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NANO-APERTURE ILLUMINATING A PLANAR LAY-
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Abstract—A rigorous and efficient spectral domain formalism is
presented of a plane wave-excited subwavelength circular aperture in a
planar perfectly conducting metallic screen of infinitesimal thickness,
based on the Bethe-Bouwkamp quasi-static model. The formulation
utilizes a transmission line analogue of the medium, which facilitates
the inclusion of planar multilayered material samples, where the latter
may exhibit uniaxial anisotropy. The transmitted field components
are expressed in terms of one-dimensional Hankel transform integrals,
which can be evaluated by efficient numerical procedures. Sample
results are presented showing the intensity profiles and polarization
states of transmitted light penetrating into a semiconductor layer.

1. INTRODUCTION

The problem of light transmission through a subwavelength circular
aperture in a metallic screen has been of much interest in the context
of scanning near-field optical microscopy (SNOM). The first solution—
assuming a perfectly conducting screen of infinitesimal thickness and
an aperture of radius a ¿ λ, where λ is the wavelength—was put
forward by Bethe [1], and later corrected by Bouwkamp [2, 3], who
derived a quasi-static expression for the equivalent magnetic current
of the aperture. With the latter known, the transmitted field can be
solved for in either the space domain or the Fourier spectrum domain.
The first numerical studies of the transmitted light based on the
Bethe-Bouwkamp (BB) quasi-static model employed the space domain
approach [4–6]. The disadvantage of this method is that it cannot
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readily be extended to include the effect of a nearby material sample
and it becomes cumbersome for anisotropic media. These limitations
are easily overcome if the solution is pursued in the Fourier spectrum
domain, since individual modes can be propagated through dielectric
interfaces using the Fresnel equations. Also, the uniaxial anisotropy is
only a minor complication in the spectral domain, since the transverse-
magnetic (TM) and transverse-electric (TE) partial fields can be
decoupled and propagated separately. The sources of these partial
fields are determined by the spectrum of the BB equivalent magnetic
current of the aperture. Consequently, the spectral domain approach
based on the BB model has frequently been used in the SNOM
context [7–17], and some of these works included the effect of a nearby
planar material sample in the formulation. Baida and Van Labeke [15]
also converted the Cartesian Fourier transform representation into a
more efficient Fourier-Bessel transform representation, which replaces
the two-dimensional Fourier-type integrals by one-dimensional Hankel
transforms. The advantage of the latter representation was earlier
recognized by Grober et al. [10], who derived the spectral sources
of the TE and TM partial fields from the Fourier transforms of the
BB expressions for, respectively, the normal magnetic and electric
field components in the aperture plane. However, their TM source
expressions are approximate. Recently, Michalski [18] used the BB
model in conjunction with the complex image method to analyze
subwavelength circular apertures under oblique incidence.

In the present paper, we extend the works of Grober et
al. [10] and Van Labeke et al. [12, 15] and present an efficient
spectral domain method for the analysis of a subwavelength circular
aperture nanosource illuminating a planar material sample, where
the latter may be layered and uniaxially anisotropic, with the optic
axis perpendicular to the stratification. Our formulation is exact
and it utilizes a transmission line analogue of the medium, which
facilitates an efficient treatment of multilayered samples. The proposed
method is applicable to experiments in SNOM when flat samples are
evaluated, as well as in studies of metamaterial and metallodielectric
multilayers for superlensing and superguidance applications at optical
frequencies [19, 20].

2. STATEMENT OF THE PROBLEM

The structure under consideration is illustrated in Fig. 1, where
we assume that the screen and the material sample are of infinite
lateral extent. The screen is perfectly conducting and of infinitesimal
thickness, and the aperture is circular with a subwavelength radius.



Progress In Electromagnetics Research B, Vol. 28, 2011 309

screen with circular

aperture

light beam

layered

sample

Figure 1. Schematic diagram
of a plane wave-excited circular
aperture in a presence of a layered
sample.
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Figure 2. Diagram of a plane
wave impinging on a circular aper-
ture in a planar screen, indicating
the coordinate system used in the
analysis.

The sample may comprise any number of layers and may be uniaxially
anisotropic, with the optic axis perpendicular to the stratification,
and is characterized by piecewise-constant transverse and axial
permittivities ε and εz, and transverse and axial permeabilities µ and
µz. The incident field geometry and the coordinate system employed
are illustrated in Fig. 2. The aperture is excited by a unit-strength,
x-polarized plane wave propagating along the z axis.

In view of the field equivalence principle, the knowledge of the
tangential electric field Et in the plane of the screen (z = 0) is sufficient
to determine the electromagnetic field at any point in the z > 0 half-
space [21, p. 110]. In the equivalent problem the aperture is shorted
and a magnetic surface current with density MS = Et × z is placed
over the area ρ < a previously occupied by the aperture. (Note that we
distinguish unit vectors by carets.) According to the BB quasi-static
theory, applicable for a ¿ λ, this MS is given as [3]

MS = −8jka

3π

(
ρ̂
√

1− ξ2 sinϕ + ϕ̂
2− ξ2

2
√

1− ξ2
cosϕ

)
, (1)

where k = 2π/λ is the wavenumber and ξ = ρ/a < 1 is the normalized
radial coordinate. We assume the ejwt time convention and SI units.
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3. SPECTRAL DOMAIN FORMULATION

In order to compute the electromagnetic field due to the equivalent
magnetic current MS backed by the screen and facing the layered
sample, we perform a transverse-longitudinal decomposition of the
Maxwell’s equations [22, p. 386] and eliminate the transverse field
components in favor of the longitudinal ones. Then, we apply a
Fourier transformation in the transverse plane, which in effect reduces
the problem to a one-dimensional one along the z axis. Since the
structure is of infinite lateral extent and it includes the origin, where
the fields should not diverge, any field component may be expressed as
(cf. [23, p. 48])

f(ρ, ϕ) =
∞∑

n=0

[
cosnϕ n{f̃ c

n(kρ)}+ sin nϕSn{f̃s
n(kρ)}

]
, (2)

with

f̃
c
s
n (kρ) ≡ F

c
s
n {f(ρ, ϕ)} = S−1

n

{
εn

2π

∫ π

−π
dϕ

cosnϕ
sinnϕ

f(ρ, ϕ)
}

, (3)

where εn is the Neumann number (εn = 1 for n = 0 and εn = 2 for
n > 0). In the above, we utilize the Fourier-Bessel transform pair
(cf. [24, p. 21])

Sn{ · } ≡
∫ ∞

0
dkρ kρ Jn(kρρ) { · }, (4)

S−1
n { · } ≡

∫ ∞

0
dρ ρ Jn(kρρ) { · }, (5)

where kρ is the spectral domain counterpart of ρ and Jn is the Bessel
function of order n. The transforms (4) and (5) will also be referred
to as the Hankel transform of order n and its inverse, respectively.

It then follows from the Maxwell’s equations that the BB magnetic
current (1) only excites the n = 1 even-TM and n = 1 odd-TE modes.
Consequently, the normal field components may be expressed as

Ez =
cosϕ

jwεz
S1{Ie(kρ, z)}, (6)

Hz = − sinϕ

jwµz
S1{V h(kρ, z)}, (7)

from which the transverse fields follow as

Eρ = − cosϕ

∫ ∞

0
dkρ

[
J ′1(kρρ) V e(kρ, z)− J1(kρρ)

kρρ
V h(kρ, z)

]
, (8)
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Eϕ = sinϕ

∫ ∞

0
dkρ

[
J1(kρρ)

kρρ
V e(kρ, z)− J ′1(kρρ) V h(kρ, z)

]
, (9)

Hρ = − sinϕ

∫ ∞

0
dkρ

[
J1(kρρ)

kρρ
Ie(kρ, z)− J ′1(kρρ) Ih(kρ, z)

]
, (10)

Hϕ = − cosϕ

∫ ∞

0
dkρ

[
J ′1(kρρ) Ie(kρ, z)− J1(kρρ)

kρρ
Ih(kρ, z)

]
, (11)

where primes indicate derivatives with respect to the argument. The
functions V α and Iα introduced above, with α = e, h, satisfy the
transmission line equations

dV α

dz
= −jkα

z ZαIα + vα, (12a)

dIα

dz
= −jkα

z Y αV α, (12b)

where

kα
z =

√
k2 − k2

ρ/να, =m kα
z ≤ 0, (13)

Ze = η
ke

z

k
, Zh = η

k

kh
z

, (14)

with Y α = 1/Zα. In the above, k = ω
√

µε and η =
√

µ/ε are the
(transverse) wavenumber and intrinsic impedance, respectively, and

νe =
εz

ε
, νh =

µz

µ
, (15)

are the electric and magnetic anisotropy ratios of the medium. It is
understood that these parameters are evaluated at z. Note that, as
already anticipated by the notation, V α and Iα may be interpreted as
the voltage and current on a transmission line with the propagation
constant kα

z and characteristic impedance Zα, excited by a voltage
source vα. The transmission lines corresponding to α = e and
α = h characterize the TM and TE partial fields, respectively. Their
propagation constants kα

z are different, unless the medium is isotropic
(να = 1). Since the magnetic current (1) resides at z = 0, the
corresponding transmission line voltage sources are impulsive and may
be expressed as

vα(kρ, z) = V α
g (kρ)δ(z), (16)

where δ is the Dirac delta and V α
g (kρ) are the voltages of lumped

generators located at z = 0 on the TM (α = e) or TE (α = h)
transmission line. The voltages of the TM and TE transmission line
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generators can be found as

V e
g (kρ) = Fc

1 {−∇t · (MS × ẑ)} = −4jka3

3π
F0(kρa)kρ, (17)

V h
g (kρ) = Fs

1 {∇t ·MS} =
4jka3

3π
F1(kρa)kρ, (18)

where Fc
1 and Fs

1 are the first-order cosine and sine transforms defined
in (3). In the above, we have used the BB magnetic surface current (1)
and the notation

F0(kρa) = j0(kρa), F1(kρa) = 3
j1(kρa)

kρa
. (19)

For later convenience, we also define the difference function

F2(kρa) = F1(kρa)− F0(kρa) = j2(kρa), (20)

which appears in the field expressions for isotropic homogeneous media.
In these formulas, jn denotes the spherical Bessel functions of order n.
The functions Fi, i = 0, 1, 2, which we refer to as the aperture source
functions, are plotted in Fig. 3. In interpreting these plots, one should
bear in mind that F0 and F1 excite the TM and TE partial fields, and
that the small and large spatial frequencies correspond to the far- and
near-zone regions in the space domain, respectively.

Figure 3. Plot of the aperture source functions.

It should be noted that Grober et al. [10] previously derived
expressions equivalent to our (17), (18) using a less direct approach,
involving approximations in the TM case. In Appendix A, we briefly
discuss the Grober et al. method and compare their approximate TM
source with the exact one presented here.

The equivalent transmission line network for the geometry of
Fig. 1 is illustrated in Fig. 4, where the short circuit represents the
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Figure 4. Schematic diagram of the aperture-excited layered sample
and its transmission line analogue. For simplicity, the dependence on
kρ is not explicitly indicated.

perfectly conducting screen and the layered medium is replaced by a
tandem connection of transmission line sections. Since the material
sample begins with layer 2, layer 1 is in our problem isotropic and the
propagation constant of the corresponding transmission line section is

kz =
√

k2 − k2
ρ, =mkz ≤ 0. (21)

The transmission line voltages and currents excited by the voltage
generators V α

g readily follow once the TM and TE transmission line
Green functions are determined, where the latter are simply the voltage
and current corresponding to V α

g = 1 in Fig. 4. Hence, if we denote
these Green functions by V α

v (kρ; z|z′) and Iα
v (kρ; z|z′), we may write

V α(kρ, z) = V α
g (kρ)V α

v (kρ; z|0), (22)
Iα(kρ, z) = V α

g (kρ)Iα
v (kρ; z|0), (23)

since in our case the voltage source is always at z′ = 0. The
transmission line Green functions for uniaxial multilayers can readily
be found, as discussed in Appendix B.

Upon using (22), (23) in conjunction with (17), (18) in (6)–(11),
more explicit expressions for the fields can be derived. Namely, upon
using the recurrence relations for the Bessel functions, the Cartesian
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field components may be expressed as

Ex =
2jka3

3π

[
S0{F1V

h
v +F0V

e
v }+ cos 2ϕS2{F1V

h
v −F0V

e
v }

]
, (24)

Ey =
2jka3

3π
sin 2ϕS2{F1V

h
v −F0V

e
v }, (25)

Ez = −4ka3

3π
cosϕS1{F0kρ Ie

v}, (26)

Hx = −2jka3

3π
sin 2ϕS2{F1I

h
v −F0I

e
v}, (27)

Hy =
2jka3

3π

[
S0{F1I

h
v +F0I

e
v}+ cos 2ϕS2{F1I

h
v −F0I

e
v}

]
, (28)

Hz = −4ka3

3π
sinϕS1{F1kρVh

v }, (29)

where we have omitted the function arguments for notational
simplicity. In (26) and (29) we have introduced the normalized
quantities

Ie
v ≡

η

kνe
Ie
v , Vh

v ≡
1

ηkνh
V h

v , (30)

where it is understood that η, k, and να are evaluated at z. The Hankel
transform integrals in (24)–(29) can be computed by an efficient scheme
based on adaptive quadrature with extrapolation [25].

If the medium is isotropic and homogeneous, which is the case
considered by Grober et al. [10], there are no reflections, and the
transmission line Green functions may be written by inspection of the
equivalent circuit of Fig. 4 as

V α
v (kρ; z|0) = e−jkzz, Iα

v (kρ; z|0) = Y αe−jkzz. (31)

In this case, the expressions (24)-(29) can be much simplified, in view
of V e

v = V h
v and (20).

4. SAMPLE NUMERICAL RESULTS

In Figs. 5–7 we present plots of the time-average Poynting vector

〈S〉 =
1
2
<e (E×H∗) , (32)

in the xz- and yz-planes for an aperture of radius a = 50 nm at
λ = 600 nm (a/λ = 0.083). The vector plots are normalized, in order
to clearly show the direction of the power flux not only in the vicinity
of the aperture, but also farther from it, where the field strength
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Figure 5. Plots of the time-average Poynting vector 〈S〉 in the xz-
and yz-planes for a = 50 nm at λ = 600 nm in free space.

Figure 6. As in Fig. 5, but with a GaAs slab occupying the range
0.5 < z/a < 1.

decreases precipitously. The magnitude information is conveyed by
the constant level contours superposed on the vector plots. The plot
in Fig. 5 is for the case of free space, and the plots in Figs. 6, 7 show
the effect of a GaAs slab (ε = 15.326−j1.568 [26]) occupying the range
25 < z < 50 nm (0.5 < z/a < 1). In the latter case, we employed the
modified transmission line Green functions, which exclude reflections
from the infinite screen, as discussed in Appendix B. We have
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Figure 7. As in Fig. 6, but with an expanded range.

Figure 8. Plots of the electric field intensity |E|2 along the x- and
y-axes for a = 50 nm at λ = 600 nm in free space.

confirmed that our free space results are in excellent agreement with
the corresponding results of the space domain method [4], which we
have also implemented. The xz-plane results exhibit the expected field
singularity near the aperture edges, since the electric field is polarized
in the plane of the plot. It is interesting to note that with the slab
present, a circulating power flux is observed in Fig. 6. The optical
vortices are clearly visible in Fig. 7, where the power flux is plotted in
an expanded range. Although these vortices are observed in regions of
very small field intensity, they do not appear to be spurious artifacts.
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Figure 9. As in Fig. 8, except that the plots are within a GaAs slab
occupying the range 0.5 < z/a < 1.

Such singular points are not uncommon and have been previously
observed in a vicinity of a subwavelength slit [27, 28].

For the same aperture size and wavelength, in Figs. 8, 9 we
present the squared electric field intensity |E|2 profiles along the x-
and y-axes at three distances from the screen: z/a = 0.5, 0.75, and
1. The former is for the free space case, and the latter shows the
effect of a GaAs layer, with the three intensity plots computed inside
the sample — the first in the front face, the second in the middle
plane, and the third in the back face. Similar results were published
by Stevenson and Richards [14] for an infinitely thick GaAs sample.
Of interest in the SNOM context are the full-width half-maximum
(FWHM) values, which define the attainable resolution. As previously
noted by Stevenson and Richards, the FWHM is reduced within the
semiconductor. Our results indicate that, as compared to the free
space case, the field intensity within a finite-thickness slab decreases
less rapidly with distance, which can be attributed to the partial field
reflection from the back face of the sample. For the infinitely thick
GaAs layer, Stevenson and Richards observed the occurrence of two
subsidiary maxima in addition to the prominent peak at the center of
the intensity plot along the y-axis. These maxima, which could produce
two ‘ghost’ images for the scan direction perpendicular to the incident
field polarization, are also present in the finite-thickness sample, as the
plots of Fig. 9 indicate.
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Table 1. Normal field components in the aperture plane.

ξ < 1 ξ > 1

Ez 0 − 4jka
3π

1

ξ
√

ξ2−1
cos ϕ

Hz − 4
πη

ξ√
1−ξ2

sin ϕ 0

5. CONCLUSION

A rigorous and efficient spectral domain formulation is presented
for the analysis of a subwavelength circular aperture nanosource
illuminating a planar material sample, where the latter may be layered
and uniaxially anisotropic. Our formulation is based on the Bethe-
Bouwkamp quasi-static aperture model and utilizes a transmission line
analogue of the medium, which facilitates the inclusion of multilayered
structures. Sample results are presented showing the intensity
profiles and polarization states of transmitted light penetrating into
a semiconductor layer. The proposed method is well-suited for the
modeling of the observations in scanning near-field optical microscopy
(SNOM) when relatively flat samples are evaluated, as well as in
the studies of metamaterial and metallodielectric multilayeres for
superlensing and superguiding applications at optical frequencies.

APPENDIX A. THE METHOD OF GROBER ET AL. [10]

Our approach is based on the field equivalence theorem, which allows
the fields in a region of space to be uniquely determined from the
tangential field components Et on the boundary surface of the region.
However, according to one variant of the vector Huygens principle,
the knowledge of the normal field components (En,Hn) on a closed
surface is also sufficient to determine the fields within [29]. This was
the basis of the Grober et al. [10] formulation, who used the knowledge
of (Ez,Hz) in the z = 0 plane to derive the electromagnetic field in the
z > 0 half-space. Grober et al. employed the Bouwkamp [2] quasi
static field expressions given in Table 1 as the point of departure.
Pursuing this approach, we note upon inspection of Fig. 4 that the
spectral source of the TE partial field is V h

g (kρ) ≡ V h(kρ, 0+). Hence,
in view of (7), V h

g (kρ) may be obtained from Hz by the Fourier-Bessel
transform (3) in the z = 0 plane. Using the Hz expression of Table 1,
we find that the resulting V h

g (kρ) is given by (18) obtained earlier.
Turning attention to the source of the TM partial field, we note that in
view of (6), Ie(kρ, 0+) may be obtained as the Fourier-Bessel transform
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of Ez in the z = 0 plane. However, the Ez expression of Table 1 is only
correct in the vicinity of the aperture, and thus leads to a solution,
which is subject to the same restriction. To remedy this, Grober et al.
proposed to modify the Ez expression of Table 1 as

Ez = −4jka

3π
e−jkaξ

(
1

ξ
√

ξ2 − 1
+

jka

ξ

)
cosϕ. (A1)

(They also included a factor ejka, which we omit here, as we have not
found this to have any noticeable beneficial effect.) Upon applying the
Fourier-Bessel transform (3) to (A1), we find

Ie(kρ, 0+) =
4k2a3

3πη

∫ ∞

1
dξJ1(kρaξ) e−jkaξ

(
1√

ξ2 − 1
+ jka

)
, (A2)

which is not amenable to exact analytical integration. To overcome
this impasse, Grober et al. resorted to some judicious ad hoc
approximations in the kρ < k (far zone) and kρ > k (near zone) ranges,
which lead to

Ie(kρ, 0+) ≈ 4k2a3

3πη

{
kρ

jkz
if kρ < k,

kρ

jkz
− 1 + j0(kρa) if kρ > k,

(A3)

where kz is given in (21). This result should be compared with the
exact expression

Ie(kρ, 0+) = Y eV e
g (kρ) =

4k2a3

3πη

kρ

jkz
j0(kρa), (A4)

which follows from (23), (31) and (17). It is clear that the two
formulas asymptotically agree in the small- and large-kρ ranges. This
is confirmed by the results presented in Fig. A1, where (A3) and (A4)
are plotted for an aperture with a diameter of λ/10, also investigated
by Grober et al. [10]. As could be expected, some discrepancy is
observed in the intermediate spectral range. However, the impact of
this relatively small error in the spectral domain on the accuracy of
the resulting space domain field expressions is difficult to quantize a
priori.

APPENDIX B. TRANSMISSION LINE GREEN
FUNCTIONS

The transmission line (TL) Green functions V α
v (kρ; z|z′) and

Iα
v (kρ; z|z′) are the voltage and current, respectively, at z due to a

unit-strength voltage source at z′. Since in our case z′ = 0, we can
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Figure A1. Magnitude of Ie(kρ, 0+) for 2a = λ/10.

find these Green functions by letting V α
g = 1 in the transmission line

analogue of Fig. 4. For notational simplicity, henceforth we omit the
superscripts α and do not explicitly indicate the dependence of the TL
Green functions on kρ and z′. If the observation point z is on the nth
TL section, the corresponding voltage and current will be denoted by
Vn(z) and In(z), respectively, and the voltage at the junction point zn

will be denoted by Vn. It can readily be shown that [30]

Vn(z)
ZnIn(z)

}
=

Vn e−jkzn(z−zn)

1 + Γn e−j2θn

[
1± Γn e−j2kzn(zn+1−z)

]
, (B1)

where θn = kzndn, kzn is the propagation constant of layer n, defined
in (14), and dn = zn+1 − zn is its thickness. In the above, the upper
and lower signs in the right-hand expression correspond to the upper
and lower expressions on the left, Zn is the characteristic impedance
of the nth TL section, defined in (14), and Γn is the voltage reflection
coefficient looking out of the right terminal of section n. If there are
N TL sections, the last section is reflectionless, hence we set ΓN = 0.
The other reflection coefficients may then be computed recursively as

Γn−1 =
Rn−1 + Γn e−j2θn

1 + Rn−1Γn e−j2θn
, n = N, N − 1, . . . , 2, (B2)

where Rn is the Fresnel reflection coefficient at the nth interface, given
as

Rn =
Zn+1 − Zn

Zn+1 + Zn
. (B3)

The terminal voltages Vn in (B1) can be found by the recursion

Vn+1 = VnTn, n = 1, . . . , N − 1, (B4)
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where V1 = 1 and Tn is the right-looking voltage transmission
coefficient across the nth TL section, given as

Tn =
Vn+1

Vn
=

(1 + Γn) e−jθn

1 + Γne−j2θn
. (B5)

If it is desired to omit the effect of the infinite screen in Fig. 1 on
the scattered field, which may be the case in some SNOM applications,
the short-circuit in the TL analogue of Fig. 4 should be replaced by
a matched load impedance Z1. This change can be implemented by
setting

V1 = 1 + Γ1e
−j2θ1 . (B6)
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