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Abstract—In this paper, an improved CBFM/p-FFT algorithm is
presented, which can be applied to solve electromagnetic scattering
problems of large-scale periodic composite metallic/dielectric arrays,
even when the array has electrically small periodicity or separating
distance. Using characteristic basis function method (CBFM),
scattering characteristics of any inhomogeneous targets can be
represented by special responses derived from a set of incident
plane waves (PWs). In order to reserve the dominant scattering
characteristics of the targets and remove the redundancy of the overfull
responses, a singular value decomposition (SVD) procedure is applied,
then, new series of basis functions are built based on the left singular
vectors after SVD whose corresponding singular values beyond a
predefined threshold. However, the algorithm of CBFM combined
with method of moments (MoM) still requires a lot of memory and
CPU resources to some large scale problems, so the precorrected-
fast Fourier transform (p-FFT) method is applied based on the novel
built basis functions, with which, the required memory and solve time
for solution can be reduced in an extraordinary extent. For a near
correction technique is applied to process the interactions between cells
placed within a distance less than a predefined near-far field threshold,
arrays with electrically small periodicity can be analyzed accurately.
Moreover, the incomplete LU factorization with thresholding (ILUT)
preconditioner is applied to improve the condition number of the
combined algorithm, which improves the convergence speed greatly.
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1. INTRODUCTION

Finite array problems, such as photonic crystals [1], metamaterials [2],
phased antenna array [3], etc., have attracted considerable attention
over the past one or two decades. To simplify the periodic array
problem, some methods based on Floquent’s theorem have been
applied [4], where periodic Green’s function was used [5], but the
periodic structure is assumed to be infinitely periodical. In practical
cases, periodic unit-cell dimensions are finite, when a more accurate
solution should be obtained, all cells of the finite size must be
considered to capture the mutual couplings and the fringe effects.
Full-wave numerical approaches can be used to analyze such finite
periodic structure problems, typical full-wave methods include the
method of moments (MoM), the finite-difference time-domain method
(FDTD), the finite element method (FEM), among which, one popular
numerical method using MoM is based on the hybrid volume-surface
integral equation (VSIE) [6, 7]. But to solve a dense matrix equation,
the conventional MoM requires O(N3) computational complexity and
O(N2) memory, which is inefficient for electrically large targets.

To render large problems manageable, hybrid methods are usually
applied, where MoM is combined with asymptotic techniques [8, 9],
then small objects with subtle changes can be treated with MoM, and
the influence of big but smooth body is considered by asymptotic
techniques such as GTD/UTD. However, to consider periodically
composite structures, it is difficult for such hybrid method to provide
accurate results. Another way to accelerate the calculation is to make
use of novel basis functions, such as higher order basis function [10],
some physically based entire-domain basis functions [11] and sub-
entire-domain (SED) basis functions [12].

Since 1980s, fast solvers have been utilized to ease the requirement
of memory and CPU time to an extent, such as conjugate gradient fast
Fourier transform method (CG-FFT) [13], fast multipole algorithm
(FMM) or multilevel fast multipole algorithm (MLFMA) [14, 15],
adaptive integral method (AIM) [16] and precorrected-fast Fourier
transform method (p-FFT) [17]. The p-FFT method is firstly proposed
by Philips and White [18] to solve electrostatic integral equations
and later extended to solve electromagnetic scattering or radiation
problems [17, 19, 20]. When the volume integral equation (VIE)
together with p-FFT is used, the complexity and memory are on the
order of O(N) and O(N log N) respectively, and for surface integral
equation (SIE), the complexity and memory are on the order of O(N1.5)
and O(N1.5 log N) operations respectively.

Recently, the characteristic basis function method (CBFM)
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has been introduced for an efficient analysis of electromagnetic
problems [21, 22]. The characteristic basis functions (CBFs) are
defined on macro domains, and derived by using the conventional
triangular or tetrahedral discretization with RWG or SWG basis
functions. The method leads to a much smaller matrix, and the mutual
couplings and fringe effects can be considered rigorously. The CBFM
has also been combined with some fast solvers [23–25], in [23], the
CBFM has successfully been combined with FMM, and the algorithm
was used to analyze scattering of microstrip antennas. In [24, 25], the
CBFM algorithm was combined with fast solver p-FFT or AIM, and
applied to analyze the scattering of dielectric finite periodic arrays, but
the distance between cells of the described examples was set to 0.2λ0

which is beyond the distance of the near-far field threshold defined
ordinarily, where near-correction of coupling between cells was not
considered.

In this work, CBFM is combined with p-FFT to solve VSIE
formulation, the scattering of composite metallic/dielectric arrays is
analyzed by the so called CBFM/p-FFT algorithm. A set of incident
plane waves (PWs) from adequate angles are used to excite unit-cell,
then, a SVD procedure is applied to remove the redundant information
of the responses, the left singular vectors, whose corresponding
normalized singular values exceed a predefined threshold, are used
to act as novel generated CBFs. Fast solver p-FFT is used to
accelerate the matrix-vector multiplication based on the CBFs, so, the
combined algorithm leads to a significant reduction in the requirements
of memory and CPU time compared to the conventional CBFM or
p-FFT algorithm. Besides, not only near-correction between inner
CBFs in one cell is considered, near-correction between near CBFs
in different cells is also considered, so periodic arrays with electrically
small periodicity can be solved accurately using the algorithm. For
iterative method is used for solution, ILUT preconditioner is applied
to improve the condition number of the impedance matrix and speed
up the convergence. Some numerical examples are presented to
demonstrate the accuracy and capability of the combined method for
solving periodic array problems.

2. FORMULATIONS AND EQUATIONS

Formulations including VSIE, CBFM and p-FFT are described in this
section, the near-cell correction technique is introduced and combined
to the CBFM/p-FFT algorithm.
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2.1. VSIE Formulations

The basic idea of the VSIE approach is to use the volume equivalent
principle to replace the unknown electric flux density in dielectric
body with equivalent volume current density [26], the metal surface
is replaced by surface currents using surface equivalent theorem [26],
then, dyadic Green’s function in free space can be used for the mixed
problem. The scattering E-field is produced by Jc induced on the
conducting surface and the equivalent volume polarization currents Jd

as

Esca = iωµb

[∫

S
G

(
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)
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where the 3-D dyadic Green’s function is expressed as
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In which, kb is the wavenumber in background media. Then, from
the boundary condition on the conducting surface S and total electric
field in the volume of dielectric body, two equations must be satisfied
as follows:

D (r)
ε (r)

= Ei (r) + Es (r) in Vd (3)

Ei
tan = −Es

tan on Sc (4)

By following the procedure of MoM, the unknown electric flux
density Jc and equivalent currents Jd are expanded using RWG and
SWG respectively as follows
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n fS
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where NS and NV denote the number of unknowns of the conducting
surfaces and dielectric volumes, respectively. The basis functions fγ

n (r)
used to expand the unknown currents are defined as

fγ
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, r in Sγ±
n

0, otherwise
(7)

where Sγ±
n (with γ = V or S) denotes the tetrahedron or triangle

pair attached to the nth face or edge. The “±” designation of the
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tetrahedron or triangle is determined by the choice of positive current
reference direction for the nth face or common edge.

Galerkin method is used in the procedure of testing in the MoM,
the method reduce the problem to the solution of N linear equations
with N unknowns, and the matrix equation can be arrived as follow

[
ZSS ZSV

ZV S ZV V

]

N×N

[
IS

IV

]

N

=
[

VS

VV

]

N

(8)

where Zαβ (α, β = V or S) is the impedance matrix with the source
basis function in β domain and the field basis function in α domain.
I is the coefficient matrix of the electric flux in the dielectric volume
and the currents on the conducting surface. V is the voltage matrix
impressed by the exterior exciting such as plane wave input.

2.2. P-FFT Algorithm

The p-FFT algorithm is used to accelerate the calculation of matrix-
vector products in (8), the basic idea of the algorithm is to consider
the near- and far- zone interactions separately, in which, near-zone
interactions within a predefined threshold are computed only once and
stored [20], far-zone interactions are computed using FFT. The matrix-
vector products can be approximated by following four-step procedure.

1) Projection: The currents and charges distributed on the original
RWG/SWG meshes are projected onto auxiliary uniform grids by far-
field matching at some given test points.

2) Convolution: The vector/scalar potentials at the uniform grid
points can be computed efficiently using Fourier transform method.

3) Interpolation: Once the potentials on the auxiliary grid are
calculated, the potentials on the original primary meshes can be
obtained by locally interpolating from that of the uniform grids. The
interpolation is actual the inverse procedure of projection.

4) Precorrection: For the above three steps are only accurate
for far-field interactions, (2) should be utilized directly upon nearby
elements, and the inaccurate contribution calculated by the far-field
operator should be corrected accordingly.

So the p-FFT procedure can be expressed as

Zp−FFT = QTHW + P (9)

where W represents the projection operator, H denotes the
convolution operator, Q means the interpolation operator and P is
the precorrection operator.
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Plane wave spectrum

Scatterer

Figure 1. Plane wave spectrum on one cell.

2.3. Combined CBFM and P-FFT Algorithm

Referred to the physical optics (PO) method [21], the CBFs are
generated from the currents induced by the Plane Wave Spectrum
(PWS) on each block, and they are calculated using MoM combined
with p-FFT before the coupling matrix is generated. For a scatterer as
shown in Fig. 1, the number of unknowns due to the original irregular
meshes (RWG or SWG) is denoted as NS . A set of incident plane
waves from NPO = NθNφ angles are utilized as excitations of unit-cell,
typically, the number of plane waves used to generate the CBFs should
exceed the number of degrees of freedoms (DoFs) associate with the
block [21]. The response matrix includes many redundant information,
which can be eliminated by using singular value decomposition (SVD)
as

JCBFs = LDRT (10)

where the columns of L are called the left singular vectors of J, and
the columns of R are depicted as right singular vectors of J, both of
L and R are orthogonal matrix. In order to construct a new set of
basis functions, only those with normalized singular values beyond a
predefined threshold (typically chosen to be 10−3) are retained. Thus,
the left singular vectors in L related to the remained singular values
in D are the generated CBFs after SVD and used to form the CBFs
matrix expressed as B. The number of CBFs is assumed to be K, which
is always smaller than NPO, then, under a certain exciting condition
V, the solution to the block can be denoted as

I = BIC (11)

where, IC represents the unknown coefficients to the new constructed
CBFs.

When a periodic array with M element cells is considered, the
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matrix equation to the CBFs is written as [24, 25]
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where ZC
mn = BT

mZmnBn, IC =
[

IC
1 IC

2 · · · IC
M

]T , VC
m =

BT
mVm, ZC

mn is the mutual coupling matrix of mth block and nth
block, IC are the unknown coefficients of CBFs to the entire problem,
the right hand side of the matrix equation is the exciting vector.

The basic idea of p-FFT is used here to calculate the matrix-vector
product of (12), and similar to (9), the procedure can be expressed as

ZC
mn = QC

mHCWC
n + PC

mn (13)

where, WC
n = WnBn, HC = H, QC

m = B T
m QT

m, PC
mn =

BT
mPmnBn, the operators are all constructed for CBFs, in which,

WC
n is the projection operator, HC denotes the convolution operator,

QC
m represents the interpolation operator and PC

mn is the precorrection
operator between block m and n. The precorrection procedure is only
applied to calculate the interactions of near cells whose separation
distance is within the predefined threshold.

To express the precorrection procedure more clearly, as shown in
Fig. 2, there are two kinds of relations to consider the interactions
between cell#1 and other cells, where, the legend “1” represents near-
cell relation, and the interactions between nearby cells are poorly
approximated by FFT procedure, so it is necessary to calculate the
near-cell interactions directly and remove the inaccurate contribution
of the far-cell calculation, while, “2” represents far-cell relation, which
can be calculated by the FFT procedure accurately.

(1)

Cell 1 (2)

(1)

(2)

Figure 2. 2-D representation of the relationship between cells.
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Figure 3. Near correction of cells: (a) Nine types of cells in the
periodic structure, (b) interior cell representation.

To a 2-D periodic array, there are only nine kinds of cells as shown
in Fig. 3(a), all the near-cell interactions can be included in Fig. 3(b),
so only 9 types of near-cell interactions are needed to be calculated
and stored.

2.4. Numerical Results

In this section, a number of examples will be shown. The first
example considered is the calculation of radar cross section (RCS) of
a conducting sphere coated with dielectric material. The radius of the
inner sphere is 0.2λ0 (λ0 = 0.03m), the coated dielectric thickness is
0.024λ0, with a relative dielectric permittivity εr = 2.2. The coated
ball is modeled by 1105 tetrahedral and 300 triangular cells. A plane
wave is incident along the +z-axis direction, with incident electric field
along the +x-axis direction. The bistatic RCS is calculated using MoM,
and shown in Fig. 4(a), the exact solution using Mie series is also shown
in the figure as reference. A good agreement is observed, except for a
slight difference around θ = 0◦.

To make the retrieved CBFs involve the DOFs of the scatterer,
we choose a PO number as 132, and solve the scattering problem again
by the combined CBFM/pFFT algorithm, then, an equation is used
to evaluate the relative error as follow

∆In =

∥∥∥IMoM
n − I

CBFM/pFFT
n

∥∥∥
2

‖IMoM
n ‖2

(14)

The error results for example I are plotted in Fig. 4(b), from
which, the p-FFT algorithm has similar accuracy to the conventional
MoM. The second example is the scattering analysis of a dielectric
cubic covered by electrically infinite thin square conductor, as shown
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in Fig. 5, the dielectric cubic (εr = 2.2) has a side length of a = 0.38λ0.
The composite metal-dielectric object is modeled by 1690 tetrahedral
and 80 triangular cells. A plane wave is applied as the same as that
in example I, the bistatic RCS obtained by the conventional MoM and
the combined algorithm of this paper are presented in Fig. 6, and the
error results are plotted in Fig. 5.

From the two examples discussed above, we can conclude that,
PO number of 132 is enough for the calculation. The accuracy and
efficiency of the MoM and combined CBFM/p-FFT algorithms are
demonstrated.

In the third example, a 8 × 8 periodic array is considered, the
structure of the element cell is shown in Fig. 5, but the dielectric cubic

(a) (b)

Figure 4. Bistatic RCS versus θ of the dielectric coated ball and
calculated relative error.

=2.2

a=0.38 λ0

εr

θ

0 1000 2000 3000
1E-4

1E-3

0.01

0.1

1

10

100

∆
 I

n

No. of unknown

kiEinc

conducting square

dielectric cubic

z

y
x

Figure 5. Model representation
and calculated relative error of
example II.

Figure 6. Bistatic RCS versus
θ of the composite structure.
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(a) (b)

Figure 7. Bistatic RCS versus θ for the 8 × 8 array illuminated by
an axially incident plane wave (θ = 0◦), whose electric field is along
x-axis: (a) θ-polarization in x-z plane, (b) φ-polarization in y-z plane.

(εr = 2.2) has a side length a = 0.18λ0, and the periodicity is set
as 0.2λ0 in x and y directions, 104 tetrahedral and 14 triangular cells
are used to model one element structure. By using the algorithms of
this paper, the bistatic RCS for θ-polarization component in x-z plane
and φ-polarization component in y-z plane are calculated and depicted
in Fig. 7. From the results, a good agreement is observed between
the results of CBFM/p-FFT with near-cell correction procedure and
the results of p-FFT algorithm, except slight differences exist around
θ = 60◦ and θ = 120◦ in Fig. 7(b), while significant differences exist
between the results of CBFM/p-FFT with no near-cell correction and
p-FFT algorithm. The ILUT preconditioner [27] is applied in examples
of this paper to improve the condition number for the combined
algorithm, and the generalized minimum residual method (GMRES)
is employed to solve the matrix equation for a faster convergence [28],
the relative errors against the iterative times recorded are shown in
Fig. 8, in which, the convergence is very poor in the case of not any
preconditioner is used, while the convergence speed has been improved
significantly after the preconditioner is applied.

Then, the periodicity of the array is changed to 0.4λ0, and the
same normally incident plane wave is used for the calculation of RCS,
the results are compared and shown in Fig. 9. For the space between
nearby cells is 0.22λ0 which is larger than the predefined far-near field
threshold, so similar results are obtained using the two approaches.

An oblique incidence case is also considered, a 10 × 10 periodic
array whose periodicity is 0.2λ0 is constructed using element defined
in example III. The incident angle is along the θ = 22◦ direction
in y-z plane with the incident electric field still along the +x-axis
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direction, the calculated results are compared to the conventional MoM
and shown in Fig. 10. It is obvious that, the CBFM/p-FFT method
approach with near-cell correction is more accurate than the approach
with no considering the near-cell correction.

In the last example, a 6 × 6 coaxial line array is considered, as
shown in Fig. 11. The element structure is a perfect conducting (PEC)
cylinder coated with dielectric, the inner PEC cylinder has a length of
h = 0.5λ0 and a radius of a = 0.03λ0, the coated dielectric (εr = 2.2)
has an outer radius of a = 0.07λ0, the periodicity of the array is set
to d = 0.2λ0. Each element is modeled by 289 tetrahedral and 78
triangular cells. A normally incident plane wave used before is applied
here for RCS calculation, the results are depicted in Fig. 12. The
relative errors against the iterative times recorded are shown in Fig. 13,

Figure 8. Relative error against the iterative times for the normal
incidence case of example III.

(a) (b)

Figure 9. Bistatic RCS versus θ for the 8×8 array illuminated by the
axially incident plane wave, the periodicity is 0.4λ0: (a) θ-polarization
in x-z plane, (b) φ-polarization in y-z plane.
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(a) (b)

Figure 10. Oblique incidence case of the bistatic RCS versus θ for
the 10 × 10 array, including the θ-polarization in x-z plane, and φ-
polarization in y-z plane.

Figure 11. Geometry of a coaxial array.

from which, the convergence speed has also been improved significantly
after the ILUT preconditioner is applied.

From the examples illustrated above, to solve an electrical small
problem, the CPU time and memory requirement for retrieving CBFs
take up most of the expends, while, to consider a large-scale problem,
the expends for retrieving CBFs can be neglected. Exactly, if the
periodic array has M cells, each cell has original meshed unknowns of
Ns, and CBFs unknowns of K, then, for dielectric array problems, the
memory requirement and computational complexity are of O (MK)
and O (MK · log (MK)), respectively, while, for simple metallic array
problems, operations are of O(MK)1.5 and O(MK)1.5 · log (MK),
respectively.
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(a) (b)

Figure 12. Bistatic RCS versus θ for the 6 × 6 coaxial array
illuminated by the axially incident plane wave: (a) θ-polarization in
x-z plane, (b) φ-polarization in y-z plane.

Figure 13. Relative error against the iterative times for the normal
incidence case of example III.

3. CONCLUSION

In this paper, an improved CBFM/p-FFT algorithm to solve
coupled volume-surface integral equations has been presented, near-
cell correction technique is applied by considering interactions between
nearby cells, electrically large composite (metal/dielectric) periodic
arrays can be analyzed efficiently and accurately using the combined
method even when the periodicity of the array is electrically small. By
using SVD procedure, the unknowns reduction ratio defined by K/Ns

is larger than 50 in examples illustrated in this paper, the memory
and computational complexity requirements have been dramatically
reduced compared to that of the conventional MoM. In the iterative
solving procedure, we have used the preconditioner ILUT to accelerate
the convenience. Several numerical examples about composite metal-
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dielectric finite periodic arrays are demonstrated, good agreements
between calculated results using the combined algorithm and using
conventional MoM (or p-FFT) are obtained. It is ensured that the
algorithm can be easily extended to radiation problems by adding the
local source to the right hand side of (8) and (12), and the method can
also be expanded to solve non-periodic structures, since it enables us
to process different blocks to different CBFs. The detail will appear in
a further publication.
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