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Abstract—Phased array antennas are a viable solution to a number
of problems related to radio communications applications. In this
work, the multi-objective stochastic MOPSO algorithm is used to
optimize the spatial configuration of a symmetric phased linear array.
The defined optimization goals were the suppression of the radiation
pattern sidelobes at a specified maximum scan angle as well as the
minimization of the induced voltages correlation at the receiver front-
end in order to maximize diversity performance. Non-linear constraints
were enforced on the solution set, related to the multi-antenna system
aperture efficiency and related to the mismatching when the array is
scanned. The obtained optimized configurations for an array composed
of 16 dipoles resulted in reducing the sidelobes up to 2.5dB, when
scanned 60° away from broadside, compared to a linear array with
elements spaced \/2 apart. Furthermore, the optimized dipole arrays
were characterized by a maximum element correlation of 0.12 to 0.43.
The performance of obtained configurations was shown to be tolerant
to feed phase variations that appear in realistic implementations. The
arrays were analyzed employing the Method of Moments (MoM).

1. INTRODUCTION

One of the problems that antenna engineers face is the design of
prototype antennas which can simultaneously meet the radiation
and integration requirements, of the telecommunication system under
development. When multiple radiators are incorporated in the antenna
system to achieve versatile beam forming capabilities and high diversity
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performance, additional constraints rise regarding the implementation
of the feeding network and receiver front-end.

The use of modern optimization techniques has helped substan-
tially in the management of escalated complexity that is inherent in the
design and integration process. Particle Swarm Optimization (PSO)
is a nature inspired algorithm that mimics the behavior patterns of a
swarm of bees in search of food [1]. PSO has been reported to success-
fully obtain optimal parameter values for a number of antenna design
and array synthesis problems, such as phased arrays pattern synthesis,
adaptive tuning of phased array coefficients to minimize interferences,
conformal antenna array amplitude tapering and patch antennas [2-5].
The PSO algorithm was extended to allow the optimization of multi-
ple objectives (MOPSO), without resorting to a weighted aggregation
scheme for the corresponding fitness values [6]. The MOPSO algorithm
has been applied to antenna design problems specifying the fulfillment
of partially contradicting objectives, such as narrow beamwidth versus
highly suppressed sidelobes for the radiation pattern of linear arrays [7],
or return loss and fidelity factor of ultra-wideband monopoles [8].

A number of studies have highlighted the effects of mismatching
during the scanning of a phased array and how it can be alleviated by
placing restrictions on the driving-point impedance of each radiator [9],
or have determined conditions under which mutual coupling can be
used to improve array gain [10]. Another important effect of mutual
coupling is on the diversity performance of arrays; Wallace and Jensen
have developed a rigorous network analysis method for determining the
correlation of closely spaced antennas [11], while Broydé and Clavelier
have proposed a methodology for designing receiver front-ends that
take advantage of coupling to improve diversity performance [12].

In this work we describe a methodology for optimizing the spatial
configuration of a symmetrical linear dipole array with low voltage
correlation among the receiver branches, while at the same time the
radiation pattern sidelobes are suppressed at a specified maximum
scan angle. The array is conjugate matched to the source network
for broadside radiation and constraints are placed on the maximum
mismatch during scanning. The MOPSO algorithm is used to optimize
candidate configurations; the obtained results indicate that there is a
limit to how closely the uniformly excited radiators can be placed to
suppress sidelobes, without resulting to high array correlation values.
To the best of the authors’ knowledge, this is the first study that
combines goals related to the radiation and diversity performance of
arrays, taking also under consideration the receiver front-end.

The paper is organized as follows. Section 2 presents the
formulation used to compute the radiation of a dipole array based on
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the Hallen integral equations, the aperture and matching efficiencies
and the voltages correlation at the receiver front-end. In Section 3,
the optimization goals on sidelobe suppression and correlation
minimization, along with the accompanying constraints are laid out
in detail. In Section 4, the performance of the resulted configurations
is compared to uniform linear arrays with comparable apertures.
Finally, the corresponding patterns’ sidelobes sensitivity to feed phase
variations is determined, and a performance envelop is established.

2. FORMULATION

2.1. Dipole Array

Let us assume that the z-axis oriented dipole radiators constituting an
antenna array are center-fed by voltage generators V; and the respective
currents distributions induced by the generators and the radiators’
mutual interaction are denoted as I;(z), where 7 is the radiator index.
In this case, the Hallen-Pocklington integral equations can be used to
relate the electric fields E, to the vector potentials Vj; [13].

A formulation that allows the numerical solution of the derived
system of integral equations is described by Orfanidis [14]. Specifically,
the discretized Hallen system of equations may be written as

K M
> Y Zij(n,m)Ii(m) = Cycos(kzn) + Visin(k |za]) (1)
j=1lm=—M

where Z;; are impedance values obtained using the approximate
Green’s function kernel for i # j and the exact kernel for i = j with
the latter being dependent on the wire diameter a, C; are constants
determined by enforcing the current to be zero at the dipoles ends,
and z, = mA; is the discretization of each radiator into 2M + 1 wire
segments. For evaluating (1), the symmetrical around z = 0 current
distributions are approximated using triangular basis functions.

The mutual coupling matrix Z¢¢ is comprised of self Z;;;—; and
mutual Z;;;2; impedances, evaluated by reducing the discretized
Hallen system of equations for the element ¢ and for the elements ¢
and j respectively, and solving for unitary excitation at port i.

2.2. Feeding Network and Matching

If the antenna array is viewed as a multi-port microwave network, then
the reflected voltage waves by at the input ports can be computed
from the incident waves ay by means of the by = Siia¢ relation. The
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Figure 1. (a) Source network and antenna array as a microwave
network. (b) Signal flow graph of Thevenin equivalent circuits.

S-parameters can be evaluated from the array impedance matrix Zy,
when a reference system impedance value Zj is specified [15], using

Stt = (Zgt — Z(T))(Ztt +Zo) ! (2)

where Zg is a diagonal matrix with its elements equal to the reference
impedance and the symbol 7 denotes a hermitian matrix.

The source network in Fig. 1 is represented by the I'ss matrix,
which generally is non-diagonal for coupled feeds. Source voltage waves
bs can be related to voltage waves ag using signal flow graphs [16].

a; = I'ssby + bs = (I - Fssstt)ilbs (3)

The derived network formulation is general enough to allow the
description of a corporate feed network, a series feed network or
individual transmitters for a phased array. For the purposes of this
study the latter is assumed and consequently I'ss is a diagonal matrix.

Maximization of the transferred power to the array, regardless
of the applied excitations, requires the implementation of a
hermitian matching network which is complex to realize with
realistic components, as indicated in the study by Weber etal. [17].
Alternatively, the active reflections at the array ports, computed as the
ratio of the incident to the reflected voltage waves, can be conjugately
matched; then the main diagonal values of I'ss equal Pth,i'

The total array input power P;, can be computed as the power
incident to the array ports minus the reflected power. Namely,

P, =ala—blb = al(I — S¢S}, )a¢ (4)
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The available power P,, is the power that would be delivered to the
antenna, if it was hermitian matched to the feeding network. Using (3)
it is shown that

-1
P., = bibs = b} [I - rssrgs] by (5)

A matching factor ¢ can be defined as the ratio of power delivered to
the array to available power from the source network [15], as follows

o Pz . aI(I — SttSL:)at
= )2
aw  pf [I _ rssrls} by

(6)

2.3. Correlation Coefficients of the Voltages

When the dipole array is used for reception, the open circuit voltages
V anto induced from an impinging plane EM wave relate to the voltages
Vant propagated to the receiver front-end

Vant — Zss(ztt + Zss)_lvantO (7)

where Z, is the impedance matrix of the receiver multiport loads.
An important limiting factor to the array diversity performance
is the magnitude of the covariance matrix elements of the induced
voltages (Vgnt Vi) across the receiver-end loads which can be related
to the open circuit voltages covariance matrix (VanioVi,), using
Equation (7), as follows
(Vant Vane) = Ziss(Ztt + Ziss) ™ (VantoVanio) (Zee + Zss) 1 ZL, (8)

ant

If two-dimensional fading Rayleigh channels are assumed, the
covariance of the open circuit voltages (Vgnt0iUanto:) is analogous to the
covariance (|E,|) of the linear polarized and z-directed electric fields
E, for the zenith angle of incidence 6y = 7/2 at the dipoles centers,
analogous to the effective heights H.z and H.g; of the respective
radiators [12], as

<Uant0ivant0i> - <‘Ez‘2> Heﬁ""LH:ﬁ]JO(kdzg) (9)

where Jj is the Bessel function of the first kind and zero order and d;;
is the distance between the radiators. The correlation values r;; can be
computed from the respective covariances (Vant0iUanto;) and the effect
of the receiver can be incorporated into computations using (8), as
ri; = <Uant07,vant0]> (10)
V anioil)? ([tanio; )?
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2.4. Aperture Efficiency

A significant performance criterion of an antenna array is its effective
aperture Ay that depends on the intercepted power from incident
electromagnetic waves arriving from the direction of its maximal gain,

as follows
= s G 11
A = —
eff 4 (11)

The aperture efficiency of an antenna array quantifies the received
power, in respect to the total antenna area, as the ratio of its effective
area A.g to its physical area Appys. Namely,

Acgr
Aphys

(12)

€aperture =

2.5. Particle Swarm Optimization

Particle Swarm Optimization exploits a set of potential solutions to
the optimization problem called the swarm [1]. Each particle in the
swarm represents a candidate solution scored by a fitness function, and
its position in the multi-dimensional problem space is updated,

U1 = Uk + cip1(pr — x) + cap2(pg — k)
U1 = sign(vie1) min(|vks 1], Umax) (13)
Thil = Tk + Ukt

where k denotes the generation number, x; and v; the particle’s
position and velocity, and p;, p2 are random numbers between 0
and 1. The velocity update rule exploits the best position found
by each particle x; and the global best position z, discovered so far
by its neighbors. The individuality c; associates the particle’s own
experience with its current position, while the sociality co defines the
level of interaction between the particles of the same neighborhood.
The velocity clamping v,,q, constrains the particles velocity.

The Multi-Objective PSO algorithm stores a set of non-dominated
solutions in an external archive, ranked using the Pareto optimality
concept [6]. A solution is considered as Pareto optimal, if it minimizes
at least one objective without making any other objective worse,
compared to archived solutions. The algorithm does not implicitly
exclude non-feasible solutions from the archive; it prioritizes archiving
of feasible solutions over the non-feasible ones, taking also under
consideration the respective violation of constraints. In this work,
the speed-constrained SMPSO algorithm is used, that employs an
appropriate constriction coefficient to limit the particles velocity [18].
The exploratory ability of the algorithm is enhanced by allowing each
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Figure 2. Symmetrical non-uniform linear array of A/2 dipoles.

particle to mutate with probability p,, using a polynomial probability
distribution controlled by a positive index parameter 7,, [19].

3. THE OPTIMIZED PHASED ARRAY

The spatial configuration of a symmetrical non-uniform linear phased
array is optimized, constituted by 16 vertical half-wave dipoles with
0.0005\ wire radius. The candidate structures are represented by a
solution vector x, that encodes the relative placement of the array
elements (Fig. 2). During the optimization, the MOPSO algorithm
is allowed to place the dipoles up to a maximum distance of one
wavelength apart. In order to evaluate the radiation pattern and the
mutual coupling of the candidate designs, the dipoles are partitioned
into 15 segments and triangular basis functions are used to approximate
the current distribution resulted by the MoM analysis.

Two fitness functions are defined; fg;geiope €valuates the achieved
reduction in sidelobe level SL and feorrelation €valuates the maximum
correlation factor r;; between radiators. The functions are separately
evaluated over the obtained pattern for the maximum scan angle 6y and
are subject to computed conjugate matching at broadside, respectively,
as

fsidelobe - SL@@

fcorrelation = Inax [Tij]zyéj

(14)

Enforced constraints dictate that the aperture efficiency of the
candidate arrays should exceed the efficiency of a uniform linear array
(ULA) with inter-element spacing of dy = 0.5, the maximum r;; from
the computed correlation matrix should not exceed a value of 0.6 and
finally the overall matching factor ¢(#) should maintain a value of 0.5
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or better over the scan angles range 0° to 6y. Therefore,

Yaperture = €aperture — Caperture,do=X\/2 >0
Gcorrelation = 1Max [riJ]i;éj <0.6 (15)

9matching = min [Q(Q)]ZO:O > 0.5

4. NUMERICAL RESULTS

4.1. Optimized Spatial Array Configurations

The optimization parameters used are those suggested by Nebro et al.
in [18]; individuality ¢; and sociality co were allowed to take values in
the range 1.5 to 2.5, while the archive and swarm population size were
set equal to 50. The mutation probability p,, was chosen as the inverse
of the problem dimensionality and a distribution index value 7,, of 60
was set to enhance the algorithm’s search capabilities. In an effort to
approximate the true Pareto set of the problem, the optimization was
repeated 10 times and results were combined in a single front populated
by 50 solutions (Fig. 3). The algorithm was allowed to evolve for 200
generations and 45 solutions were obtained on average from each run.

Each non-dominated solution represents a different array
configuration and can be interpreted as an optimal design; any other
perturbation of the dipoles position that may result in the same
maximum correlation coefficient value, can not feature lower sidelobes.
Obtained arrays can be grouped into those that feature lower sidelobes
than a uninform A/2 spaced dipole array and those with higher

0,50

Solutions improving 111 sidelobe of

0.45  over A ULA I'A12 ULA (-12.1 dB) Sidelobe level  maxir;}
- = : | A -1457dB 0.2461
= I B -14.22dB 0.1544
€ 040 | C: -13.50dB 0.1331
2 I D -13.03dB 0.1236
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3 ° '
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Figure 3. Pareto set characteristic of the trade-off between array
correlation and sidelobes level, when diagram is steered 60°.
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sidelobes. This is reflected in Fig. 3, where 26 solutions are shown
to improve over the ULA case. This solution subset represents designs
that span a range of maximum correlation values of 0.12 to 0.43 and
maximum sidelobe level of —12.2 to —14.7dB. Four different spatial
configurations were sampled from the prescribed range and one from
the complementary solution space; these are summarized in Table 1.
In Fig. 4, the normalized gain diagram of the candidate array
A is compared to the radiation diagram of a ULA A’ with the same
aperture. The non-uniform array A reduces the peak sidelobe level
by 2.4dB compared to A’, and both arrays have approximately the
same beamwidth, due to the fixed aperture of 6.58\. If the algorithm
was allowed to position more closely the dipoles, further suppression of
sidelobes would be possible, at the expense of diversity performance.
The maximum steerability of a uniform linear phased array with
do elements spacing is 6y = sin~'(\/dy — 1). A ULA E’ with the
same widened aperture of 9.4\ to optimized array F, has a predicted
maximum steerability of 36.6°. Consequently, the equivalent design E’

Table 1. Radiator positioning (in A) of the selected arrays.

| [ i [ d2 | ds | da | ds | de | dr | ds | max{ry} ]
0.225 | 0.618 | 1.011 | 1.433 | 1.822 | 2.346 | 2.939 | 3.201 | 0.2461
0213 | 0.667 | 1.14 | 1.574 | 2.034 | 2.591 | 3.167 | 3.525 | 0.1544
0.239 | 0.695 | 1.173 | 1.644 | 2.179 | 2.545 | 3.126 | 3.63 | 0.1331
0.248 | 0.724 | 1.225 | 1.716 | 2.227 | 2.624 | 3.195 | 3.719 | 0.1236
0248 | 1.242 | 1.755 | 2.232 | 3.164 | 3.692 | 4.208 | 4.701 | 0.1158

#H|OlQ ®| >

Normalized Gain Diagram (dB)
Normalized Gain Diagram (dB)
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Figure 4. Normalized gain Figure 5. Normalized gain
diagram of array configurations A  diagram of array configurations F
and A’. and £’
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is presented as an outlier to solutions enclosed by the Pareto front and
its position in Fig. 3 is determined by the level of its first sidelobe.

The steered at 60° from broadside radiation pattern of the ULA
E’ is shadowed by a grating lobe in contrast to the non-uniform array
FE with a sidelobe suppression of 11.43dB as shown in Fig. 5. Both
arrays feature the same beamwidth since their aperture is equal. It can
be concluded that the obtained non-uniform arrays, having apertures
bigger than the uninform \/2-spaced dipole array case, present similar
radiation characteristics to thinned aperiodic linear arrays [9].

Arrays were optimized at the maximum specified scan angle, in
order to secure that their performance is maintained, while the main
beam is steered at intermediate angles. Additional simulations were
conducted to assess the sidelobes variation during scanning and the
results are presented in Fig. 6. All designs, except from the thinned
array F, outperform a ULA with element spacing of 0.5A. Arrays A
and B exhibit almost equal suppression of sidelobes at broadside and
maximum scan angle, while solutions C' and D have better performance
at broadside. The variations can be attributed to the enforced array
symmetry; nevertheless this is an essential condition if the main beam
of the array should be steered equally well at both directions.

Finally, the performance of the matching sections is evaluated by
the matching factor ¢, while the candidate arrays are scanned away
from broadside, and the results are summarized in Fig. 7.

Overly, the results for the selected solutions confirm that none
of the optimized array configurations violates the condition of 0.5
minimum matching efficiency. It also can be observed that the ULA
exhibits a greater degree of mismatching in large scan angles than the
non-uniform arrays obtained by the optimization runs.

———— Solution A -
Solution B N
777777 Solution C
——.—-- Solution D
——— UA@F2
Solution E

Matching Factor g

Suppression of Sidelobes SSL (dB)
(
/

0 5 10 15 20 25 30 35 40 45 50 55 60 0 5 10 15 20 25 30 35 40 45 50 55 60
Scan Angle from Broadside (deg) Scan Angle from Broadside (deg)

Figure 6. Suppression of side- Figure 7. Overall mismatch of
lobes for the selected configura- the selected array configurations.
tions.
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4.2. Sensitivity Analysis for Phase Variations

Contemporary phased-array systems are designed to use digital phase
shifters that feature a finite granularity, depending on the number of
quantatization bits employed to encode phase information. Additional
phase error is introduced by non-linearities of phase shifters, and by the
use of time-delaying networks (i.e., in corporate feed networks), that
may further impact the array radiation characteristics. In this work,
sensitivity analysis of the obtained solutions is carried out for varying
maximal phase error of 1%,2%,...,5% introduced to the incident at
array ports voltage waves a¢, as an additional design criterion. Monte-
Carlo simulation results of selected low sidelobe solutions, for the 5%
error scenario and 200 samples, are depicted in Fig. 8.

The computed variations in sidelobe level were found to follow
normal distributions, their depicted extent is representative of the 25th
and 75th percentiles, and marked points are the respective median
values. Some candidate array solutions were less susceptible to feed
phase errors than others, rendering them more fit to be used in system
implementations where larger errors are expected.

In the interest of establishing a performance envelop on
candidate solutions, a parametric exponential curve was modeled that
approximates the distribution of the median SL points against the
maximum €. correlation values, for different error scenarios, as

SLmed’ian (’L) =+ be_kECorr(i) (16)

The interpolating parameters «, b and k computed from Monte-
Carlo simulations for the defined phase error margin of 1%5%, along
with Root Mean-Square Error values, are summarized in Table 2.

Suppression of sidelobes (dB) differentation
to 5% change of y phase
N = =
——
——
e —
— —
— —
e ————————

TSIV NIIO OB BFTITIITOOOARS T L A

Maximum correlation ¢ for solutions in front

Figure 8. Sensitivity analysis of solutions for 5% phase error.
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Table 2. Interpolation parameters for different phase error scenarios.

1% 2% 3% 4% 5% Mean
Difference
e —14.507 | —14.007 | —13.479 | —12.958 | —12.365 0.535
b 33.823 35.731 38.413 39.879 41.752 1.982
k 24.027 25.751 27.803 29.361 31.267 1.81

|RMSE| 0432 0.418 0.392 0.393 0.392 - |

Table 3. Predicted vs. computed interpolation parameters from 10%
phase error simulations data.

| o | v | k |RMSE]
predicted | —9.688 | 51.663 | 40.316 0.396
computed | —9.726 | 38.289 | 36.077 0.379
difference | 0.39% | 34.9% | 11.8% 4.6%

It is possible to develop a predictor based on the mean differences
of the fitting curve parameters, as computed from the simulation data,

1 N-1

PO =P+ e~ Doy X G+ 1 =pe) (1D
where index n corresponds to the different error values of the N =
5 consequent runs and p(e) is the expected value for one of the
interpolation parameters «, b or k, for phase error €%. In order to
assess the accuracy of the above formulation, the predicted parameters
are compared to the computed interpolation parameters from a 10%
phase error simulation, and the results are presented in Table 3.

In Fig. 9 are shown the median sidelobe curves computed
for phase errors of 1%5%, the curve predicted for a 10% phase
error scenario and the respective sidelobes median values. The
presented results indicate that the obtained prediction does not deviate
significantly from simulation results, in terms of root mean square
error. This approximation is very useful for outlining a performance
envelop for the candidate linear arrays, subject to the correlation
coefficient constraints already discussed, without needing to resort
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—— 1% phase error

2% phase error
~~~~~~ 3% phase error
———- 4% phase error

— — — 5% phase error

— ——-—  10% error prediction
10% median points

Median Sidelobe Level (dB)
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Maximum array correlation

Figure 9. Median SL curves computed for phase errors of 1%—5%,
prediction curve for 10% phase error and respective SL median values.

to computationally intensive Monte-Carlo simulations. Performance
envelopes established herein indicate that the optimized arrays
radiation characteristics are tolerant to feed phase variations expected
in realistic implementations (< £5%).

5. CONCLUSIONS

The paper has presented a novel methodology for optimizing the
spatial configuration of linear phased arrays, in terms of minimizing
the voltage correlation at the receiver front-end and the sidelobe
level when the main beam is steered to a maximum specified scan
angle. Restrictions were enforced on one hand on the maximum
allowed mismatch during array scanning in order to minimize the power
reflected back to the source network, and on the other hand on the
aperture efficiency to retain comparable gain to uniform linear arrays
with comparable apertures. To the best of the authors’ knowledge, this
is the first study that combines optimization goals related to radiation
pattern synthesis and diversity performance of an antenna array.
After optimizing a A/2 dipole symmetric linear array and assuming
a two-dimensional Rayleigh channels electromagnetic environment,
the obtained results indicate that there is a trade-off between the
distance among radiators and the desired correlation values. The
radiation characteristics of the optimized array configurations were
shown to be tolerant to feed phase variations that appear in realistic
implementations.
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