
Progress In Electromagnetics Research Letters, Vol. 22, 83–93, 2011

ANALYSIS OF DISPERSION RELATION OF PIECEWISE
LINEAR RECURSIVE CONVOLUTION FDTD METHOD
FOR SPACE-VARYING PLASMA

X. Ai

Science and Technology on Antenna and Microwave Laboratory
Xidian University, Xi’an, Shaanxi 710071, China

Y.-P. Han and C.-Y. Li

School of Science
Xidian University, Xi’an, Shaanxi 710071, China

X.-W. Shi

Science and Technology on Antenna and Microwave Laboratory
Xidian University, Xi’an, Shaanxi 710071, China

Abstract—The dispersion relation of piecewise linear recursive
convolution finite difference time domain (PLRC-FDTD) method for
space-varying plasma is analyzed using a novel equivalent method.
The equivalent dispersion and dissipation errors have been taken into
account. The efficiency of the novel equivalent method is substantiated
by computing the test and reference transmitted electric field. The
comparison of the test and reference solutions validates that the
equivalent method is an efficient method to analyze the dispersion
relation of PLRC-FDTD method used for space-varying plasma.

1. INTRODUCTION

Over the past few years, a number of finite difference time-domain
(FDTD) [1–15] methods have been used to model electromagnetic wave
interaction with unmagnetized and magnetized cold plasma. These
methods include the recursive convolution (RC) method [2], which
becomes piecewise linear recursive convolution(PLRC) method [3] for
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more precision, the auxiliary differential equation (ADE) methods [4],
and current density recursive convolution (JEC) method [5]. These are
mainly used to model the uniform plasma, but also used to simulate
the nonuniform plasma [6, 7]. Due to the accuracy and stability [8, 9],
the PLRC-FDTD method is more suitable than the other methods for
simulating the unmagnetized plasma.

Actually, in many cases, the permittivity of cold plasma is not
a constant at different spatial locations, such as the reentry bodies
coated with plasma sheath and the nonuniform plasma be used for
improving the properties of antenna [10]. Therefore, analyzing the
numerical dispersion caused by the permittivity varies with space is of
significant value. Although the stability and accuracy of the PLRC-
FDTD method for uniform plasma were demonstrated in [9], the
numerical dispersion for nonuniform plasma which defined as space-
varying plasma in [6] has not been considered.

To analyze the accuracy of PLRC-FDTD method for space-
varying plasma, in this paper, we introduce a equivalent method to
analyze the dispersion relation of PLRC-FDTD method at a fixed
angular frequency for all different cells in Yee space. The equivalent
dispersion relation has been separated into two parts: the dispersion
and dissipation errors, which control the phase and the amplitude
errors, respectively. The efficiency of the novel method is confirmed by
comparing the test and reference solution to transmitted electric field
in one-dimensional case.

2. METHODOLOGY

Assuming the propagation direction is in z-axis, in one-dimensional
case, the general form of PLRC-FDTD update equation scheme is given
by [3]. Generally, the plasma frequency ωp can be the expression as
follow:

ω2
p =

nee
2

meε0
(1)

where e and me are the electric quantity and mass of a unity electron
respectively, ne is the electron density.

However, in many cases, the electron density of plasma is not only
a constant, but also varies with spatial locations, which can be defined
as:

ne(~r) = n0f(~r) (2)

where n0 is the saturation electron density at the location ~r = r0, ~r is
the location vector and f(~r) is the electron density profile.
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Obviously, for space-varying plasma, the plasma frequency ωp is
a function of location, which can be defined as ωp(~r)

ω2
p(~r) =

ne(~r)e2

meε0
(3)

where ne(~r) is the same as (2), e and me are the same as (1).
It should be pointed out that the PLRC-FDTD scheme for uniform

plasma taking the constant ωp into account, but for space-varying
plasma taking the variable ωp(~r) into account, which is the only
difference between the two applications of PLRC-FDTD scheme.

However, the space-varying plasma should be considered as a
multilayered medium. Therefore, the properties of PLRC-FDTD
scheme for space-varying plasma could be analyzed via a equivalent
method. As accuracy is a key characteristic of FDTD method, a
useful way to determine the accuracy of FDTD method is to analyze
the dispersion relation. The dispersion relation satisfied by the
finite-difference approximations is found by assuming ej(ωn∆t−knumm∆z)

variation for the field quantities. n and m are the time step and spatial
cell point, respectively, and the propagation direction is in z-axis. Then
the dispersion relation for PLRC-FDTD method in one-dimensional
case is given in [9], and for space-varying plasma, it can be rewritten
as follows:
(

c0∆t

∆z

)2

sin2(Ki∆z/2) = (1− ξ0
i ) sin2

(
ω∆t

2

)
+

1
4
χ0

i (1− exp(jω∆t))

−
1
4∆χ0

i (1−exp(jω∆t))−∆ξ0
i sin2

(
ω∆t

2

)

exp(jω∆t)−exp(−υc∆t)
(4)

where ω is the operating angular frequency, and the expressions for
ξ0
i , ∆ξ0

i , χ0
i and ∆χ0

i are presented in [11] as a function of the plasma
frequency ω2

p(~r) and the collision frequency υc. Ki is the numerical
wave number.

Since the expression for the complex wave number cannot be given
analytically, the dispersive relation in space-varying plasma cannot
conveniently be expressed in terms of operating angular frequency
and plasma medium parameters. Therefore, it appears to be more
appropriate to present equivalent numerical wave numbers, which is
similar to the method in [12]. For all the different cells at a fixed
angular frequency ω, the equivalent numerical wave number Keff is
defined as the average of the numerical wave number of each cell with
Ki as a function of ω2

p,i which is the Yee algorithm form of ω2
p(~r) and
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the saturation electron density n0

Keff =

m∑
i=1

Kiω
2
p,i

m∑
i=1

ω2
p,i

(5)

The analytic plasma dispersion relation is

c2k2 = ω2 − ω2
p

1− j υc
ω

(6)

where c is the velocity of light in vacuum; ω is the operating angular
frequency; ωp is the plasma frequency; υc is the collision frequency; j
is
√−1; and k is the analytic wave number. For space-varying plasma

being concerned about, the Equation (6) can be rewritten as follow:

c2k2
i = ω2 − ω2

p,i

1− j υc
ω

(7)

where the ω2
p,i is the same as in (5), and c, ω, υc, j are the same as

in (6).
Similar to the numerical wave number, the analytic wave number

of space-varying plasma is not a constant at a fixed angular frequency
ω. Therefore, a method should be used to determine the equivalent
analytic wave number, as follow:

keff = ω2
p,i

∂k
(
ω, ω2

p

)

∂
(
ω2

p

) (8)

where ω2
p,i is just defined in Equation (3).

3. NUMERICAL RESULTS

Now that both the equivalent numerical wave number and equivalent
analytic wave number have been derived, to bring to light the
equivalent dispersion errors introduced by the PLRC-FDTD scheme
for one-dimensional space-varying plasma, which have different
distribution profiles, it is more expressive to consider and plot the
following relative error functions:

ereal =
∣∣∣∣
Re {keff −Keff }

Re {keff }

∣∣∣∣ (9)

and

eimag =
∣∣∣∣
Im {keff −Keff }

Im {keff }

∣∣∣∣ (10)
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where Keff and keff are the solution to (5) and (8).
Obviously, ereal is a measure of the equivalent numerical phase

error, which controls the phase error of each frequency, called
equivalent dispersion error, and eimag is a measure of the equivalent
numerical attenuation error, which controls the amplitude error of each
frequency, called equivalent dissipation error.

The one-dimensional computational space consists of 800 spatial
cells each 30m thick (dz = 30 m), with the plasma slab occupying cells
300 through 500. The time step is 0.05µs (dt = 0.5dz/c). Herein, four
kinds of electron density profile f(~r) were considered as follows:

flinear(~r) =
~r

d
(11)

fparabola(~r) =
(

~r

d

)2

(12)

fsin e(~r) = sin
(

π~r

2d

)
(13)

fepstein(~r) =
1

1 + exp
(
−~r−d/2

σ

) (14)

where ~r is the location vector, in one-dimensional case, ~r = ~z; d is the
thickness of the plasma; and σ is density scale length, σ = 10dz.

Then plasma frequency ωp(~r) can bee derived using (2) and (3)
at all cells in Yee space and for different kinds. The plasma parameter
values for the simulation are chosen as the saturation electron density
n0 = 2.83 × 109 m−3, and the corresponding max plasma frequency
ωp = 3× 106 rad/s, the collision frequency υc = 3.0× 107 Hz. Figure 1
shows the curves of the electron density of different distribution
functions versus cell numbers.

The equivalent dispersion error and the equivalent dissipation
error versus the operating angular frequency for the above plasma
parameter values have been shown in Figures 2 and 3. In the range of
ω = 104 − 5 × 106 rad/s, among the four kinds of distribution profile,
the equivalent dispersion has the lowest peak near ω = 2 × 105 rad/s,
and this is mainly due to the corresponding plasma frequency of the
space-varying plasma, which could be obtained via the mathematical
expectation of the electron density. The equivalent dispersion of
Epstein distribution profile is larger than others, probably because
the derivative of the Epstein distribution profile function is not strictly
monotony. The equivalent dissipation for the four kinds of distribution
profile is closed to each other. For all of the distribution profiles, the
lowest equivalent dispersion and dissipation error are below the max
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plasma frequency. Therefore, most of the errors in a real simulation
would come from frequencies near and above the plasma frequency.

Finally, the numerical experiments of the different distribution
profiles to substantiate the analysis of equivalent dispersion and
dissipation errors are presented. As the analysis above is based on
errors as a function of temporal frequency, we will examine the phase

Figure 1. Electron density distribution.

Figure 2. Equivalent dispersion error versus operating frequency.



Progress In Electromagnetics Research Letters, Vol. 22, 2011 89

and amplitude of transmitted electric field as function of temporal
frequency, too. The calculation parameter values used for test solution
to each kind of the distribution are the same as above used. The
reference solutions to each kind of distribution profile could be obtained
through setting dt = dz/c (the magic time-step as described in [1]).
When simulation running, this setting guarantees the stability and
consistency of the FDTD method convergence to the exact solution,
and the other calculation parameter values are maintained the same
as those used for the test solution.

For each problem, a unity amplitude Gaussian pulse propagating
in free space is used as incident wave. The pulse width is such
that the spectral amplitude of the pulse is down by a factor of 100
(compared to the zero frequency amplitude) at ω = 5 × 106 rad/s,
and the plasma parameters remain the same as afore mentioned.
Figure 4 shows the model of the calculation region. The transmitted
electric field is sampled each time step at the cell 501, and the total

Figure 3. Equivalent dissipation error versus operating frequency.

Figure 4. Model of the calculation region.
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time step is chosen as 1000 to eliminate the error due to the outer
grid boundary reflections. To get the phase and amplitude of the
transmitted electric field, the fields versus time data were transformed
to the frequency domain using discrete Fourier transform (DFT).
Therefore, the test and reference complex solution to transmitted
electric field for each distribution error between the test and reference
solution can be separated into two parts: the phase error and the
amplitude error. Figures 5 and 6 show the phase and the amplitude
error-size relationship between various kinds of distribution profile. For
perspective, the range ω = 105 − 5 × 106 rad/s is chosen. The phase
errors (controlled by the dispersion error) of transmitted electric fields
for different distributions reache the highest peak near ω = 105 rad/s
for all kinds of distribution profiles, and above ω = 3 × 105 rad/s,
the phase error for the Epstein distribution profile is lower than the
others, corresponding to the error-size relationship results shown in
Figure 2. The amplitude errors (controlled by the dissipation error)
of transmitted electric field for different distribution profiles are fairly
close to each other, corresponding to the error-size relationship results
shown in Figure 3.

It can be seen that all of the above discussed results have a general
agreement with the results shown in Figures 2 and 3 which demonstrate
equivalent dispersion error and dissipation error, respectively.

Figure 5. Error of phase for each kind of distribution profile.
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Figure 6. Error of amplitude for each kind of distribution profile.

4. CONCLUSION

In this paper, a novel method to analyze the dispersion relation
of PLRC-FDTD for space-varying plasma is derived. This method
is based on the existing dispersion relation of PLRC-FDTD and
equivalent theory. The equivalent dispersion relation for various
distribution profiles has been calculated and compared, and the
distribution profile that yields the lowest dispersion and dissipation
errors has been analyzed. The numerical results indicate that the
novel method is efficient enough to analyze the dispersion relation of
PLRC-FDTD for space-varying plasma. However, it should be pointed
out that because the collision frequency is a function of temperature,
pressure and electron density, etc., taking account of the effect of
collision frequency should be complicated. Therefore, the effect of
collision frequency distribution has not been considered in the paper,
and the effect would be studied in the future work.
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