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Abstract—We analyze the transverse-electric wave propagation
through lossless trilayer stacks containing single-negative (SNG)
materials in which only one of the two material constants, permittivity
(epsilon) or permeability (mu), is negative. We consider the following
combinations: ENG/MNG/ENG, ENG/DPS/MNG, DPS/ENG/DPS,
and ENG/DPS/ENG, where ENG refers to epsilon-negative, MNG to
mu-negative, and DPS to double-positive media. The transfer matrix
formalism is applied. Although the waves are evanescent in the SNG
media, combining the SNG layers or the SNG and DPS layers, leads
to some unusual features, such as the complete tunneling. Since the
symmetrical trilayer is equivalent to a single homogeneous layer, the
complete tunneling conditions are easily predicted analytically for the
trilayer stacks, and we show that in most of cases, they are rather well
applicable to the respective bilayer stacks. The field and the Poynting
vector distributions are studied in different trilayers and, in some cases,
in the respective bilayers. In particular, we show that the complete
tunneling is facilitated theoretically in the electrically thin stacks.
Similar results could be obtained for the transverse-magnetic waves
and the respective dual combinations by using the duality principle.

1. INTRODUCTION

The electromagnetic wave propagation in metamaterials has recently
attracted much attention. The metamaterials include double-negative
(DNG) and single-negative (SNG) materials. The DNG materials are
artificial composites with both permittivity (ε) and permeability (µ)
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simultaneously negative, and they were first investigated theoretically
by Veselago [1]. The DNG materials exhibit many unusual physical
properties which are different from those of conventional double-
positive (DPS) right-handed materials [2–6]. In addition to DNG
materials, there are also the SNG materials in which only one of the two
material parameters ε and µ is negative. The SNG materials consist
of ε-negative (ENG) materials with ε < 0 but µ > 0 and µ-negative
(MNG) materials with µ < 0 but ε > 0. In general, a Drude model is
used to describe the isotropic SNG materials,

ε = 1− (ωep/ω)2 (1)

in lossless ENG media, and

µ = 1− (ωmp/ω)2 (2)

in lossless MNG media, where ω is the angular frequency, ωep and
ωmp is the electronic plasma frequency and magnetic plasma frequency,
respectively.

The electromagnetic waves are evanescent in the SNG materials,
but they are propagating in certain composite structures which
are based on the SNG media. Thus, the electromagnetic
tunneling has been proved theoretically through the ENG/MNG (or
MNG/ENG) bilayers [7–10]. It has been proved also theoretically
and experimentally through the ENG/air/MNG (or MNG/air/ENG)
trilayers in [11] and through the DPS/ENG/DPS trilayers in [12].
Dispersion properties of ENG/MNG or MNG/ENG multilayers have
been analyzed in [13–19].

In this paper, we are concerned with the electromagnetic wave
propagation in lossless trilayers which are based on SNG materials.
Relations and numerical examples are provided for transverse-electric
(TE) polarized propagating waves in the trilayer ENG/MNG/ENG,
ENG/DPS/MNG, DPS/ENG/DPS, and ENG/DPS/ENG structures.
By applying the duality properties of Maxwell’s equations, simi-
lar relations could be determined for the transverse-magnetic (TM)
polarized waves and the respective dual trilayer MNG/ENG/MNG,
MNG/DPS/ENG, DPS/MNG/DPS, and MNG/DPS/MNG struc-
tures. In many cases, we compare the behavior of the respective bilay-
ers with that of the symmetrical trilayers.

2. NOTATIONS AND GENERAL RELATIONS

In our analysis the media are assumed lossless, the material constants
ε and µ being real and relative, dimensionless quantities. Consider a
Cartesian coordinate system (x, y, z) with unit vectors x̂, ŷ, and ẑ,
and a monochromatic plane wave with time dependence exp(iωt) in
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the free space, with the wave vector k0 = x̂kx + ẑkz0 in the x-z plane,
of magnitude k0 = ω/c, where c is the velocity of light in vacuum. The
x component, kx = k0 sin θ0, is real and the same for different media
of propagation, where θ0 is the incidence angle; the z component is
kz0 =

√
k2

0 − k2
x. If the medium of propagation is characterized by

the material constants (ε, µ), the respective z component of the wave
vector is

kz ≡ β =
√

k2
0εµ− k2

x for k2
x < k2

0εµ

kz ≡ −iκ = −i
√

k2
x − k2

0εµ for k2
x > k2

0εµ
(3)

As for example, for a plane wave into an SNG medium, either ENG of
material constants (−ε, µ) or MNG of material constants (ε,−µ), where
ε and µ are positive numbers, the z component of the wave vector is
imaginary, kz = −iκ, since for any incidence angle, k2

x > k2
0εµ.

Consider a stack of J homogeneous and isotropic layers of material
constants (εj , µj), where j = 1, 2, . . . , J , lying between the cover
and the substrate media, with interfaces parallel to the x-y plane.
Since the material variation is only in the z direction, the Maxwell’s
equations reduce to independent sets of equations for the TE and TM
polarizations. As shown in Fig. 1, the TE polarization is distinguished
by having the electric-field vector E perpendicular to the plane of
incidence, whereas it is the magnetic-field vector H that is transverse
in the TM case. A set of polarization-dependent parameters ξj , U ,
and V are defined in Table 1 so that the basic relations apply to both
polarizations. The tangential field components U and V are continuous

E
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H
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z

1    2 J

Cover Stack Substrate

TE TM

//

Figure 1. Electric- and magnetic-field vectors for a TE (left) and TM
(right) polarized plane wave obliquely incident on a stack of J layers
lying between the cover and the substrate media.
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Table 1. Polarization-dependent parameters ξj , U , and V .

Polarization ξj U V

TE
kzj

η0k0µj
Ey −Hx

TM
η0kzj

k0εj
Hy Ex

across the interfaces and a unimodular field-transfer matrix Mj relates
the field amplitudes Uj and Vj at zj to the corresponding amplitudes
at zj−1, [

Uj−1

Vj−1

]
= Mj

[
Uj

Vj

]
(4)

where Mj is given by [20],

Mj =
[

cosφj (i/ξj) sinφj

iξj sinφj cosφj

]
(5)

with φj = kzj(zj − zj−1), kzj denoting the respective z component of
the wave vector,

ξj =
{

kzj/(η0k0µj) for TE

η0kzj/(k0εj) for TM
(6)

where η0 =
√

µ0/ε0 is the intrinsic impedance of the free space. When
the jth layer is an SNG medium, either ENG or MNG, since kzj is
imaginary, ξj and φj are also imaginary. Thus, for an SNG layer, we
use notation

φj = −iϕj (7)

and the following relations
cos(−iϕj) = coshϕj , sin(−iϕj) = −i sinhϕj ,

tan(−iϕj) = −i tanhϕj .
(8)

The transfer matrix of the stack consisting of J layers is given by the
product of the respective transfer matrices for the individual layers,

M =
J∏

j=1

Mj (9)

If we denote by mij , with i, j = 1, 2, the elements of the matrix M ,
expressions for the amplitude reflection and transmission coefficients
(rcs and tcs) are readily derived up to a phase factor,

rcs =
ξcm11 + ξcξsm12 −m21 − ξsm22

ξcm11 + ξcξsm12 + m21 + ξsm22
(10)
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tcs =
2ξc

ξcm11 + ξcξsm12 + m21 + ξsm22
(11)

where the subscripts c and s refer to the cover and the substrate,
respectively. The reflectance R and the transmittance T are given by

R = |rcs|2, T =
Real(ξs)
Real(ξc)

|tcs|2 (12)

Detailed expressions for the tangential components of the electric and
magnetic fields into a trilayer stack for the TE polarization are given in
Appendix A. For simplicity, in the following we consider the trilayers
are embedded in air, that is, ξc = ξs = ξ0. For a trilayer stack, the
matrix elements m11 and m22 are given by relation
(

m11

m22

)
= cosφ1 cosφ2 cosφ3 −

(
ξ3/ξ2

ξ2/ξ3

)
cosφ1 sinφ2 sinφ3

−
(

ξ3/ξ1

ξ1/ξ3

)
cosφ2 sinφ1 sinφ3−

(
ξ2/ξ1

ξ1/ξ2

)
cosφ3 sinφ1 sinφ2 (13)

and the matrix elements m12 and m21 by relation
(

m12

m21

)
= i

[(
1/ξ1

ξ1

)
cosφ2 cosφ3 sinφ1 +

(
1/ξ2

ξ2

)
cosφ1 cosφ3 sinφ2

+
(

1/ξ3

ξ3

)
cosφ1 cosφ2 sinφ3 −

(
ξ2/(ξ1ξ3)
ξ1ξ3/ξ2

)
sinφ1 sinφ2 sinφ3

]
(14)

When all layers are electrically thin, |φj | ≤ 0.1, with j = 1, 2, 3, the
matrix M of the trilayer becomes

M ≈
[

1 i
∑3

j=1 φj/ξj

i
∑3

j=1 φjξj 1

]
(15)

and the trilayer is equivalent to a single layer of thickness deq and
material constants (εeq, µeq) determined by

µeq =
3∑

j=1

pjµj ,

εeq =
3∑

j=1

pjεj − k2
x

k2
0




3∑

j=1

pj

µj
− 1∑3

j=1 pjµj




(16)

where pj = dj/deq, dj being the thickness of the jth layer. For an
electrically thin bilayer [21], one can use (16) with two terms in the
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sums. The complete tunneling through the electrically thin trilayer,
with the transfer matrix approximated by (15), is achieved either when

m12 = m21 = 0 (17)

in which case the trilayer stack behaves like an absentee layer, or when

m12ξ
2
0 −m21 = 0 (18)

For TE polarization, relation (15) becomes at normal incidence

M ≈
[

1 iη0k0
∑3

j=1 djµj

i(k0/η0)
∑3

j=1 djεj 1

]
(19)

Applying (17) gives the following approximate conditions for the
complete tunneling through an electrically thin trilayer

3∑

j=1

djµj = 0,
3∑

j=1

djεj = 0 (20)

3. TUNNELING THROUGH THE TRILAYER
ENG/MNG/ENG STRUCTURE

Consider a symmetrical trilayer of material constants (−ε1, µ1)/(ε2,
−µ2)/(−ε1, µ1) and layers thicknesses d1/d2/d1, where εj and µj , with
j = 1, 2, are positive numbers. Then,

ξ1 = ξ3 = −iκ1/(η0µ1), ξ2 = iκ2/(η0µ2),
φj = −iκjdj = −iϕj , j = 1, 2.

(21)

From (13) and (14), one obtains at normal incidence

m11 =m22 = cosh 2ϕ1 coshϕ2 − 1
2

(
η1

η2
+

η2

η1

)
sinh 2ϕ1 sinhϕ2

(
m12

m21

)
=

i

2η2

(
η0

−1/
(
η0η

2
1

)
) [

2η1η2 coshϕ2 sinh 2ϕ1

+
(

1
−1

)
(η2

1 − η2
2) sinhϕ2 −

(
η2
1 + η2

2

)
cosh 2ϕ1 sinhϕ2

]

ηj =
√

µj/εj , j = 1, 2

(22)

The condition (18) for complete tunneling will be satisfied when

ϕ2 = 2ϕ1 and η1 = η2 (23)

which is similar to the “matched pair” condition established in [7]
for the ENG/MNG bilayer. From (22), we obtain a further condition
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for the complete tunneling through the symmetrical ENG/MNG/ENG
trilayer,

tanhϕ2 =
2η1η2

η2
1+η2

2
sinh 2ϕ1

1−η2
1

1+η2
1

η2
1−η2

2

η2
1+η2

2
+ cosh 2ϕ1

(24)

The matched trilayer condition (23) results as a specific case from the
more general condition (24). From the matched trilayer condition (23)
one obtains

2d1

d2
=

µ2

µ1
=

ε2
ε1

(25)

The following conditions result for a conjugate matched trilayer [7]

2d1 = d2, µ2 = µ1, ε2 = ε1. (26)

Thus, for the conjugate matched ENG/MNG/ENG trilayer of material
constants (−ε, µ)/(ε,−µ)/(−ε, µ), where ε and µ are positive numbers,
and layers thicknesses d

2/d/d
2 , the complete tunneling will occur at any

incidence angle [7]. Relation (25) can be written in a general form

p2d1

qd2
=

pµ2

qµ1
=

pε2
qε1

(27)

which means that, if a trilayer of material constants (−ε1, µ1)/(ε2,−µ2)/
(−ε1, µ1) and layers thicknesses d1/d2/d1 allows the complete tun-
neling at normal incidence, then the trilayer of material constants
(−qε1, qµ1)/(pε2,−pµ2)/(−qε1, qµ1) and layers thicknesses d1

q /d2
p /d1

q ,
with p and q integer numbers, will allow the complete tunneling at
normal incidence also. Numerical examples are given in Fig. 2(a).
Curve 1 corresponds to a conjugate matched trilayer. One can see
that the complete tunneling occurs at any incidence angle. Curve 2
corresponds to a matched trilayer of parameters determined from those
of the conjugate matched trilayer, represented by curve 1, by apply-
ing relation (27) with p = 2 and q = 4. The complete tunneling is
achieved on a large interval of θ0 variation. Curve 3 corresponds to
another matched trilayer of parameters determined also from those of
the conjugate matched trilayer by applying relation (27) with p = 1/4
and q = 1/2. The complete tunneling is achieved on a narrower in-
terval of θ0 variation. The inset in Fig. 2(a) illustrates the evanescent
wave into an MNG layer. By comparison, Fig. 2(b) shows the com-
plete tunneling through the respective bilayers. A larger interval of θ0

variation is allowed for the matched trilayers in comparison with the
respective matched bilayers.

Figure 3 shows comparatively the electric field, the magnetic field,
and the z component of the Poynting vector for a normally incident
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Figure 2. (a) The transmittance T against the incidence angle θ0 at
ω = 5 GHz for different ENG/MNG/ENG trilayers of given material
constants and layers thicknesses in mm: 1 — (−3, 6)/(3,−6)/(−3, 6)
and 20/40/20 thick; 2 — (−12, 24)/(6,−12)/(−12, 24) and 5/20/5
thick; 3 — (−1.5, 3)/(0.75,−1.5)/(−1.5, 3) and 5/20/5 thick. The
inset shows T against θ0 for a single MNG layer of material constants
(3,−6) and 40 mm thick. (b) The same like in (a) but for the respective
ENG/MNG bilayers of layers thicknesses in mm: 1 — 40/40; 2 and 3
— 10/20.

plane wave onto the conjugate matched ENG/MNG/ENG trilayer and
the respective conjugate matched ENG/MNG bilayer. In both cases,
the field is predominantly concentrated around the interfaces between
the SNG layers. The real part of the Poynting vector is uniform and
equal unity through the structures, indicating the complete tunneling.
The imaginary part of the Poynting vector is zero in the free space, it is
only present inside the slabs and has its peaks at the interfaces between
the SNG layers [7]. The fields and the imaginary part of the Poynting
vector take smaller values inside the conjugate matched trilayer than
inside the respective conjugate matched bilayer.

Figure 4 shows the complete tunneling through different
electrically thin ENG/MNG/ENG trilayers and the respective
ENG/MNG bilayers. The parameters of trilayers are determined from
those of the conjugate matched trilayer, represented by curve 1 in
Fig. 4(a), by applying relations (27) and (20). One can see that in both
cases of electrically thin trilayers and bilayers, the complete tunneling
is attained on large intervals of θ0 variation.

Figure 5 shows the electric field, the magnetic field, and the Sz

component at normal incidence for the conjugate matched electrically
thin trilayer and an asymmetrical trilayer. The field is predominantly
concentrated around the interfaces between the SNG layers, the
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Figure 3. (a) The electric field |Ey| (solid curve) and the magnetic
field |Hx| (dashed curve); (b) the real (solid curve) and the imaginary
(dashed curve) z component Sz of the Poynting vector into the
conjugate matched ENG/MNG/ENG trilayer represented by curve 1
in Fig. 2(a). Similarly in (c) and (d), but for the conjugate matched
ENG/MNG bilayer represented by curve 1 in Fig. 2(b).

magnetic field attaining greater values in comparison with the electric
field. For the asymmetrical trilayer, the field is greater at the interface
of the MNG layer with the thicker ENG layer. The fields and the
imaginary part of Sz take smaller values inside the electrically thin
trilayers than inside the electrically thick trilayers [see Figs. 3(a) and
(b)].

4. TUNNELING THROUGH THE TRILAYER
ENG/DPS/MNG STRUCTURE.

Consider the trilayer of material constants (−ε1, µ1)/(ε2, µ2)/(ε3, −µ3)
and layers thicknesses d1/d2/d3, where εj and µj , with j = 1, 2, 3, are
positive numbers. From (13) and (14), one obtains at normal incidence
(

m11

m22

)
= cosφ2 coshϕ1 coshϕ3 −

(
η2/η3

−η3/η2

)
sinφ2 coshϕ1 sinhϕ3

−
(

η1/η3

η3/η1

)
cosφ2 sinhϕ1 sinhϕ3 −

(
η1/η2

−η2/η1

)
sinφ2 coshϕ3 sinhϕ1 (28)
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Figure 4. (a) The transmittance T against θ0 at ω = 0.3GHz
for the ENG/MNG/ENG trilayers of given material constants and
layers thicknesses in mm: 1 — (−68, 3)/(68,−3)/(−68, 3) and
20/40/20 thick; 2 — (−272, 12)/(136,−6)/(−272, 12) and 5/20/5
thick; 3 — (−34, 1.5)/(17,−0.75)/(−34, 1.5) and 5/20/5 thick; 4 —
(−68, 3)/(28,−1.1667)/(−50, 2) and 10/60/20 thick. The inset shows
T against θ0 for a single MNG layer of material constants (68,−3) and
40mm thick. (b) The same like 1, 2, and 3 in (a), but for the respective
ENG/MNG bilayers of layers thicknesses in mm: 1 — 40/40; 2 and 3
— 10/20.

(
m12

m21

)
= i

(
η0

1/η0

) [(
η1

−1/η1

)
cosφ2 coshϕ3 sinhϕ1

+
(

η2

1/η2

)
sinφ2 coshϕ1 coshϕ3 −

(
η3

−1/η3

)
cosφ2 coshϕ1 sinhϕ3

+
(

η1η3/η2

η2/(η1η3)

)
sinφ2 sinhϕ1 sinhϕ3

]
(29)

The complete tunneling is achieved when

η2 = 1, ϕ1 = ϕ3, and η3 = 1/η1 (30)

where ηj , with j = 1, 2, 3, is defined in (22). Furthermore, the
parameters ϕ1, φ2, and η1 must satisfy relation

tanφ2 =
1
2

(
1
η1
− η1

)
tanhϕ1 (31)

From (30) and (31), one can infer that the complete tunneling at
normal incidence is achieved with an ENG/DPS/MNG trilayer of
material constants (−ε1, µ1)/(1, 1)/(µ1,−ε1) and layers thicknesses
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Figure 5. (a) The electric field |Ey| (solid curve) and the
magnetic field |Hx| (dashed curve); (b) the real (solid curve) and
the imaginary (dashed curve) z component Sz of the Poynting vector
into the ENG/MNG/ENG trilayer represented by curve 1 in Fig. 4(a).
Similarly in (c) and (d), but for the asymmetrical trilayer represented
by curve 4 in Fig. 4(a).

d1/d2/d1, where η1, d1, and d2 satisfy relation (31). Note that the
air DPS layer of η2 = 1 could be a metamaterial of equal positive
material constants, ε2 = µ2.

Numerical examples are shown in Fig. 6. By keeping d2 constant,
the smaller is d1, the lower and the broader is the complete tunneling
frequency [see Figs. 6(a) and (c)]. When the DPS layer is a dielectric
material with µ2 = 1, by keeping d1 and d2 constant, the greater is ε2,
the lower is the tunneling frequency and the more incomplete is the
tunneling [see Figs. 6(b) and (d)]. Note that all dependencies in Fig. 6
and in the following figures refer to the lowest order frequencies. The
dependence of the transmittance on the incidence angle θ0 is shown
in Fig. 7 at different thicknesses of the DPS layer. The greater is the
thickness d2, the narrower is the interval of θ0 variation for a complete
tunneling. At the same thickness d2 of the DPS layer, the SNG layers
are about two times electrically thicker at ωep = ωmp = 20 GHz than
at ωep = ωmp = 10 GHz, leading to a narrowing of the interval of
θ0 variation for a complete tunneling in Fig. 7(b) in comparison with
Fig. 7(a).
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Figure 6. (a) The transmittance T against ω for ENG/DPS/MNG
trilayers with an air DPS layer 1000 mm thick and the two SNG layers
of material constants determined by (1) and (2) with ωep = ωmp =
10GHz, µ1 = ε3 = 1, and of equal d1 = d3 but varied thickness in mm:
1 — d1 = 20; 2 — d1 = 10; 3 — d1 = 5. (b) The same like in (a), but
with both SNG layers 20 mm thick and the DPS layer 100 mm thick of
µ2 = 1 and varied ε2: 1 — ε2 = 1; 2 — ε2 = 2; 3 — ε2 = 4. (c) and
(d) the same like in (a) and (b), but when ωep = ωmp = 20 GHz.

Figure 8 shows the electric field, the magnetic field, and the z
component of the Poynting vector for a normally incident plane wave
onto the ENG/DPS/MNG trilayer with an air DPS layer and layers
thicknesses d1 = d2 = d3, at two circular frequencies. As it was shown
in [11], the magnetic field is maximum at the ENG/DPS interface,
whereas the electric field has the same maximum value, but at the
DPS/MNG interface. The real part of the Poynting vector is uniform
and equal unity through the structures. The imaginary part of the
Poynting vector is zero in the free space and has a broad peak, being
almost constant, inside the DPS layer.

Figure 9 shows the tunneling through different electrically thin
ENG/DPS/MNG trilayers of parameters determined by relations (30),
(31), and (20). Although the tunneling at normal incidence is not
complete in some cases, a rather good tunneling (T > 0.98) is achieved
on a large interval of θ0 variation.
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Figure 7. (a) The transmittance T against θ0 for ENG/DPS/MNG
trilayers with the two SNG layers 20 mm thick of material constants
(−ε1, 1) and (1,−ε1) determined by (1) and (2) with ωep = ωmp =
10GHz, at frequency ω in GHz determined by (31), and the air DPS
layer of varied thickness d2 in mm: 1 — d2 = 20, ω ≈ 4.82, ε1 ≈ 3.3;
2 — d2 = 100, ω ≈ 2.44, ε1 ≈ 15.8; 3 — d2 = 1000, ω ≈ 0.42, ε1 ≈
549.5. (b) The same like in (a), but when ωep = ωmp = 20GHz: 1 —
d2 = 20, ω ≈ 8.72, ε1 ≈ 4.2; 2 — d2 = 100, ω ≈ 3.5, ε1 ≈ 31.7; 3 —
d2 = 1000, ω ≈ 0.45, ε1 ≈ 1938.8.
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Figure 8. (a) The electric field |Ey| (solid curve) and the magnetic
field |Hx| (dashed curve); (b) the real (solid curve) and the imaginary
(dashed curve) z component Sz of the Poynting vector into the
ENG/DPS/MNG trilayer represented by curve 1 in Fig. 7(a). Similarly
in (c) and (d), but for the structure represented by curve 1 in Fig. 7(b).



240 Cojocaru

0.96

0.98

1

1

2

3T

θ
0

(a)

0 π/4 π/2

0.996

0.998

1

1
3 2

T

(b)

θ
0

0 π/4 π/2

Figure 9. (a) The transmittance T against θ0 at ω =
0.3GHz for the ENG/DPS/MNG trilayer of material constants
(−68, 3)/(1, 1)/(68,−3) with the two SNG layers 10 mm thick and
the air DPS layer of varied d2 thickness in mm: 1 — d2 = 10; 2
— d2 = 100; 3 — d2 = 150. (b) T against θ0 at ω = 0.3GHz
for different ENG/DPS/MNG trilayers of given material constants
and layers thicknesses in mm: 1 — (−68, 3)/(1, 1)/(63,−8) and
20/40/20 thick; 2 — (−68, 3)/(1, 1)/(66,−5) and 20/40/20 thick; 3
— (−68, 3)/(1, 1)/(32,−3.5) and 10/40/20 thick.

5. TUNNELING THROUGH THE TRILAYER
DPS/ENG/DPS STRUCTURE

Consider a symmetrical trilayer of material constants (ε1, µ1)/(−ε2,
µ2)/(ε1, µ1) and layers thicknesses d1/d2/d1, where εj and µj , with
j = 1, 2, are positive numbers. From (13) and (14), one obtains at
normal incidence

m11 =m22 = cos 2φ1 coshϕ2 +
1
2

(
η1

η2
− η2

η1

)
sin 2φ1 sinhϕ2

(
m12

m21

)
=

i

2η2

(
η0

1/(η0η
2
1)

) [
2η1η2 sin 2φ1 coshϕ2

+
(

1
−1

)
(η2

1 + η2
2) sinh ϕ2 − (η2

1 − η2
2) cos 2φ1 sinhϕ2

]
(32)

where ηj , with j = 1, 2, is defined in (22). Applying condition (18) for
complete tunneling gives

tanhϕ2 =
2η1η2

η2
1+η2

2
sin 2φ1

1+η2
1

1−η2
1

+ η2
1−η2

2

η2
1+η2

2
cos 2φ1

(33)

Numerical examples are shown in Fig. 10(a) for a symmetrical
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Figure 10. (a) The transmittance T against θ0 at ω = 5 GHz
for symmetrical DPS/ENG/DPS trilayers of material constants: 1
— (8.2, 1)/(−5, 2)/(8.2, 1); 2 — (59.57, 1)/(−5, 2)/(59.57, 1); and
layers thicknesses 5/10/5 in mm. (b) The same like in (a), but
for the respective DPS/ENG bilayers of layers thicknesses 10/10
in mm. (c) T against θ0 at ω = 0.3 GHz for symmetrical
DPS/ENG/DPS trilayers of given material constants and layers
thicknesses in mm: 1 — (36.5, 1)/(−68, 3)/(36.5, 1) and 20/20/20
thick; 2 — (18.75, 1)/(−68, 3)/(18.75, 1) and 20/10/20 thick. (d) The
same like in (c), but for the respective DPS/ENG bilayers of layers
thicknesses in mm: 1 — 40/20; 2 — 40/10.

DPS/ENG/DPS trilayer with dielectric DPS layers (µ1 = 1) and an
ENG layer of given material constants (−ε2, µ2). As it was shown
in [12], two values of ε1 satisfying (33) at given d1 and d2 could exist.
Curves 1 and 2 in Fig. 10(a) correspond to these values of ε1, curve 1
corresponding to the smaller value of ε1. The complete tunneling
is achieved on a larger interval of θ0 variation for the smaller value
of ε1. By comparison, Fig. 10(b) shows the tunneling through the
respective DPS/ENG bilayers. For the smaller value of ε1 there is a
tunneling through the bilayer, but for the greater value of ε1 the wave
is evanescent. Results are shown in Figs. 10(c) and (d) for electrically
thin structures. The complete tunneling is achieved on a larger interval
of θ0 variation for both values of ε1 in case of electrically thin trilayers in
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Figure 11. (a) The electric field |Ey| (solid curve) and the magnetic
field |Hx| (dashed curve); (b) the real (solid curve) and the imaginary
(dashed curve) z component Sz of the Poynting vector into the
DPS/ENG/DPS trilayer represented by curve 1 in Fig. 10(a). Similarly
in (c) and (d), but for the trilayer represented by curve 2 in Fig. 10(a).

comparison with the electrically thick trilayers of Fig. 10(a). An almost
complete tunneling (T > 0.99) occurs in the respective electrically thin
bilayers for both values of ε1.

Figure 11 shows the electric field, the magnetic field, and the z
component of the Poynting vector for a normally incident plane wave
onto the DPS/ENG/DPS trilayers represented by curves 1 and 2 in
Fig. 10(a). The electric field has a broad minimum inside the ENG
layer, whereas the magnetic field is much larger, with peaks at the
two DPS/ENG interfaces. The real part of the Poynting vector is
uniform and equal unity through the structure, indicating the complete
tunneling. The imaginary part of the Poynting vector has its peaks at
the DPS/ENG interfaces.

6. TUNNELING THROUGH THE TRILAYER
ENG/DPS/ENG STRUCTURE

Consider a symmetrical trilayer of the material constants (−ε1, µ1)
/(ε2, µ2)/(−ε1, µ1) and layers thicknesses d1/d2/d1, where εj and µj ,
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Figure 12. (a) The transmittance T against θ0 at ω = 5 GHz for
symmetrical ENG/DPS/ENG trilayers of layers thicknesses 10/5/10
in mm and material constants: 1 — (−5, 2)/(23.6, 1)/(−5, 2); 2
— (−3, 6)/(17.7, 1)/(−3, 6). (b) The same like in (a), but for the
respective ENG/DPS bilayers of layers thicknesses 20/5 in mm. (c) T
against θ0 at ω = 0.3GHz for symmetrical ENG/DPS/ENG trilayers
of material constants (−68, 3)/(ε2, 1)/(−68, 3) and layers thicknesses
10/d2/10 in mm with varied d2 and ε2 determined from (35): 1 —
d2 = 20, ε2 = 72; 2 — d2 = 50, ε2 = 29.4; 3 — d2 = 100, ε2 = 15.2; 4
— d2 = 200, ε2 = 8.1. (d) The same like in (c), but for the respective
ENG/DPS bilayers of layers thicknesses 20/d2 in mm.

with j = 1, 2, are positive numbers. From (13) and (14), one obtains
at normal incidence

m11 =m22 = cosφ2 cosh 2ϕ1 − 1
2

(
η1

η2
− η2

η1

)
sinφ2 sinh 2ϕ1

(
m12

m21
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2η2

(
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−1/(η0η
2
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) [
2η1η2 cosφ2 sinh 2ϕ1

+
(

1
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) (
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2

)
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(
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2
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sinφ2 cosh 2ϕ1

]
(34)
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Figure 13. (a) The electric field |Ey| (solid curve) and the
magnetic field |Hx| (dashed curve); (b) the real (solid curve) and the
imaginary (dashed curve) z component Sz of the Poynting vector into
the ENG/DPS/ENG trilayer represented by curve 1 in Fig. 12(a).
Similarly in (c) and (d), but for the trilayer represented by curve 2
in Fig. 12(a).

where ηj , with j = 1, 2, is defined in (22). Applying condition (18) for
complete tunneling gives a relation similar to (33)

tanφ2 =
2η1η2

η2
1+η2

2
sinh 2ϕ1

1−η2
1

1+η2
1

+ η2
1−η2

2

η2
1+η2

2
cosh 2ϕ1

(35)

Numerical examples are shown in Fig. 12(a) for two symmetrical
ENG/DPS/ENG trilayers with a dielectric DPS layer of (µ2 = 1) and
ε2 determined by (35) at given −ε1, µ1, d1, and d2. By comparison,
Fig. 12(b) shows the transmittance of the respective ENG/DPS
bilayers. The tunneling is clearly better through the symmetrical
trilayers than through the respective bilayers. Figs. 12(c) and (d)
shows the behavior of T against θ0 for electrically thin trilayers and
the respective bilayers. At given −ε1, µ1, and d1, the thickness d2

of the dielectric DPS layer is varied and the respective value of ε2 is
determined from (35). The thinner is the DPS layer, the better is the
tunneling through the trilayers and the respective bilayers.
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Figure 13 shows the electric field, the magnetic field, and the z
component of the Poynting vector for a normally incident plane wave
onto the ENG/DPS/ENG trilayers represented by curves 1 and 2 in
Fig. 12(a). The electric field is maximum whereas the magnetic field
is minimum at the middle of the DPS layer. The electric field has a
smooth variation, whereas the magnetic field has a strong variation,
with peaks at the two ENG/DPS interfaces, and the minimum at the
middle of the DPS layer. The real part of the Poynting vector is
uniform and equal unity through the structure, indicating the complete
tunneling. The imaginary part of the Poynting vector has its peaks at
the ENG/DPS interfaces.

7. CONCLUSION

In this paper, we have studied the TE wave propagation in loss-
less trilayer stacks containing SNG materials. The following combi-
nations have been considered: ENG/MNG/ENG, ENG/DPS/MNG,
DPS/ENG/DPS, and ENG/DPS/ENG. Although the wave is evanes-
cent into the SNG media, certain combinations of SNG layers or SNG
and DPS layers lead to unusual features, such as the complete tunnel-
ing. The transfer-matrix formalism has been applied. Simple condi-
tions for the complete tunneling were expressed analytically at normal
incidence. The role of the material constants, layers thicknesses, and
the incidence angle has been illustrated by numerical examples. In
some cases, the comparison between the tunneling through the sym-
metrical trilayer stacks and that through the respective bilayer stacks
has been provided. Besides the advantage of being predictable an-
alytically [22], the complete tunneling through the symmetrical tri-
layer stacks is achieved in general on larger intervals of incidence angle
variation in comparison with the respective bilayer stacks. We have
analyzed also the field and the Poynting vector distributions inside
and outside the trilayer stacks. In particular, we have shown that the
complete tunneling is facilitated theoretically for the electrically thin
stacks.

In our analysis the media have been assumed lossless. However,
when dissipation is considered, the material constants are complex
numbers, and the behavior of the electromagnetic tunneling through
the trilayer stacks containing SNG materials can be drastically
altered [7–9].
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APPENDIX A. ELECTRIC- AND MAGNETIC-FIELD
TANGENTIAL COMPONENTS INTO A TRILAYER
STACK FOR THE TE CASE.

Consider a trilayer of material constants (εj , µj), with j = 1, 2, 3, and
layers thicknesses d1/d2/d3 placed in air at z > 0. Depending on the
sign of material constants, the z component of the wave vector into an
SNG or DPS layer is defined by (3). The tangential components Ey

and −Hx into the five regions can be written as follows,

z < 0, Ey = E0e
−ixkx

(
e−izkz0 + reizkz0

)

−Hx =
kz0

η0k0
E0e

−ixkx

(
e−izkz0 − reizkz0

) (A1)

0 < z < d1, Ey = E0e
−ixkx

(
f1+e−izkz1 + f1−eizkz1

)

−Hx =
kz1

η0k0µ1
E0e

−ixkx

(
f1+e−izkz1 − f1−eizkz1

) (A2)

d1 < z < d1 + d2,

Ey = E0e
−ixkx

[
f2+e−i(z−d1)kz2 + f2−ei(z−d1)kz2

]

−Hx =
kz2

η0k0µ2
E0e

−ixkx

[
f2+e−i(z−d1)kz2 − f2−ei(z−d1)kz2

] (A3)

d1 + d2 < z < d1 + d2 + d3,

Ey = E0e
−ixkx

[
f3+e−i(z−d1−d2)kz3 + f3−ei(z−d1−d2)kz3

]

−Hx =
kz3

η0k0µ3
E0e

−ixkx

[
f3+e−i(z−d1−d2)kz3 − f3−ei(z−d1−d2)kz3

] (A4)

z > d1 + d2 + d3, Ey = E0e
−ixkxte−i(z−d1−d2−d3)kz0

−Hx =
kz0

η0k0
E0e

−ixkxte−i(z−d1−d2−d3)kz0
(A5)

We use the following notations

A± =
1
2

(
1± kz0µ1

kz1

)
, B± =

1
2

(
1± kz1µ2

kz2µ1

)
, (A6)

C± =
1
2

(
1± kz2µ3

kz3µ2

)
, D± =

kz3

kz0µ3
± 1, (A7)

P± = A+B+e±id1kz1 + A−B−e∓id1kz1 ,

Q± = A−B+e±id1kz1 + A+B−e∓id1kz1 ,
(A8)
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F = e−2id2kz2

(
C−D+ − C+D−e−2id3kz3

)
,

G = C+D+ − C−D−e−2id3kz3 .
(A9)

Then, the amplitude reflection (r) and transmission (t) coefficients and
the amplitude coefficients fj±, with j = 1, 2, 3, are given by relations

r = −FP− + GQ+

FQ− + GP+
(A10)

f1± = A± + rA∓,

f2± = f1+B±e−id1kz1 + f1−B∓eid1kz1 ,

f3± = f2+C±e−id2kz2 + f2−C∓eid2kz2 ,

(A11)

t = f3+e−id3kz3 + f3−eid3kz3 . (A12)
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