
Progress In Electromagnetics Research C, Vol. 21, 13–31, 2011

JOINT ANGLE-DELAY ESTIMATION BASED ON
SMOOTHED MAXIMUM-LIKELIHOOD ALGORITHM

L. Zhang and Y. Zhu

Communication and Security Lab
Shenzhen Graduate School
Peking University, Shenzhen, China

Abstract—In this paper, a novel maximum likelihood algorithm
for joint angle and delay estimation is developed to identify the
specular components of channel fading for uniform linear array based
on the physical propagation channel model. Frequency domain pre-
smoothing is applied to the structured frequency transfer matrix before
the estimation procedure in order to utilize substantial observations.
Iterative Gauss-Newton method is used to solve the multidimensional
optimization problem, and a new compact matrix form is presented.
Further simplification of the iteration is derived based on the
assumption of independent channel parameters. Both simulations
and measurement results are investigated for performance analysis.
The simulations reveal that the proposed algorithm leads to higher
performance with appropriate complexity. Also, a comparison with
other algorithms is carried out to validate the accuracy of algorithm
by using the power delay profile measured in a real environment, and
the results show the proposed algorithm performs well.

1. INTRODUCTION

In mobile communications, source positioning is of interest for
emergency service, military navigation and handover schemes in a
cellular or the Global Position System (GPS). The accuracy of
positioning relies highly on the performance of employed estimation
algorithms which involve joint estimation of directions of departure
(DOD), directions of arrival (DOA), time/time-difference of arrival
(TOA/TDOA) or other physical channel parameters [1–3]. Thus,
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developing a robust estimation algorithm with high performance is
a key issue for source positioning and other radar array applications.

In radio propagation channel, it is common to classify the signals
reaching the receiver by specular or diffuse scattering components [4, 5].
The specular components, e.g., line of sight (LOS) and mirror
reflection, are often believed to carry most of the path power. They
are often modeled by a relatively small number of deterministic
paths with small angular spread and delay spread. Diffuse scattering
component is usually regarded as noise and neglected in the outdoor
scenarios. However, the contribution of all diffuse components together
is significant due to the comparative large amount within limited
area, e.g., indoor or industry scenario. In this paper, the proposed
joint estimation algorithm is designed to solve the dominant specular
components of multipath channel for outdoor scenario. Diffuse
component estimation, such as [4], is out of the scope of the paper.

In literatures, various high-resolution multidimensional parameter
estimation methods have been proposed. ESPRIT introduced in [7] is
an attractive estimation algorithm exploiting the rotational invariance
of the signal subspace. The algorithm is extended to two-dimensional
(2D) case in [8] for joint angle-delay estimation (JADE-ESPRIT).
The so called multi-invariance MUSIC (MI-MUSIC) [10] reduces the
2D angle-delay estimation problem to one-dimensional (1D) search
process with the exploitation of array invariance as ESPRIT. Maximum
likelihood (ML) algorithms have been proposed for estimation of
DOA [11]. Based on the knowledge of statistical properties of the
transmitted signal, stochastic ML and deterministic ML algorithms,
are presented leading to two distinct solutions with the stochastic one
providing more accurate estimations for certain bad scenarios, like
low signal to noise ratio (SNR) or high correlated channels. Several
ML algorithms are extended to multidimensional channel parameter
estimation. SAGE [12] allows the complex multidimensional ML based
optimization problem reduced to 1D optimization process which can be
performed sequentially. In [4], a more complicated ML scheme called
RIMAX, has been proposed to estimate not only specular component
parameters, e.g., DOA or TOA, but also diffuse component parameters.

In practice, channel sounding is needed to exploit the measured
data for physical channel parameter estimation. A switched antenna
sounder which contains only one physical transmit and one receive
channel is used to implement multiantenna system sounding [14]. With
respect to each antenna element, sequential sounding over a number
of frequency subchannels, e.g., 385 over 120 MHz bandwidth in [15],
is adopted to achieve high time-delay resolution since vector network
analyzer can be applied. However, long measurement time interval
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is needed to sample each frequency subchannel. With the limitation
of channel coherent time, only a few temporal observations can be
measured to keep channel statistic stationary [15, 16]. Thus, there
are not enough observations to support multidimensional parameter
estimation because of the rank deficiency problem. In this paper,
a frequency domain smoothing technique which preserves original
structure of frequency transfer function is employed to restore matrix
rank by increasing number of observations. Similar smoothing scheme
has been introduced in time and spatial domain for ESPRIT based
joint angle and frequency estimation in [6].

In this paper, based on physical channel model an iterative ML
method to estimate both TOA and DOA jointly has been proposed for
uniform linear array (ULA) at receive side. Frequency smoothing is
employed to the structured frequency transfer matrix as a preprocess
to increasing the observation size and restore rank of data matrix.
Based on the DOA estimation method [11], a similar Gauss-Newton
method with a compact matrix form is extended to the 2D optimization
problem. Asymptotic Hessian matrix with block diagonal structure is
used to reduce the complexity further at the cost of slight performance
degradation. The proposed approach is able to avoid the difficulty
of optimizing very high dimensional function due to pre-smoothing.
Simulations are conducted to compare the root mean-square error
(RMSE) of the smoothed ML estimates with several high resolution
algorithms. Power delay profile (PDP) of measured data and PDP
estimated using aforementioned algorithms are also involved to validate
superior performance of the proposed algorithm in real applications.

The remainder of this paper is organized as follows. In Section 2,
the system model is introduced. In Section 3, the algorithm for
parameter estimation is developed. In Section 4, both simulation
analysis and measured results are presented to verify the performance
of proposed algorithm. Throughout the paper, the notations [·]T and
[·]H denote the transpose and Hermitian transpose, respectively. ⊗,
¯ and ¦ denote the Kronecker, Hadamard and Khatri-Rao product,
respectively. | · |, tr{·} and E{·} denote the matrix determinant, trace
and expectation, respectively. Iq denotes the identity matrix of size q.
1p×q and 0p×q denote the p × q matrix with all entries being unities
and zeros, respectively. [·]p,q denotes the (p, q)th entry of a matrix and
[·]q denotes qth column (entry) of a matrix (vector).

2. SYSTEM MODEL

In the paper, a wireless system with a symbol sequence {x(t)}
transmitted over a flat fading channel is considered. The receive signal
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is measured using an antenna array with M isotropic elements. The
noise free received signal at mth receive antenna has the form

ym(t) =
L∑

l=1

hm(t, τl)x(t− τl) (1)

where L denotes the number of propagation paths, and τl is the excess
TOA of lth specular path with first arrival delay τ1 being zero. Since
ULA is only used at receive side, DOD estimation isn’t considered. The
corresponding narrowband channel impulse response (CIR) referred
to [1, 3, 5] is expressed by superposition of the L multipaths

hm(t, τ) =
L∑

l=1

γ̃le
−j[2π(m−1)∆d sin(θl(t))+Φl]δ(t− τl(t)) (2)

where γ̃l denotes complex magnitude of lth path and Φl denotes
a uniform distributed random phase term. The relative phase
difference between mth element and the reference element is φ =
−2π(m− 1)∆d sin(θl(t)), where ∆d denotes antenna element spacing
of ULA in wavelength at receiver side and θl is the incidence
azimuth of the lth path. In a real world MIMO sounding system,
channel frequency response (CFR) is more reasonable for physical
parameter estimation than CIR because the received data is measured
in frequency domain [13, 16]. The equivalent CFR of (2) is

hm(t, f) =
L∑

l=1

γ̃le
−j2πfτl(t)e−j[2π(m−1)∆d sin(θl(t))+Φl] (3)

The radio channel is measured in the frequency domain with a
broadband-signal of N equally spaced subchannels around the carrier
frequency. Given the channel bandwidth B and the number of
subchannels N , the frequency domain element spacing on frequency
bandwidth is calculated as ∆f = B/N . Assume K discrete time
observations of (3) have been sampled within the duration of channel
coherent time which keeps the channel statistical stationary. The
discrete CFR for mth receiver antenna element of the nth frequency
subcarrier at kth time instance is expressed as

hm(k, n) =
L∑

l=1

γ̃le
−j2π(n−1)∆f τle−j[2π(m−1)∆d sin(θl)+Φl] (4)

The time dependency of the channel parameters has been omitted
in (4) since the assumption of stationary channel statistic. The desired
physical parameters which should be estimated are β = [θT τT ]T ∈
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C2L×1, where θ = [θ1, θ2, . . . , θL]T and τ = [τ1, τ2, . . . , τL]T denote
multipath DOA and TOA, respectively. It is natural to stack the
above channel response samples into a NM elements vector from

h̃k =[h1(k, 1), . . . , h1(k,N), h2(k, 1), . . . , hM (k, 1), . . . , hM (k, N)]T (5)

After dropping the time index k in h̃k for notation simplicity, the
stacked CFR vector is represented in matrix form

h̃ = Ãγ̃ + n (6)

where n ∈ CNM×1 is referred to as a zero mean Gaussian noise vector
and γ̃ = [γ̃1e

−jΦ1 . . . γ̃Le−jΦL ]T denotes the channel complex gain
vector. The structured transfer matrix of the radio channel is

Ã = A(θ) ¦ Ã(τ) = [a(θ1)⊗ ã(τ1) . . . a(θL)⊗ ã(τL)] ∈ CNM×L (7)

Each column of Ã involves contribution from an indepen-
dent path l with specific DOA θl and TOA τl. a(θl) =
[1 e−j2π∆d sin(θl) e−j2π(M−1)∆d sin(θl)]T is the DOA based spatial do-
main steering vector of lth path. Since it is assumed a flat fading
channel, the TOA based frequency domain manifold vector ã(τl) =
[1 e−j2π∆f τl . . . e−j2π(N−1)∆f τl ]T also preserves a Vandermonde struc-
ture as a(θl) of ULA. Similar channel model can be found in [4, 5] which
are developed for MIMO radio channel estimation. Our model can be
regarded as a simplified version with reduced apertures in the spatial
domain at the transmit side.

3. JOINT ANGLE AND DELAY ESTIMATION

In this section, a data stacking process, referred to as frequency
smoothing, to the stacked CFR vector (6) is presented before the
ML algorithm is introduced in order to restore the column rank of
channel transfer matrix by increasing observations. Then, the joint
parameter estimation method is developed under the assumption of
small independent observation size.

3.1. Frequency Pre-smoothing

In real channel sounding system, channel sounder has to measure
channel statistics at a high speed within the channel coherent time
to guarantee the time invariant channel character. Because of
large number of subchannels and antenna elements, each subchannel
hm(k, n) can obtain only a few observations within coherent time,
e.g., in one measurement campaign [16] of RUSK channel sounder
family [17] with 80 MHz bandwidth, each of 944 subchannels takes
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12.8µs for measurement which suggests the time interval between
adjacent observation of the same subchannel is at least 0.012 s. As
the snapshot rate taking 75Hz, there is only one observation measured
for each subchannel. Thus, if the number of independent observations
is small or strong diffuse components exist, estimation performance
degrades significantly. A way to improve the performance is to
decompose independent observations into overlapped observations by
smoothing.

Since frequency subchannels N is often much larger than antenna
elements M for channel transfer matrix Ã in practice, smoothing
procedure in frequency domain is considered with two fold benefits.
First, observation number of h̃ is increased to guarantee feasibility of
the optimization problem. Secondly, row of transfer matrix Ã(τ) is
reduced from N to P which decreases computational complexity of a
high matrix decomposition. Without loss of generality, case for K = 1
is used to describe our algorithm, and case for K > 1 can be extended
straightforwardly. Let the ith selection matrix Ji ∈ CPM×NM be

Ji = IM ⊗ [0P×(i−1) IP 0P×(N−P−i+1)] i = 1, . . . , N − P + 1 (8)

By selecting part of the data vector h̃ that corresponds to the ith
overlapped observation hi = Jih̃, the reconstructed channel matrix is

H = [h1 h2 . . . hN−P+1] ∈ CPM×(N−P+1) (9)

With reduction of frequency bandwidth from N∆f to P∆f , the
number of observations is effectively increased by a factor of N−P +1.
The smoothed channel model referred to (6) is expressed as

H = AΓ + N (10)

where each column of N ∈ CPM×(N−P+1) is a Gaussian white
noise vector which is shuffled in the same way as hi with entries
being zero-mean and variance σ2. Based on the unconditional model
assumption (UMA) of [11], complex gain Γ is also assumed a zero-
mean Gaussian random process which indicates E{hi} = 0PM×1.
The new transfer matrix is defined as A = J1Ã ∈ CPM×L whose
column corresponds to the new TOA-based frequency manifold vector
a(τl) = [1 e−j2π∆f τl . . . e−j2π(P−1)∆f τl ]T ∈ CP×1. For simplicity, let
al(θ, τ) = a(θl)⊗ a(τl), and channel transfer matrix (7) is rewritten as

A = A(θ) ¦A(τ) = [a1(θ, τ) . . . aL(θ, τ)] ∈ CPM×L (11)

Compared with the unsmoothed transfer matrix (7), the only difference
is the reduction of frequency bandwidth from N∆f to P∆f which
renders the multipath resolution.
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3.2. Maximum Likelihood Estimation

Since no LOS component is considered in the paper, the Rayleigh
fading is reasonable for the stacked channel frequency response matrix
H in (10) with the covariance matrix of hi ∼ N (0PM×1,RH) expressed
as

RH = E{hihH
i } = ARΓAH + σ2IPM (12)

where both covariance matrix of complex gain RΓ = 1
N−P+1E{ΓΓH}

and the noise variance σ2 are unknown. The joint probability density
function (pdf) of H for N −P +1 overlapped observations is expressed
by the product of pdf p(hi)

p(H) =
N−P+1∏

i=1

p(hi) =
1

|πRH |N−P+1
e−tr{HHR−1

H H} (13)

After dropping the constants term and dividing through by N −P +1,
the negative log-likelihood function of (13) is reduced to

L0(θ, τ,RΓ, σ2) = ln |RH |+ tr
{
R−1

H R̂H

}
(14)

where R̂H is the sample covariance matrix defined as R̂H =
1

N−P+1HHH . Based on the derivation of [9], ML estimator of σ2 and
RΓ with parameter θ and τ are calculated by minimizing (14)

σ̂2(θ, τ) =
1

PM − L
tr

{(
IPM −AA†

)
R̂H

}

=
1

PM − L
tr

{
P⊥

AR̂H

}

R̂Γ(θ, τ) = A†
(
R̂H − σ̂2IPM

)
A†H

(15)

where A† = (AHA)−1AH and P⊥
A = I − AA† are pseudo-inverse

matrix and orthogonal projection matrix of A, respectively. If RΓ is
strictly positive definite, since the ML estimates are consistent, R̂Γ

tends to RΓ as observations increase to infinite. Thus, R̂Γ must be
positive definite for a valid ML estimator. Then, substituting R̂Γ and
σ̂2 back into (14) and after some manipulation, the desired parameters
β are estimated by minimizing the objective function (16)

β = arg min
θ,τ

{
ln

∣∣∣A(θ, τ)R̂Γ(θ, τ)AH(θ, τ) + σ̂2(θ, τ)IPM

∣∣∣
}

(16)
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The parameters (θ, τ) are suppressed for simplicity of notation. Then
using |I + AB| = |I + BA| and (15), (16) can be rewritten as

L = ln{σ̂2PM |σ̂−2R̂ΓAHA + IL|}
= ln{σ̂2PM |σ̂−2A†(R̂H − σ̂2IPM )A + IL|}
= ln{σ̂2(PM−L)|A†R̂HA|} (17)

It is hard to derive a closed form solution for the nonlinear
Equation (17). Thus, Gauss-Newton method is utilized to solve the
optimization problem. Since computation of exact Hessian matrix for
the ML criterion is cumbersome, an alternative way to overcome the
difficulties is to use a less complex approximation of Hessian matrix
W which is also guaranteed a positive semidefinite matrix. At the jth
iteration

βj+1 = βj − µjW−1
j gj . (18)

where µ ∈ (0, 1) denotes the preassigned iteration step, and the 2L× 1
gradient vector is g = ∂L

∂β
= ( ∂L

∂θ1
. . . ∂L

∂θL

∂L
∂τ1

. . . ∂L
∂τL

)T which will be
0 when it converges to a stationary point. The entries of the gradient
vector g with respect to θl and τl derived in Appendix A are

∂L
∂θl

= 2Re
{
tr

[(
(AHR̂HA)−1 − (AHA)−1

σ̂2

)
AHR̂HP⊥

A

∂A
∂θl

]}
(19)

∂L
∂τl

= 2Re
{
tr

[(
(AHR̂HA)−1 − (AHA)−1

σ̂2

)
AHR̂HP⊥

A

∂A
∂τl

]}
(20)

where Re{·} denotes the real part of a complex number. The lth
column of partial derivative matrix of A with respect to θl and τl are

[
∂A
∂θl

]

l

=
∂al(θ, τ)

∂θl
= d(θl) and

[
∂A
∂τl

]

l

=
∂al(θ, τ)

∂τl
= d(τl) (21)

respectively, and the remaining columns are zeros. Then, an
intermediate matrix Ω = (AHR̂HA)−1 − σ̂−2(AHA)−1 is employed
for brevity. After some manipulation, (19) and (20) are rewritten as

∂L
∂θl

= 2Re
{[

ΩAHR̂HP⊥
Ad(θl)

]
l

}
(22)

∂L
∂τl

= 2Re
{[

ΩAHR̂HP⊥
Ad(τl)

]
l

}
(23)

With two new stacked derivative matrix Dθ = [d(θ1)d(θ2) . . . d(θL)]
and Dτ = [d(τ1)d(τ2) . . . d(τL)] defined, the gradient vector with
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respect to θ and τ are reduced to

gθ = 2Re
{

diag
(
(ΩAHR̂HP⊥

A)Dθ

)}
(24)

gτ = 2Re
{

diag
(
(ΩAHR̂HP⊥

A)Dτ

)}
(25)

where diag(·) denotes a vector consisting of the diagonal element of
matrix. Finally, let D = [DθDτ ] and the gradient vector g = [gT

θ gT
τ ]T

in compact matrix form is expressed as

g = 2Re
{

diag
[(

12×1 ⊗ (ΩAHR̂HP⊥
A)

)
D

]}
(26)

In a rough analogy, the asymptotic Hessian matrix of L is

W = 2σ̂2Re
{[

12×2 ⊗ (ΩAHR̂HAΩ)T
]
¯ (DHP⊥

AD)
}

(27)

The derivation of (27) is included in Appendix B. The iteration is
continued until a convergence criterion, such as ||βj+1 − βj ||2 < ε, is
satisfied [18], where ε is an arbitrarily small constant.

In order to implement the iteration, a matrix of second derivatives
has to be computed and a 2L × 2L matrix is inverted. A simpler
approximation which can converge in an adequate rate is found in our
work. Since DOA and TOA are assumed two independent parameter
vectors, it is reasonable to assume the cross correlation between the
two vectors are zeros which is used to simplify (27) to a block diagonal
matrix. Then DOA and TOA can be estimated separately{

θj+1 = θj − µjW−1
θ gθ

τj+1 = τj − µjW−1
τ gτ

(28)

where Wθ and Wτ as expressed in (B1) are the L×L block submatrix
of W associated with θ and τ , respectively.

3.3. Multi-invariance MUSIC

For comparison with the proposed algorithm, MI-MUSIC referred
to [10] is introduced in this subsection. First, eigenvalue decomposition
is adopted for RH in (12), and let Es and En be referred to as
signal space eigenvector and noise space eigenvector matrixes of RH,
respectively. Then, the MI-MUSIC spatial spectrum function is

fmusic(τl, θl) =
1

(a(θl)⊗ a(τl))
H EnEH

n (a(θl)⊗ a(τl))
After manipulations as presented in [10], the 2D angle-delay estimation
problem reduces to 1D search process which means DOA and TOA can
be estimated serially. The score function to estimate the lth angle is

θ̂l = arg min
θl

aH(τl)
{

(a(θl)⊗ IN )H Π⊥s (a(θl)⊗ IN )
}

a(τl)
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where Π⊥s = I − Es(EH
s Es)−1EH

s denotes the orthogonal projection
matrix of Es. Similarly, the score function to estimate the lth delay is

τ̂l = arg min
τl

aH(θl)
{

(IM ⊗ a(τl))
H Π⊥s (IM ⊗ a(τl))

}
a(θl)

3.4. Cramer-Rao Bounds

The theoretical Cramer-Rao bounds (CRB) for stochastic signal model
is also employed for performance comparison. Since a zero-mean
complex Gaussian random process with covariance matrix RH has
been assumed for H in (10), based on the corresponding derivation
of [18, 8.4.1] with (12), the submatrix of CRB with respect to ω ∈ {θ, τ}
is

CCR(ω) =
σ2

2K

{
Re

[(
RΓAHR−1

H ARΓ

)¯
(
DH

ω P⊥
ADω

)T
]}−1

(29)

which was first used as the lowest bound for angle ML estimator in [11].
In the paper, bounds associated with both angle and delay are taken
into account.

4. SIMULATION AND EXPERIMENTAL RESULTS

In order to examine the performance of the proposed ML estimation
algorithm, several simulations are conducted for different scenarios.
Measurement based power delay spectrum analysis are also involved
to evaluate the algorithm’s performance.

4.1. Simulation Analysis

For all simulations, stationary channel statistics during the transmis-
sion and independent fading from one to another observation are as-
sumed. A four-element ULA is considered with separation ∆d = 1/2.
The carrier frequency is 5.2 GHz with channel bandwidth B = 20MHz
corresponding to N = 80 frequency subchannels which satisfies the
constraint of stationary channel statistics. Two far field and equipower
specular path signals are impinging on the antenna array. DOA and
TOA are defined as θ = {−20◦, 12.5◦} and τ = {0.27µs, 0.45 µs}, re-
spectively. Pre-smoothing is performed only in frequency domain for
TOA refinement. Extension for DOA estimation is straightforward.
RMSE is investigated versus the number of independent observations
K, SNR and the number of subchannels P . All simulation results
are based on 2000 Monte Carlo runs. The behaviors are summarized
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in Figures 1–4. The proposed smoothed ML (S-ML) algorithm is la-
beled with a ¤ marker, the conventional ML (C-ML) method [11] ex-
tended to 2D case without smoothing is labeled M, ESPRIT involving
smoothing technique as [6] (S-ESPRIT) is labeled with a + marker,
MI-MUSIC [10] is labeled with ∗, and CRB is considered as perfor-
mance reference.

4.1.1. Different Observation Number

In Figure 1, the RMSE of S-ML is compared with that of S-ESPRIT,
C-ML and MI-MUSIC as a function of independent observation size
K for SNR = 5 dB. For TOA estimation, S-ML always outperforms S-
ESPRIT and C-ML, while MI-MUSIC shows comparable performance
except for small K region. For DOA estimation, MI-MUSIC degrades
rapidly as K decreasing, while S-ML and C-ML have the same
performance since no smoothing is used in spatial domain.

In Figure 2, comparison for SNR = 20 dB is shown. Similar
performance behaviors to the SNR = 5dB case can be observed.
Meanwhile, the smaller K is, the better the relative performance is.
In both Figures 1 and 2, S-ML achieves CRB associated with TOA
asymptotically when K is large. Since no smoothing is performed for
DOA estimation, the CRB associated with TOA hasn’t been attained.
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Figure 3. RMSE of DOA and TOA versus SNR, K = 10 and P = 70.

4.1.2. Different SNR

RMSEs of all the algorithms are compared with varying SNR from
0 to 25 dB at fixed observations K = 10 and P = 70 in Figure 3.
Compared with S-ESPRIT and C-ML, S-ML has lower asymptotic
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estimation error for TOA estimation. For the DOA estimation without
pre-smoothing, slight improvement of S-ML can be observed, while the
performance of MI-MUSIC is worse than the other algorithms in low
SNR region. Because small K is assumed, there is still a performance
gap to achieve CRB in despite of high SNR.

4.1.3. Different Smoothing Factor

The effect of frequency domain smoothing on TOA estimation is shown
in Figure 4. The smoothing factor is expressed as the ratio of P
over N . The simulation was designed with a small observation size
K = 10 for SNR = 5 dB and SNR = 20 dB, respectively. RMSE
of C-ML and MI-MUSIC remain constant over the varying P region
because no smoothing is used for both algorithms. For SNR = 20 dB as
shown in the right subfigure, the performance of S-ESPRIT degrades
monotonously as P increases. Meanwhile, S-ML achieves CRB first,
e.g., P = 76, before degradation, and finally attains the performance
of C-ML at P = N . Notably, if P is much smaller than N , S-ESPRIT
may outperform S-ML which implies that appropriate choice of P is
desired to obtain optimal performance of S-ML. Since the subchannel
size P has no impact on DOA estimation errors of all the algorithms,
no corresponding analysis is taken into account in this subsection.
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Figure 4. RMSE of TOA versus frequency subchannels P , K = 10.
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4.2. Measurement Verification

Measured data is free accessible from the RUSK channel sounder [17].
The measurements take place in a suburban environment in
Ilmenau [15]. The receiver is fixed with a 8 elements ULA, and
the transmitter with an isotropic antenna moves at 10 km/h. NLOS
propagation is considered during the measurement. The data including
20 consecutive observations is measured at a carrier frequency of
5.2GHz with 512 frequency subchannels corresponding to bandwidth
B = 120MHz.

Figure 5 depicts measured PDP by averaging over observations
and remainder PDP by taking away the estimated specular components
from measured data as introduced in [16]. TOAs and DOAs of 4
independent specular paths are estimated by C-ML, S-ESPRIT and
S-ML, respectively. Then the estimated CFR are reconstructed by (6)
and remainder PDP are calculated. In Figure 5, + marked curve
denotes the measured PDP, and the other curves denote remainder
PDPs estimated by aforementioned algorithms. The major difference
between measured and remainder PDP comes from low delay region,
e.g., 0.3µs and 0.5µs, where dominant specular components exist.
With specular components discarded, lower remainder PDP which
decays exponentially [2] corresponding to diffuse components indicates
a better estimation performance. At the delay of 0.3µs, S-ML can
get approximately 1 dB improvement than S-ESPRIT. This is a strong
indication that the proposed method can achieve superior performance.
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5. SUMMARY

In this paper, a joint angle and delay ML algorithm is proposed
for specular component parameters estimation based on physical
propagation channel model. The stacked channel frequency response
vectors are rearranged by frequency domain smoothing before the
estimation to increase observation size. The shift-invariance structures
of the 2D channel transfer matrix is preserved after smoothing. Gauss-
Newton method is used to solve the ML optimization problem and a
compact matrix form is derived. Further simplification is developed
to make the iterative convergence faster. Comparisons between the
proposed algorithm and several high resolution algorithms are studied
which indicates that pre-smoothing can improve the performance. S-
ML achieves its optimal performance when the number of frequency
subchannels is appropriately chosen. In real applications with sounded
channel data, its superior ability to handle slight inaccuracies of other
algorithms is also shown by comparing the corresponding PDPs.
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APPENDIX A. DERIVATION OF GRADIENT VECTOR

Let us decompose (17) into two components as

L = (PM − L) ln{σ̂2}︸ ︷︷ ︸
L1

+ ln{|A†R̂HA|}︸ ︷︷ ︸
L2

(A1)

In order to compute the derivatives of (A1) with respect to each
parameter it will involve the following relations [17, Appendix A.3]

∂A†

∂θ
= (AHA)−1 ∂AH

∂θ
P⊥

A −A†∂A
∂θ

A† (A2)

∂P⊥
A

∂θ
= −2Re

{
P⊥

A

∂A
∂θ

A†
}

(A3)

Take derivative of L1 with respect to ith DOA θi as example, and
substitution of (15) and (A3) into (A4) results in

∂L1

∂θi
=

1
σ̂2

tr
{

∂P⊥
A

∂θi
R̂H

}
= − 2

σ̂2
Re

{
tr

[
A†R̂HP⊥

A

∂A
∂θi

]}
(A4)
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Similarly, plug in (A2) and calculate the derivative of L2

∂L2

∂θi
= tr

{
(A†R̂HA)−1 ∂(A†R̂HA)

∂θi

}

= tr
{

(A†R̂HA)−1

[
(AHA)−1 ∂AH

∂θi
P⊥

AR̂HA

−A†∂A
∂θi

A†R̂HA + A†R̂H
∂A
∂θi

]}

= 2Re
{

tr
[
(AHR̂HA)−1AHR̂H

∂A
∂θi

−A†∂A
∂θi

]}

= 2Re
{

tr
[
(AHR̂HA)−1AHR̂H

(
I−AA†

) ∂A
∂θi

]}
(A5)

Combining (A4) and (A5), the ith entry of gradient vector (19) can be
derived, and in a similar way (20) can be obtained.

APPENDIX B. ASYMPTOTIC HESSIAN MATRIX

Based on the definition of asymptotic Hessian matrix:

W = E
{

∂2L
∂β∂βT

}
=

[
Wθ Wθ,τ

Wτ,θ Wτ

]
(B1)

Take the second derivative of L with respect to θ, [Wθ]i,j , as example.
First, differentiate (19) with respect to θj

∂2L
∂θi∂θj

= 2Re

{
tr

[
∂(ΩAHR̂HP⊥

A)
∂θj

∂A
∂θi

+ ΩAHR̂HP⊥
A

∂

∂θj

(
∂A
∂θi

)]}

= 2Re

{
tr

[(
∂Ω
∂θj

AHR̂HP⊥
A + Ω

∂(AHR̂HP⊥
A)

∂θj

)
∂A
∂θi

+ΩAHR̂HP⊥
A

∂2A
∂θi∂θj

]}

Since RH(I−AA†) spans the null subspace of AH [19], AHRHP⊥
A = 0

holds. Meanwhile, the fact that E{R̂H} = RH is used, then (i, j)th
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entry of submatrix Wθ can be expressed as

[Wθ]i,j = E
{

∂2L
∂θi∂θj

}

= 2Re
{

tr
[
Ω

(
∂AH

∂θj
R̂HP⊥

A + AHR̂H
∂P⊥

A

∂θj

)
∂A
∂θi

]}

= 2Re
{

tr
[
Ω

(
∂AH

∂θj
R̂HP⊥

A

−AHR̂HA(AHA)−1 ∂AH

∂θj
P⊥

A

)
∂A
∂θi

]}

=
2
σ̂2

Re
{

tr
[
U

∂AH

∂θj
P⊥

A

∂A
∂θi

]}
(B2)

where U denotes an intermediate matrix which is introduced in [11],

U =
(
σ̂2(AHR̂HA)−1 − (AHA)−1

)(
σ̂2I− (AHR̂HA)(AHA)−1

)

= σ̂4ΩAHR̂HAΩ ∈ CL×L (B3)

Therefore, the other submatrices of W are derived in a similar way

[Wτ,θ]i,j = E
{

∂2L
∂θi∂τj

}
=

2
σ̂2

Re
{

tr
[
U

∂AH

∂τj
P⊥
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∂A
∂θi

]}
(B4)

[Wτ ]i,j = E
{

∂2L
∂τi∂τj

}
=

2
σ̂2

Re
{

tr
[
U

∂AH

∂τj
P⊥

A

∂A
∂τi

]}
(B5)

Then, the substitution of (21) into (B2), (B4) and (B5) yields

[Wθ]i,j =
2
σ̂2

Re
{

[U]i,jd(θj)HP⊥
Ad(θi)

}

=
2
σ̂2

Re
{

[U]i,j
[
DH

θ P⊥
ADθ
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j,i

}
(B6)

[Wτ,θ]i,j =
2
σ̂2

Re
{

[U]i,jd(τj)HP⊥
Ad(θi)

}

=
2
σ̂2

Re
{
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[
DH

τ P⊥
ADθ

]
j,i

}
(B7)

[Wτ ]i,j =
2
σ̂2

Re
{

[U]i,jd(τj)HP⊥
Ad(τi)

}

=
2
σ̂2

Re
{
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DH

τ P⊥
ADτ

]
j,i

}
(B8)
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The asymptotic Hessain matrix (B1) is reduced to:

W =
2
σ̂2

Re
{[

UT ¯ (
DH

θ P⊥
ADθ

)
UT ¯ (

DH
τ P⊥

ADθ

)
UT ¯ (

DH
θ P⊥

ADτ

)
UT ¯ (

DH
τ P⊥

ADτ

)
]}

=
2
σ̂2

Re
{(

12×2 ⊗UT
)¯

(
DHP⊥

AD
)}

(B9)

Plug in (B3), and the asymptotic Hessian matrix (27) can be derived.
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