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Abstract—Wideband analysis of frequency dispersive geometries is
a challenge in inverse scattering problems. Waveguide duct is an
important case in aerial targets with dominant returns. Its dispersive
behavior affects the range profile analysis due to occurrence of
unwanted range extension. A new high frequency analysis using model
based parameter estimation (MBPE) approach is presented. A group
delay criteria derived from the nonlinear scattering phase response
represents the duct length. Wideband sparse measured frequency
domain samples of various waveguides are used as inputs to the model.
Comparison is made with joint time-frequency analysis (JTFA) and
inverse fast Fourier transform (IFFT) results.

1. INTRODUCTION

FEM and FDTD are common approaches for forward scattering
problems. However, they are computationally inefficient for large
targets. Modeling cavities and ducts is a challenge in inverse
problems. An effective approach that uses a large number of samples
to study such frequency dispersive targets is the joint time-frequency
technique. Its time domain resolution is limited by the width of
the frequency window and vice versa. Another approach is using
a scattering center model and super-resolution techniques. Zhang
and Ge used FDTD to analyze dispersive objects [1]. Kusiek and
Mazur implemented hybrid finite-difference mode-matching method for
cylindrical objects [2]. A basis function for electrically large targets
is reported by Nie et al. [3]. Raynal et al. used adaptive methods
for feature extraction [4]. A maximum likelihood algorithm with a
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GTD-based frequency dependence is also suggested by Potter et al. [5].
Here, we employ MBPE [6] as a flexible approach requiring only sparse
sampled data for dispersion analysis.

2. THE NONLINEAR PHASE AND GROUP DELAY

The high frequency backscattered far field due to point scatterers is

ES(k, r) =
∞∑

m=1

Bm(k, r)e−j2krm (1)

where k is the free space wave number, m is the scattering center
number and r is the line of sight (LOS) propagation path length or
simply the radar range. rm is the distance from the origin (phase
reference) to the mth scatterer and Bm is the weighting coefficient. In
waveguide geometries, the phase velocity is frequency dependent and
can be used to model scattering centers [7]. In open-ended waveguides
illuminated by a high frequency plane wave, the aperture field at
each assumed sub-aperture is a discrete radial beam launched into
the waveguide [8]. Here, such nonpoint dispersive scattering centers
(DSCs) are considered as an ensemble of M equivalent point scatterers
with an identical frequency dependent correction multiplicand ξm(k)
that is called dispersion factor (DF). Various geometries have different
DFs. Thus:

Bm(k, r) = am(r)ξm(k) = am(r)ρm(k)e−jφm(k) (2)

and the enhanced dispersive scattering center (EDSC) model is:

ES(k) ≈
M∑

m=1

amρm(k)e−j(2krm+φm(k)) (3)

The complex weighting coefficients consist of frequency dependent
and frequency independent parts ρm(k) and am respectively. φm(k) is
the deviation from the linear phase encountered in dispersive media.
Rewriting (3) in terms of the frequency dependent total nonlinear
phase, Ψm(k) and the total complex scattering amplitude, Am(k)
yields:

ES(k) ≈
M∑

m=1

Am(k)e−jΨm(k);

Ψm(k) = 2krm + φm(k), Am(k) = amρm(k)

(4)

The dispersion is generally due to nonlinear frequency dependent
amplitude and phase response. Here, the main idea is to characterize
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the dispersion by an appropriate group delay quantity. For the mth
equivalent point scattering center, a corresponding nonlinear group
delay is defined as the derivative of the phase:

τnl
dm(k) = −1

c
(∂Ψm(k)/∂k) = τ c

dm + τdev
dm (k) (sec) (5)

where τ c
dm = −2rm/c is a frequency independent term due to the radar

range and c is the free space propagation velocity. The second term
τdev
dm (k) is the deviation group delay due to the phase nonlinearity that

contains dispersion information.

3. THE PARAMETRIC SCATTERING CENTER MODEL

Some direct scattering solutions for waveguide type geometries are
addressed in [9, 10]. In our inverse scattering solution based on MBPE
approach, a parametric model is used with less computational effort.
A complex target consisting of at least one open-ended waveguide duct
DSC is shown in Figure 1. The TEx polarized illumination is from the
open side of DSC at an aspect angle that permits penetration into the
waveguide. For polarimetric representation, stokes vector may also be
used [11]. The excitation at the aperture at a fixed aspect angle is

Ēi(r̄) = E+
0 e−jk̄.r̄, k̄ = kk̂ (6)

The radar range in non-dispersive medium (free space) and
dispersive medium (waveguide) are denoted by r and r′ respectively.
Concentrating on the waveguide as an isolate DSC, the high frequency
scattered field is composed of three terms [8]:

ĒDSC
S = Ēwgd

S + Ērim
S + Ēext

S (7)
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Figure 1. An arbitrary complex target consisting of at least one open
ended waveguide DSC.



238 Heidar and Tavakoli

The backscattered field due to the penetrating wave into the waveguide,
Ēwgd

S is inherently highly dispersive and is the dominant contributor
to the total field. The model for rim edge diffraction field, Ērim

S
and waveguide surface current induced field, Ēext

S as non-dispersive
scattering centers are given by various researchers [5, 12]. The
backscattered field due to the round trip propagation inside the
waveguide at the aperture is

Êwgd
S (k, r′) = Γ(r′)E+

0 e−2γ(k)r′ = Γ(r′)E+
0 e−2α(k)r′e−j2β(k)r′ (8)

where Γ(r′) is the waveguide reflection coefficient and γ(k) is the
complex frequency dependent propagation constant. Assuming our
man-made DSC has a semi-canonical geometry, the attenuation
constant α(k) and the phase constants β(k) could be approximated
by

α(k)≈((
k2 + 2k2

c

)
q′

)
/
(
k
√

k2 − k2
c

)
, β(k)≈

√
k2 − k2

c ; k > kc (9)

where kc is the cutoff frequency and q′ is a waveguide structural
constant. At frequencies below cutoff k ≤ kc, the backscattering is
merely from the edges and the outer surface. The parametric form
of (8) becomes:

Êwgd
S (k, r′) = Â(r′) exp

(
− ((

k2 + 2k2
c

)
q
)
/k

√
k2 − k2

c

)

exp
(
−j2

√
k2 − k2

c · d
)

(10)

where k > kc, q = −2q′r′ and Â(r′) = Γ(r′)E+
0 is the weighting

coefficient. d is called the “dispersion length” and is dependent on the
waveguide physical length. The weighting coefficient and phase of (10)
provide the required parametric form of DF. Inserting DF in the total
scattered field of (3) results in the enhanced dispersive scattering center
(EDSC) model:

EDSC
S (k) ≈

M∑

m=1

Am exp

(
−(k2 + 2k2

cm)qm

k
√

k2 − k2
cm

)

exp
(
−j

(
2krm + 2

√
k2 − k2

cm · dm

))
(11)

The unknown parameters are: complex amplitude Am, structural
parameter qm, down range rm, the dispersion length dm, and the
cutoff frequency kcm. Please note that rm is related to free space
non-dispersive range r and dm is related to the waveguide dispersive
range r′. The unknown parameters are found through an optimization
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routine with the following objective function:

S(A, q, r, d, kc) =
L∑

n=1

∣∣∣∣∣Xn −
M∑

m=1

Am exp

(
−(k2

n + 2k2
cm)qm

kn

√
k2

n − k2
cm

)

exp
(
−j

(
2knrm + 2

√
k2

n − k2
cm.dm

))∣∣∣
2

(12)

In the above, A, q, r, d, and kc are vectors of length M and Xns are
the measured coherent stepped frequency backscattered samples with
number L. Due to existence of many local minima, initialization of the
parameters is very critical and super-resolution methods are used for
this purpose. The algorithm steps are as follows:

1- Selection of order M is highly application dependent. The factors
to be considered include complexity of the dispersive geometry,
sampling conditions (bandwidth, signal-to-noise ratio, etc.) and
range resolution [13]. For a model of order M over Xn samples
in frequency domain, Prony method is used for initialization of
{Am}M

m=1 and range {rm}M
m=1. Please note that M can’t exceed

L/2.
2- Considering the physical properties of the waveguide DSC, the

initial guess for the remaining parameters {qm, dm, kcm}M
m=1 is

selected from the rational range of values. The initial guess for
the dispersion length parameter {dm}M

m=1 must be in order of
the waveguide physical length. Similarly, the initial guess for
the vector {qm}M

m=1 is selected considering the characteristics of
the propagation medium. They are intrinsic impedance, aperture
dimensions and walls surface resistivity. The initial waveguide
cutoff frequency {kcm}M

m=1 is chosen to be the start of the
frequency range.

3- The general-purpose genetic algorithm toolbox of MATLAB is
applied to the objective function (12) to extract the parameters
here, but any other optimization techniques could also be
used [14].
Usually, a point scattering center is depicted as a vertical strip

on the time axis of the JTFA spectrogram meaning a constant
propagation time delay at all frequencies. A DSC with structural
dispersive mechanism appears as a negative slope slanted curve [15].
A spectrogram with satisfactory spatial resolution often requires
numerous data samples and a weak dispersion is hardly identified.
According to (5) and (11), for waveguide type geometries, the
parametric form of the nonlinear group delay is:

τnl
dm(k) ≈ −2

c

(
rm + kdm/

√
k2 − k2

cm

)
(sec) (13)
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Please note the dynamic frequency dependent term that is added to rm.
This dynamic behavior is utilized to quantify the dispersion using the
extracted parametric nonlinear phase. Curve fitting is applied to the
unwrapped nonlinear phase data to create a deterministic function that
describes the aforementioned dynamic behavior. Differentiating this
function with respect to the frequency yields τnl

dm(k). The parametric
nonlinear phase is useful in complex range profile analysis [16].

4. DISPERSION ANALYSIS RESULTS

The backscattered measured data of some metallic waveguides were
used for analysis. A 57 cm long cylindrical duct with irregular semi-
circular aperture is considered as a non-canonical target (Figure 2(a)).

The semi-circular aperture dimension is about 15 cm. The analysis
is performed from 8 to 12 GHz with L = 100 and model order of
M = 50. A linearly polarized plane wave at the aspect angle of
θ ≈ 15◦ illuminates the target. Figure 2(b) compares the calculated
range profile with IFFT results with good agreement. Figures 2(c)

(a) (b)

(c) (d)

Figure 2. (a) The non-canonical target. (b) Range profile. (c) (d)
Measured and EDSC parameterized scattering responses.
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and 2(d) compare the magnitude and phase of the original measured
and model predicted data respectively with a RMS error of 0.31%.

RMS =

√√√√
(

L∑

n=1

∣∣∣Eoriginal
S (n)− Epredicted

S (n)
∣∣∣
2
)

/L (14)

The canonical targets of Figure 3(a) are considered for dispersion
analysis from 1 to 18 GHz with only L = 400 and model order of
M = 200. The 30 cm square flat plate is the non-dispersive reference
one. The group delay plot of the EDSC analysis for θ = 0◦ is shown
in Figure 3(b). As expected, a negligible group delay ripple of about

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 3. (a) The canonical targets; from right to left: Flat plate,
waveguide 1, waveguide 2, waveguide 3. (b) Flat plate. (c), (d)
Waveguide 1. (e) (f) Waveguide 2 and (g) (h) Waveguide 3.

0.3 nsec is observed that means no dispersion. In other words, all
frequency components of a wide band radar pulse experience the same
propagation time delay. It is expected that the group delay ripple
approaches to a minimum possible level if the dimensions tend to a
maximum possible size.

The open-ended waveguide1 is a 15 cm square aperture of 15 cm
length. The results for θ = 15◦ are shown in Figures 3(c) and 3(d). A
minute group delay ripple of about 0.55 nsec shows a slight dispersion
or range extension compared to the flat plate. However, a recognizable
slanted curve is not observed in the corresponding JTFA spectrogram.
The analysis is repeated for waveguides 2 and 3 with length of
30 cm and 45 cm respectively. The EDSC group delays (Figures 3(e)
and 3(g)) demonstrate the ripple of about 0.75 nsec and 0.95 nsec
for waveguides 2 and 3 respectively. Hence, the range extension is
obviously increased. However, as observed in the corresponding JTFA
spectrograms of Figures 3(f) and 3(h), no sensible slanted curve is
detectable for the occurred range extension again. Comparison of
the dispersive group delays of Figures 3(c), 3(e) and 3(g) with non-
dispersive group delay of Figure 3(b) show a direct relation between the
level of group delay ripple and the waveguide length at fixed aperture
dimensions. In the spectrograms of Figures 3(d), 3(f) and 3(h) the
brighter colors represent higher return magnitudes and the darker
colors represent lower magnitudes. The constant measurement radar
range shows itself as a level of about −3.2 to −3.3 nsec in group delay
graphs too.
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5. CONCLUSION

A new scattering center model, EDSC, based on MBPE approach
is proposed for dispersion analysis of waveguide type geometries. A
population-based algorithm is used for estimating the model unknown
parameters. The total scattering nonlinear phase is considered as
a combination of the linear free space propagation phase and an
additional nonlinear frequency dependent term. The dynamic behavior
of the latter represents the structural dispersion and leads to an
extractable nonlinear group delay quantity. The group delay ripple
is related to the waveguide length for a fixed aperture size. Hence,
it is an effective quantity to represent dispersion and the radar
range extension. Dispersion analysis using JTFA approach requires
a huge amount of sampled data without providing scattering phase
information. However, the EDSC can coherently analyze the dispersive
targets using sparse data samples. The model is evaluated by
various measured canonical and non-canonical target responses. The
parametric EDSC model is flexible enough to be used in complex range
profile and/or radar imaging studies that require phase information.
In the latter, the range extension appears as the smudge effect.
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