For the propagation of helicon-spin wave in the layered periodic
structure, the required Hill’s equation can be obtained by ignoring the
sinusoidal modulation in Equation (22), i.e.,

d2

dz2
H± + FHS(z)H± = 0, (29)
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where

FHS(z) = ω2µoε

[
1−

(
ω2

pe/ω

ω ± ωce

)][
1± µoγMo

ω ± µoγHo

]
.

Thus, following the similar procedure as discussed in Section 2, the
dispersion relation describing the propagation of helicon-spin wave
in the periodic structure with alternating homogeneous layers having
different densities and dielectric constants is given by

cos(qHSd) = cos(kHS1d1) cos(kHS2d2)

−
(

k2
HS1 + k2

HS2

2kHS1kHS2

)
sin(kHS1d1) sin(kHS2d2), (30)

where qHS is the Bloch wave vector and the wave vectors kHS1 and
kHS2 are given by

k2
HS1 = ω2µoε1

[
1−

(
ω2

pe1/ω

ω ± ωce

)] [
1± µoγMo

ω ± µoγHo

]
, (31)

k2
HS2 = ω2µoε2

[
1−

(
ω2

pe2/ω

ω ± ωce

)] [
1± µoγMo

ω ± µoγHo

]
. (32)

The dispersion relations (26) and (30) will be analyzed in the following
section.

4. RESULTS AND DISCUSSIONS

4.1. Numerical Analysis for the Periodic Structures

In this section, dispersion relations (15) and (19) of the Alfven-spin
wave and (26) and (30) of the helicon-spin wave are numerically
investigated for the sinusoidal and layered periodic structures.
Numerical values associated with these investigations are chosen for a
typical composite magnetic-semiconducting medium [10], whereas the
propagation frequency ω is taken from 109 to 1012 Hz. Achar [1] also
made an analysis to study helicon wave propagation in a sinusoidal
periodic structure as an alternative to the Kronig-Penney type of
layered periodic structure. Such comparison can also be made in
our cases. Therefore, the same values of average number density,
dielectric constant and the periodicity are chosen for these two types
of periodic structures. Thus, for the sinusoidal and layered periodic
structures, Figure 1 shows the modulation of number density along z-
axis about an average value no = 1020 m−3. Here the number densities
no1 = 1.99 × 1020 m−3 and no2 = 0.01 × 1020 m−3 for the layered
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Figure 1. Schematic representation of modulation of number density
for the sinusoidal and layered periodic structures.

periodic structure corresponding to the layers d1 and d2, respectively,
also correspond to the maximum and minimum values of the number
densities for the sinusoidal periodic structure. If Q = 1.232× 103 m−1,
then period of modulation 2π/Q matches d, such that d = d1 + d2,
where d1 = d2 = 2.55 × 10−3 m. Similarly, assuming a modulation
of the dielectric constant about an average value έ = 10, such that
έ1 = 10.1 and έ2 = 9.9 corresponding to the layers d1 and d2,
respectively, also correspond to the maximum and minimum values
of the dielectric constant for the sinusoidal periodic structure. From
above, the modulation factors n̄ = ∆n

no
and ε̄ = ∆έ

έ are clearly defined
as n̄ = 0.99 and ε̄ = 0.1, respectively. The values of magnetic field,
precession frequency, magnetization frequency and the effective masses
for electrons and holes are given by Bo = 0.1Tesla, µoγHo = 0.1ωpe,
µoγMo = 0.01ωpe and m∗

e,h = 0.1me,h, respectively. In this analysis
the log-linear plots have been used to show comparatively the better
picture of the propagation characteristics.

In order to analyze the Alfven-spin wave in the sinusoidal
and layered periodic structures, Equations (15) and (19) for the
wave vectors sAS and qAS are numerically investigated against the
propagation frequency ω. The Equation (15) is presented graphically
in Figures 2(a) and 2(b) for a sinusoidal periodic structure with upper
and lower signs of polarization, respectively. Figure 2(a) shows a
continuous propagation band or a region of propagation from 109 to
1012 Hz, whereas Figure 2(b) shows a propagation gap or a region
of non-propagation near 7 × 1010 Hz. Similarly the Equation (19) is
presented in Figures 3(a) and 3(b) for a layered periodic structure
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Figure 2. Propagation characteristics of coupled Alfven-spin wave
for a sinusoidal periodic structure. The wave vector sAS versus
propagation frequency ω with (a) upper sign of polarization and with
(b) lower sign of polarization.
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Figure 3. Propagation characteristics of coupled Alfven-spin wave
for a layered periodic structure. The Bloch wave vector qAS versus
propagation frequency ω with (a) upper sign of polarization and with
(b) lower sign of polarization.

with upper and lower signs of polarization, respectively. Figures 3(a)
and 3(b) show the propagation bands and gaps from 109 to 1012 Hz. It
should be noted that the gaps in Figure 2(b) and Figures 3(a) and 3(b)
correspond to the complex values of the sAS and qAS , respectively,
i.e., these gaps are the frequency regions in which the wave does not
propagate. Moreover, in Figure 3, the vertical lines appearing in the
propagation characteristics between 1011 Hz to 1012 Hz are, in fact, the
discontinuities or gaps at some higher frequency range.

In order to analyze the helicon-spin wave in the sinusoidal
and layered periodic structures, Equations (26) and (30) for the
wave vectors sHS and qHS are numerically investigated against
the propagation frequency ω. The Equation (26) is presented in
Figures 4(a) and 4(b) for a sinusoidal periodic structure with upper
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Figure 4. Propagation characteristics of coupled helicon-spin wave
for a sinusoidal periodic structure. The wave vector sHS versus
propagation frequency ω with (a) upper sign of polarization and with
(b) lower sign of polarization.
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Figure 5. Propagation characteristics of coupled helicon-spin wave
for a layered periodic structure. The Bloch wave vector qHS versus
propagation frequency ω with (a) upper sign of polarization and with
(b) lower sign of polarization.

and lower signs of polarization, respectively. In Figure 4(a), there is a
propagation gap from 109 Hz onwards, up to ∼ 5 × 1011 Hz and then
there is a continuous propagation band up to 1012 Hz. Since there is
a large propagation gap from 109 Hz onwards, therefore, the frequency
range from 109 Hz up to ∼ 4 × 1011 Hz is not shown in Figure 4(a) in
order to show the propagation region clearly. For the lower signs of
polarization, Figure 4(b) shows two regions of non-propagation or gaps
between 109 Hz to 1012 Hz.

The Equation (30) is presented in Figures 5(a) and 5(b) for a
layered periodic structure with upper and lower signs of polarization,
respectively. In Figure 5(a), there is a propagation gap from 109 Hz
onwards, up to ∼ 7× 1011 Hz (complete frequency range is not shown
in figure), and then there are continuous propagation bands and gaps
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up to 1012 Hz. Figure 5(b) also shows continuous propagation bands
and gaps from ∼ 8.6 × 1011 Hz onwards up to 1012 Hz. Finally, after
the above discussion, it should further be noted that the wave vectors
sAS , qAS , sHS and qHS are also the functions of applied magnetic field.
Thus for these periodic structures, the width of the frequency bands
and gaps in the propagation characteristics can be controlled not only
by varying the layer-thickness or period of modulation but also by
varying the externally applied magnetic field, which is an additional
feature that such a periodic structure device could be tuned.

As the values of parameters and the periodicity of these sinusoidal
and layered structures are same, therefore, the study of Alfven-
spin wave (or helicon-spin wave) propagation in a sinusoidal periodic
structure can be compared with the layered periodic structure. First
of all, the propagation characteristics of Alfven-spin wave in the
sinusoidal periodic structure are compared with the layered periodic
structure. In this connection, comparisons can be made between
Figure 2(a) with Figure 3(a) for upper sign of polarization and
Figure 2(b) with Figure 3(b) for lower sign of polarization. Figure 2(a)
shows a continuous propagation band and Figure 3(a) shows the
propagation bands as well as gaps from 109 to 1012 Hz. Whereas
Figure 2(b) shows a propagation gap near 7×1010 Hz between the two
regions of propagation from 109 to 1012 Hz and Figure 3(b) shows the
propagation bands and gaps. Thus, for the lower sign of polarization,
Alfven-spin wave shows band-gap effects in these two types of periodic
structures. Similarly, when the propagation characteristics of helicon-
spin wave in the sinusoidal periodic structure are compared with the
layered periodic structure, they also show band-gap effects for the lower
sign of polarization (see, e.g., Figures 4(b) and 5(b)). Although the
comparisons of Figures 2(b) with 3(b) and Figures 4(b) with 5(b) show
band-gap effects, but overall nature of the curves for these effects is
not similar. Thus for the study of Alfven-spin or helicon-spin wave, a
sinusoidal periodic structure can not be used as an alternative to the
layered periodic structure.

4.2. Extreme Cases

Now the extreme cases for the decoupled independent modes in the
absence of magnetization or carriers are discussed. These extreme
cases can easily be obtained directly from Sections 2 and 3. For
a semiconducting medium when there is no magnetization, (i.e.,
Mo = 0), the dispersion relations governing the Alfven wave
propagation in the sinusoidal and layered periodic structures can be
obtained (along with their companion equations) from (15) and (19),
respectively. Similarly, the dispersion relations governing the helicon
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wave propagation in the sinusoidal and layered periodic structure can
be obtained from Equations (26) and (30). For a magnetic medium
when there are no free charges, (i.e., e = 0), the Equations (15)
and (19) from Section 2 or Equations (26) and (30) from Section 3, give
the same dispersion relation for the propagation of spin wave (without
exchange interactions). Thus to analyze these three independent
modes, i.e., Alfven wave, helicon wave and spin wave for the sinusoidal
and layered periodic structures, the wave vectors sA, qA, sH , qH and
sS , qS can be expressed by the following dispersion relations

s2
j =

[
αj −

β2
j

4

(
2 +

a1

ao
+

a−1

ao

)]
, (33)

cos(qjd)= cos(kj1d1) cos(kj2d2)−
(

k2
j1+k2

j2

2kj1kj2

)
sin(kj1d1) sin(kj2d2). (34)

The subscript j stands for three different wave modes, i.e., j = A,H, S.
In these modes, the expressions for the coefficients αj , β2

j and the wave
vectors k2

j1, k2
j2 can also be shown. Thus the expressions corresponding

to the Alfven wave are given by

αA =
4ω2

Q2

[
1

V 2
A

(1− n̄) + µoε(1− ε̄)
]

, (35)

β2
A = −8ω2

Q2

[
1

V 2
A

n̄ + µoεε̄

]
, (36)

k2
A1 = ω2

[
1

V 2
A1

+ µoε1

]
, (37)

k2
A2 = ω2

[
1

V 2
A2

+ µoε2

]
, (38)

and the expressions for the helicon wave are given by

αH =
4ω2

Q2

[
−µoε

(
ω2

pe/ω

ω ± ωce

)
(1− n̄) + µoε(1− ε̄)

]
, (39)

β2
H = −8ω2

Q2

[
−µoε

(
ω2

pe/ω

ω ± ωce

)
n̄ + µoεε̄

]
, (40)

k2
H1 = ω2µoε1

[
1−

(
ω2

pe1/ω

ω ± ωce

)]
, (41)

k2
H2 = ω2µoε2

[
1−

(
ω2

pe2/ω

ω ± ωce

)]
, (42)
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and for the spin wave

αS =
4ω2

Q2
[µoε(1− ε̄)]

[
1± µoγMo

ω ± µoγHo

]
, (43)

β2
S = −8ω2

Q2
[µoεε̄]

[
1± µoγMo

ω ± µoγHo

]
, (44)

k2
S1 = ω2µoε1

[
1± µoγMo

ω ± µoγHo

]
, (45)

k2
S2 = ω2µoε2

[
1± µoγMo

ω ± µoγHo

]
. (46)

It should be noted that with the help of the above expressions,
the continued fractions a1/ao and a−1/ao involving in the dispersion
relation (33) can also be determined in the same way as discussed in
Section 2. At this place, there is no need to present the numerical
analysis for these decoupled independent modes. First j = H is
considered and the relations (33) and (34) reduces to the previously
investigated work of Achar [1], in which he showed that for a sinusoidal
periodic structure the numerical solution of the dispersion relations
does not show band-gap behaviour. When j = A is used, the dispersion
relations (33) and (34) describe the propagation of Alfven wave in
a sinusoidal periodic and layered periodic structures, respectively.
In this case also, the sinusoidal periodic structure does not show
band-gap effect. Finally, the spin wave propagation is analyzed for
j = S in the two types of periodic structures. Here, the values of
precession frequency and magnetization frequency can be chosen as
µoγHo = 1 × 1011 Hz and µoγMo = 0.1 × 1011 Hz. Thus for the spin
wave propagation, the dispersion relations (33) and (34) show band-
gap behaviour for lower sign of polarization (figures are not presented
here) and these characteristics of spin wave are very similar to the case
of Alfven-spin wave as discussed in Section 2. The reasons for this
similarity can also be seen by comparing the expressions (11), (12), (20)
and (21) in Section 2 with expressions (43) to (46). These expressions
differ only by the terms, i.e., (1 − n̄)/V 2

A, n̄/V 2
A, 1/V 2

A1 and 1/V 2
A2

appearing in the expressions (11), (12), (20) and (21), respectively.
Thus it seems that the band-gap effects of the coupled modes in
the sinusoidal periodic structure (for the lower sign of polarization)
are associated primarily with the magnetic effects of the composite
medium.
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5. CONCLUSION

In this paper, the propagation of Alfven-spin and helicon-spin waves
has been analyzed in both sinusoidal periodic and layered periodic
structures. In these investigations, an idealized situation has been used
in which exchange interactions and collisions have been neglected. The
dispersion relations for these wave modes in the periodic structures
have been obtained by Hill’s equation. In the numerical analysis,
for the same values of parameters and the periodicity of the two
structures, these modes show band-gap effects in the layered periodic
structures, whereas for the sinusoidal periodic structures these effects
appear only for the lower sign of polarization. In the extreme cases,
i.e., for the decoupled independent modes, numerical solutions of the
Alfven wave and the helicon wave do not show band-gap effects for the
sinusoidal periodic structure, whereas spin wave propagation shows
band-gap effects in both types of periodic structures for the lower sign
of polarization only. This shows that the band-gap effects of the Alfven-
spin and helicon-spin modes in the sinusoidal periodic structure are
associated with the magnetic effects of the composite medium.

In conclusion, it is clear that for a composite magnetic-
semiconducting medium both types of periodic structures are useful
and exhibit band-gap effects. These structures can be used as tunable
devices operating at microwave frequencies whose band or gap widths
can be controlled by varying the periodicity, dielectric constant and
the external magnetic field etc. Further, it should be noted that these
band-gap effects may have some useful applications for the propagation
of coupled Alfven-spin or helicon-spin modes in a sinusoidal periodic
structure, because for a single mode of helicon (or Alfven), these band-
gap effects in a sinusoidal periodic structure have not earlier been
observed.
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