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Abstract—A new type of waveguide based on the gap waveguide
concept is here proposed and called gap-groove waveguide. Its design
is based on the realization of a groove on a metal, facing an artificial
surface which creates a high impedance surface (HIS) boundary
condition. This condition is achieved here by employing a structure of
closely packed metallic pins, known as bed of nails. The type of modes
that can propagate in the gap-groove waveguide are similar to the ones
of a standard waveguide but in this case there is no need of electrical
connection. This is a potential advantage, especially when working
at high frequencies. The dispersion characteristic of the gap-groove
waveguide is derived by solving an eigenvalue problem, settled through
a resonance condition at the interface between the groove and the bed
of nails. The eigenvalues are associated with the modes propagating
in the waveguide, and their dispersion characteristic is analyzed and
compared with full wave simulations. A procedure to maximize the
bandwidth is also provided, based on an appropriate choice of the
geometrical parameters. Furthermore, the field distribution and the
modal impedance of the fundamental mode are investigated.
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1. INTRODUCTION

Recently, a new type of transmission line known as ridge gap waveguide
has been proposed [1]. Several research studies have been carried on 2–
9, demonstrating the advantages of this new technology particularly
for millimetre and submillimetre waves, if compared with existing
technologies, like hollow rectangular waveguides (HRW) and microstrip
lines. Indeed, HRW are usually manufactured in two parts and
joined together, with poor electrical contacts. Microstrip lines, as
open structures, suffer from cross-talk and unintentional couplings.
Furthermore, microstrip lines are affected by losses for increasing
frequency, limited power handling capability, and spurious resonances
when encapsulated. Therefore, the demand of low losses and cheap to
manufacture waveguides is still a challenge, especially above 30 GHz.
In [1–9], a basic geometry has been investigated, namely a ridge
waveguide comprising two parallel conducting surfaces separated by a
small gap. One of the surfaces is provided with metallic pins, and it is
known as “bed of nails”. The bed of nails can be immersed in dielectric
substrate to reduce the size. However, in applications at millimetre
wave frequencies, the better solution is avoiding any dielectric. When
the wavelength is large compared with the periodicity of the pins, the
bed of nails creates an high impedance surface (HIS) [10], over a certain
frequency range. In this frequency range, called stop-band, the field
is prevented from a lateral leakage, thus guaranteeing an excellent
confinement in the ridge region. Analytical expressions of the fields
in the waveguide have been provided in [5, 8, 9]. Also, the bed of
nails can be substituted by other textures or thin multilayer structures,
providing similar HIS conditions [6].

This initial study on the gap waveguide has inspired new trends
and further developments on realizing transmission lines at higher
frequencies without metal contacting and with total control of the
propagating field. In particular, in this paper we focus on a structure
which has been preliminarily investigated in [11] and based on a similar
principle of operation of the gap waveguide. Instead of a field confining
in the ridge gap region, we propose to concentrate the propagating field
in a groove aperture, realized in a metallic surface and covered by a
contactless HIS. We name this structure as gap-groove waveguide. The
use of groove waveguide without HIS top cover for high frequencies is
well known [12, 13]. They provide low losses, low dimensional tolerance
and high power handling capacity at frequencies higher than 100 GHz.
The field results to be highly confined, and its distribution can be
easily modified by varying the geometry of the groove [14, 15]. In
order to avoid electric contacts, a HIS constituted by a bed of nails
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surface is placed in front of the groove and the metal, with an air
filled gap separation (refer to Fig. 1). When working as a HIS, the
bed of nails provides a hard-surface wall [16] to the groove aperture,
simultaneously preventing from the lateral field leakage in the region
where the pins face the metal. Although based on a similar concept of
the gap waveguide, this geometry may have fabrication benefits, due
to the fact that the metallic groove and the bed of nails can be realized
separately, with different technologies, and then combined together by
means of spacers; while in the gap waveguide technology, the ridge
must be realized along with the pins surface. At the same time, the
propagation in the gap-groove waveguide is dictated by the groove
geometry, thus providing a potential larger dispersivity. We actually
see here that the dispersion is weaker than that of a conventional
rectangular waveguide and very similar to that of a gap waveguide.

In order to analyze this aspect, in this paper we develop an
approximated analytical method to study the gap-groove waveguide
dispersion. This method is based on the solution of an eigenvalues
problem, settled as a resonance condition at the interface between
the bed of nails and the groove. The formulation of the problem is
given in Section 2 and different aspects are investigated in subsections.
After successfully validating the analytical dispersion curves of the
three modes by full wave simulations, maximization of single mode
propagation bandwidth is presented in Section 2.1. Comparison
with the gap-grove waveguide is given in Section 2.2. The field
distribution of the fundamental mode is shown in Section 2.3, and
its modal impedance is investigated and compared through numerical
simulations in Section 2.4. Conclusions are given in Section 3.

2. ANALYTIC DISPERSION CHARACTERISTIC OF
THE GAP-GROOVE WAVEGUIDE

The geometry under investigation is shown in Fig. 1. The bed of nails
on top of the structure is constituted by thin metallic cylinders (nails)
of height d, with radius b, and spacing a in both x and z directions.
The nails are embedded in a dielectric medium that we assume as free
space without loss of generality.

The bed of nails can be seen as a spatial and frequency dispersive
anisotropic homogeneous medium, whose permittivity is characterized
as [10],

ε(ω, ky) = ε0 (x̂x̂ + ẑẑ + εyy(ω, ky)ŷŷ) . (1)

In (1),

εyy(ω, ky) = 1− k2
p/k2 − k2

y (2)
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Figure 1. Geometry of the proposed gap-groove waveguide. The
dashed line represent the transverse amplitude profile of the dominant
mode, similar to that of a TE10 mode in a half rectangular waveguide
with a perfectly magnetic wall at y = h.

where k is the free space wave number and

kp =
1
a

√
2π

ln( a
2πb) + 0.5275

(3)

is the plasma wave number accounting for the local spatial
dispersion [17], only dependent on the geometrical lattice properties.
This model is valid whenever a/d ¿ 1 and a/λ ¿ 1; within this limit,
the surface can be treated as an equivalent homogenized medium.
Demonstration of the effectiveness of the model is widely shown
in [10, 17].

This medium supports three different modal solutions: a
transverse electromagnetic (TEM ) mode, a transverse magnetic (TM -
y) mode, and a transverse electric (TE-y) mode, whose dispersion
relations are

k2
y = k2 (TEM ) (4a)

k2
x + k2

y + k2
z + k2

p = k2 (TM) (4b)

k2
x + k2

y + k2
z = k2 (TE) (4c)

where it is clear that only the TM -y mode is affected by the local
spatial dispersion. When the wavelength is large compared with the
periodicity of the lattice, the bed of nails creates a HIS, over a certain
frequency range. Therefore, we expect that the transverse profile of the
dominant mode of the groove waveguide should be similar to one half
of the TE10 mode in a rectangular waveguide, as depicted in Fig. 1.
Actually, we will see in Section 2.2 that the groove dominant mode is
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much less dispersive than the TE10 mode in a waveguide. In [8] we
have studied a configuration where the bed of nails is covered by a
perfectly conducting (PEC) metal plate, placed at a certain distance
h ¿ λ from the surface of the nails. In this configuration, the PEC-HIS
faces form a parallel plate waveguide, and the dispersion equation for
the wavenumber ky of the dominant TE-y and TM -y modes bouncing
between the two faces can be described by imposing the vanishing of
the tangential electric field at the PEC wall (we stress here that we
will use the TM and TE terminology with reference to the y axis).
For the TE-y mode, the solution is found by the transverse resonance
between two PEC walls separated by h+ d, since the TE-y mode does
not significantly interact with the nails. For the TM -y mode, the wave
bounces between a PEC wall and a surface which can be equivalently
described through its reflection coefficient Γs(ky) [10] or its surface
impedance Zs(ky) [8]. To this purpose, the equivalent impedance of the
homogenized surface can be written through a wavenumber-dependent
linear combination of the equivalent impedances associated to the
TEM and TM modes penetrating in the equivalent homogeneous wire
medium. In particular, by assuming that each mode can be modeled
through an equivalent transmission line, the short circuit at the PEC
wall y = h + d (see Fig. 1 for reference) can be reported at the surface
y = h as

Zsc
TEM = jZ0,TEM tan(kd) (5)

for the TEM mode, and

Zsc
TM (ky) = jZ0,TM (ky) tan(kyd) (6)

for the TM mode. In the above, Z0,TEM = ξ and Z0,TM (ky) = ξky/k
are the impedances of the two modal transmission lines, being ξ the
free space impedance. To find a right coupling coefficient η(ky) of
TM and TEM modes, in [10] the continuity of the normal component
of the electric induction associated to the nail background medium is
suggested, thus leading to the linear combination

Zs(ky) = [1− η(ky)]Zsc
TEM + η(ky)Zsc

TM (ky) (7)

where

η(ky) =
k2 − k2

y

k2
p + k2 − k2

y

. (8)

It can be shown that when the nails are densely packed (a/d ¿ 1)
η(ky) → 0, which implies that Zs(ky) → Zsc

TEM .
When a groove is opened in the bottom wall, as in Fig. 1, the

eigenvalue problem for both modes changes. We assume that the
groove has depth L and width w ¿ L. For the TE-y case, since
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the field does not interact with the nails, the dispersion is the same
as of a a rectangular waveguide with longer dimension L + h + d and
shorter dimension w. Thus the first TE mode has eigenvalue and cut
off frequency

kTE
y1 =

π

2(L + h + d)
fTE

c1 =
c

2(L + h + d)
(9)

respectively, while, under the assumption of w < L/2, the second TE
mode has eigenvalue and cut of frequency

kTE
y2 =

π

L + h + d
fTE

c2 =
c

L + h + d
(10)

respectively. For simplicity, we call these two modes as TE1 and TE2.
Their eigenvalues are shown in Fig. 2 in a dashed horizontal line.
The unimodal TE bandwidth can be easily calculated as BW TE =
c/[2(L + h + d)].

For the TM case, we should consider the equivalent surface
impedance in (7) as a top cover (Fig. 1). The impedance Zs(ky) is
first reported by the gap h to the groove interface at y = 0, through
the following impedance transformation in a transmission line

Zeq,1(ky) = Z0,TM (ky)
Zs(ky) + jZ0,TM (ky) tan(kyh)
Z0,TM (ky) + jZs(ky) tan(kyh)

. (11)

Simultaneously, from the groove side, the short circuit at y = −L can
be reported at the groove interface as well, yielding

Zeq,2(ky) = jZ0,TM (ky) tan(kyL). (12)

The resonance condition can now be imposed at the groove interface
y = 0 as

Zeq,1(ky) + Zeq,2(ky) = 0 (13)

By using (11) and 12) in (13), along with (7), after some algebraic
manipulation, leads

k

[
k2

p tan(kd) +
k2 − k2

y

k

√
k2

y − k2
p tan

(
d
√

k2
y − k2

p

)]

· [1− tan(kyh) tan(kyL)]

+ky

(
k2

p − k2 − k2
y

)
[tan(kyh) + tan(kyL)] = 0. (14)

When the bed of nails is densely packed, namely when η(ky) → 0 in (7),
the expression of impedance Zeq,1(ky) simplifies, consequently leading
to the more compact resonance equation

ky tan(kyL) + k tan(kd) + tan(kyh) [ky − k tan(kd) tan(kyL)] = 0 (15)
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Figure 2. Dispersion equation solutions (eigenvalues) in terms of
the frequency (GHz) for both modes TM and TE. The first two
modes (fundamental and higher order mode) are shown. The real
and imaginary part of the eigenvalue for each mode is plotted. The
eigenvalues of the TE modes are plotted as a dashed horizontal lines.
For TM : solid = fundamental mode from the exact solution (14), dot-
dashed = fundamental mode from the approximate solution (15), short
dashed = higher order mode from the approximate solution. The light
line is also shown (grey line). Dimensions: L = 10 mm, w = 3 mm,
h = 1 mm, d = 7.5mm, a = 2 mm and b = 0.5mm.

The dispersion Equation (14) and its simplified version (15) can be
solved in terms of the eigenvalue ky; here, the intrinsic Matlab FSOLVE
routine has been employed, which finds a root of a system of nonlinear
equations. To this end the guess solution ky = k is used to start the
iterative search [18]. The solution ky = kTM

y1 (ω) is shown in Fig. 2
for a gap groove waveguide where L = 10 mm, w = 3 mm, h = 1 mm,
d = 7.5 mm, a = 2 mm and b = 0.5mm. The eigenvalue kTM

y1 (ω)
can be real or purely imaginary depending on wether the frequency
is in or out of the stop band of the bed of nails, respectively. This
behavior has been widely discussed in [8, 9], then we address the reader
to those former publications for a better understanding. As clear
from Fig. 2, the solution obtained through the complete resonance
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equation in (14) (black solid) and the solution obtained from the
simplified equation in (15) (dot-dashed line) are almost superimposed.
They tend to split out when the frequency increases, which means
that assumption of densely packed bed of nails tends to fail. The
approximate solution from (15) is accurate enough in the stop band
region, which is the region of interest and will be adopted in the
following. Thus, hereinafter, we will show only the solution associated
with this resonance.

A second mode TM2 exists, which possesses three times the
periodicity of TM1 and has a maximum almost at y = h (like TM1,
because of the presence of the HIS). It is then expected that its
eigenvalue kTM

y2 is approximately three times kTM
y1 . Therefore, the

dispersion curve of kTM
y2 can be calculated by (14) or (15) starting

from ky = 3k as a guess solution. The corresponding dispersion curve
of kTM

y2 is shown in Fig. 2 (short-dashed line).

In Fig. 3, the dispersion diagram frequency vs kz =
√

k2 − k2
y

is plotted, being z the direction of propagation along the waveguide.
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Figure 3. Dispersion diagram (frequency vs longitudinal wavenum-
ber) of the gap groove waveguide with dimension L = 10mm, w =
3mm, h = 1 mm, d = 7.5mm, a = 2mm and b = 0.5mm. The ana-
lytic solution (solid line) is compared with the CST solution (dotted
line). The basic cell simulated through CST is shown in the inset,
where the periodic boundary conditions are applied along the longitu-
dinal direction. The light line is also shown (dot-dashed line).



Progress In Electromagnetics Research M, Vol. 18, 2011 63

The analytic solution (solid line) is compared with a full wave
solution obtained through the commercial software CST Microwave
StudioTM [19] (dotted line). Here, the basic cell has periodic boundary
conditions along the longitudinal direction, while it is closed, by
perfectly electric and perfectly magnetic boundary conditions on
top/bottom and at the lateral sides, respectively (see inset of Fig. 3).
Fig. 3 also shows the mode outside the stop band region, for lower
frequency values where ky is purely imaginary (see Fig. 2). This mode
is called slow wave in Fig. 3, and it refers to a wave, with no cut-off,
whose phase velocity is always smaller than the speed of light [8], which
cannot provide the longitudinal propagation along the groove.

2.1. Optimization of Unimodal Bandwidth

The unimodal TM bandwidth BW TM can be calculated through
the intersection of the curves kTM

y1 and kTM
y2 with the light line.

In the case shown in Fig. 2, the lower frequency of the unimodal
TM bandwidth coincides with the lower frequency of the stop band
fTM

low = c/[4(d + h)] ≈ 9GHz [8, 9], while the upper frequency can be
calculated by imposing the higher order mode eigenvalue kTM

y2 = k

and solving the same dispersion Equation (15) in terms of frequency.
In this case, we find fTM

up ≈ 16GHz. The overall bandwidth of the
waveguide is dictated by the smaller intersection between BW TE and
BW TM . In this case the bandwidth is dictated by the fundamental
mode (kTM

y1 ) and the TM higher order mode (kTM
y2 ), leading to a

bandwidth BW ≈ 7.1GHz, as shown in Fig. 3. By referring to Fig. 2, it
is clear that the bandwidth can be widened by stretching the stop band
of the bed of nails, simultaneously moving the kTM

y2 and kTE
y2 curves in

such a way their intersection with the light line occurs towards higher
frequency.

Following this guideline, we show here a simple process to
maximize the unimodal bandwidth. In this process we keep the gap
h constant and very small in terms of the free-space wavelength for
preventing lateral leakage in the bed of nails region. As a first step,
we act on the pin height d by keeping it as low as possible to stretch
out the curve of kTM

y1 to higher frequencies. This sets up the cut-off
frequencies of TM1 to a value we denote fTM

low , which is the lower limit
of the bandwidth. Next, we move the cut-off frequency of TE1 to let
it coincide with fTM

low . By using (9), we get L = h + d. This sets the
TE2 cut off, as well. In particular, fTE

c2 = c/[2(h + d)]. Finally, the
cut off frequency of the TM2 mode, fTM

c2 can be calculated by solving
the pertinent dispersion relation where kTM

y2 = k, as described in the
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Figure 4. Eigenvalues ky vs frequency (GHz) for both modes TM
and TE, and for fundamental and higher order mode. The geometry
of the gap groove waveguide has been optimized in order to increase
the bandwidth: L = 6.5mm, w = 3mm, h = 1 mm, d = 5.5mm,
a = 2 mm and b = 0.5mm. In this case, fTE

c1 = fTM
low = 11.6GHz sets

the lower end of the bandwidth, and fTM
c2 ∼ 22GHz the higher end,

being fTM
c2 < fTE

c2 . Thus, BW = [11.6 ÷ 22]GHz = 10.4GHz. The
light line is also shown.

previous section. The upper limit of the bandwidth is then defined as
fTM

up = min{fTE
c2 , fTM

c2 }. As an example of the optimization process
we have modified some of the geometrical parameters of the gap groove
waveguide used in Fig. 2 and Fig. 3, and the new ky vs frequency plot is
shown in Fig. 4. In particular, we hold h = 1mm, w = 3 mm, a = 2mm
and b = 0.5mm. Then, the pins height is reduced to d = 5.5mm,
which leads to a bed of nails bandwidth of ∼ 15.9GHz. Furthermore,
the groove depth is set to L = d + h = 6.5mm which forces fTE

c1 =
fTM

low = 11.6GHz and fTE
c2 ∼ 23GHz. Finally, we solve (15) for the

TM2 mode where kTM
y2 = k, obtaining fTM

c2 ∼ 22GHz. Thus, the
overall bandwidth is now BW = [11.6 ÷ 22]GHz = 10.4 GHz. The
dispersion diagram frequency vs kz =

√
k2 − k2

y is plotted in Fig. 5.
The analytic solution (solid line) is calculated and compared with the
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Figure 5. Dispersion diagram (frequency vs longitudinal wavenum-
ber) of the gap groove waveguide with optimized dimension L =
6.5mm, w = 3mm, h = 1mm, d = 5.5mm, a = 2mm and b = 0.5mm.
The analytic solution (solid line) is compared with the CST solution
(dotted line). The basic cell simulated through CST is the same as
shown in the inset of Fig. 3. Also, the dispersion diagram of a standard
rectangular waveguide (dashed line) with major dimension 2(L+h+d)
is added. The light line is also shown (dot-dashed line).

CST Microwave StudioTM solution (dotted line). The basic cell is of
the same kind as the one shown in the inset of Fig. 3. The agreement
between the two solutions is excellent.

In order to confirm the bandgap phenomenology associated with
this waveguide, we also show the S11 (amplitude) and S21 (phase)
scattering parameters, calculated through the frequency domain solver
of CST Microwave StudioTM . Results are given in Fig. 6. It is
clear that beyond the cut-off frequency (11.6 GHz), the S11 parameter
becomes small enough to allow for a propagation in the waveguide.
Also, the phase of the S21 parameter, which is shown de-embedded with
respect of the output port, is constant, meaning that arg(S21) = kzd,
where kz is the propagation wavenumber and d is the length of the
waveguide. The waveguide port used in the CST model and its
impedance, will be explained in more details in Section 2.4.
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Figure 6. Amplitude of S11 (solid line) and phase of S21 (dashed
line) associated with the gap-groove waveguide. The phase has been
de-embedded with respect to the output port (reference plane on the
output port).

2.2. Comparison with Rectangular Waveguide and with
Gap-Waveguide

A further result is shown in Fig. 7, where the same dispersion diagram
of the gap groove waveguide plotted already in Fig. 5 (solid line)
is here compared with the gap waveguide [8, 9]. The comparison is
carried out for a gap waveguide with same bed of nails (pins height,
radius and periodicity), same gap dimension h, and ridge width w
equal to the groove width. The same figure also shows the dispersion
diagram of the fundamental TE10 mode of a standard rectangular
waveguide with larger dimension 2(L+h+d) and smaller dimension w
(dashed line) (note that the factor 2 is needed to render the waveguide
equivalent to half waveguide with a perfectly magnetic wall on top).
The geometry of the two waveguides is shown on top of the figure.
The dispersion curves are very similar, either for the fundamental or
higher order mode. This is somehow unexpected, since the groove
waveguide could seem a priori more dispersive as more similar to a
conventional rectangular waveguide with a perfectly magnetic wall
on top. Actually, our results show that the fundamental mode of
the groove waveguide is almost equivalent to the quasi-TEM mode
of the gap waveguide, while the dominant mode of the rectangular
waveguide shows a higher dispersivity (dashed line). The reason of
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Figure 7. Dispersion diagram (frequency vs longitudinal wavenum-
ber) of the gap groove waveguide with dimension L = 6.5mm, w =
3mm, h = 1 mm, d = 5.5 mm, a = 2 mm and b = 0.5 mm, compared
with the gap waveguide with same dimensions (dotted line) and with
the standard rectangular waveguide (dashed line). The geometry of
the groove and gap waveguides is shown in the top inset. The light
line is also shown (dot-dashed line).

less dispersivity associated with the groove waveguide wrt a standard
waveguide should be attributed to the degree of freedom that the
gap region leaves to the modal field has to accommodate itself when
changing frequency.

2.3. Field Distribution of the Dominant Mode

We show here the field distribution on a transverse cross section, for a
frequency within the unimodal bandwidth. In particular, Fig. 8 shows
the Ex and Ey field distribution at the frequency f = 18GHz, for a gap
groove waveguide with dimensions L = 6.5mm, w = 3 mm, h = 1mm,
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Figure 8. Field distribution (Ex and Ey) in the waveguide cross
section, at the frequency f = 18 GHz. Dimensions: L = 6.5mm,
w = 3 mm, h = 1mm, d = 5.5mm, a = 2 mm and b = 0.5mm.
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Figure 9. Amplitude (in dB) of the transverse electric field along a line
in the middle of the gap, for different values of frequencies. Dimensions:
L = 6.5mm, w = 3mm, h = 1 mm, d = 5.5mm, a = 2mm and
b = 0.5mm

d = 5.5 mm, a = 2mm and b = 0.5mm. The fundamental mode
has the dominant component along x, as expected. The maximum is
approximately at the groove aperture (y = 0). It Is worth noticing
that the tangent Ex field has a very small penetration in the lateral
region |x| < w/2, since the PEC-HIS structure presents a bandgap in
all the unimodal region. The normal component Ey is almost negligible
everywhere, except for the regions close to the corners, where the field
tends to change distribution to fit the PEC-HIS waveguide. Since the
mode in the gap is rapidly attenuating along x, the overall effect is
that Ey can be neglected. In order to quantify the fast attenuation of
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the field in the lateral gap regions, we show in Fig. 9 the amplitude
(in dB) of the transverse electric field along a line in the middle of the
gap, for different values of frequencies. The oscillations are due to the
proximity of the nails, and then related to the nail periodicity. The
average behavior is exponential [8, 9]. For instance, the decay rate at
the frequency f = 15 GHz is around 150 dB/λ.

2.4. Modal Impedance

Finally, we characterize the waveguide through its modal impedance.
As shown in Section 2.3, the fundamental mode is a TE mode. Thus,
the modal impedance can be defined as

Z = ξk/kz (16)

f (GHz)

Figure 10. Modal impedance of the gap-groove waveguide. The
analytic impedance Z from (16) is compared with full wave results
from CST. In particular, the dashed line refers to the port modal
impedance (the port in the CST model is defined on the shaded area
in the inset). Also, the free space impedance (grey line) and the TE
modal impedance ZTE of a standard L+h+d×w rectangular waveguide
are shown as a reference.
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where kz =
√

k2 − k2
y is calculated by using the eigenvalue ky shown

in Fig. 5. Results from (16) are displayed in Fig. 10. The impedance
in (16) (solid line) is compared with a full wave simulation through
CST Microwave StudioTM (dashed line) called port impedance, where
the waveguide port plane, in the CST model, is defined on the shaded
area in the inset of Fig. 10. This impedance in CST is calculated as
the value of the wave impedance correspondent to the average ratio
of the transversal electric field to the transversal magnetic field for all
grid points i on the port plane, i.e., Zport = average(Ei/Hi) [19]. The
agreement with the analytic solution is good overall. This calculation
is performed over 13 frequency points, and except for some oscillations
in the low frequency range, this result shows the same trend as the
analytic solution. In Fig. 10, we also plot the TE modal impedance
ZTE of the standard L+h+d×w rectangular waveguide (dotted line)
and the free space impedance (grey line), as a reference. Notice again
that the groove waveguide shows a weaker dispersion when compared
to the standard rectangular waveguide, as already pointed out in Fig. 5.

3. CONCLUSION

In this paper, we have introduced a new type of waveguide called gap-
groove waveguide, and developed an approximated analytical method
to study the dispersion characteristic of its fundamental mode. This
waveguide can be framed in a typology of new kind of transmission
lines suitable for very high frequencies because could be fabricated
without metal contacts. The operation principle is similar to that
of the gap waveguides, widely investigated in the recent literature.
The basic concept here is covering a groove waveguide with a high
impedance surface without contact. The HIS leaves the field confined
into the groove due to fact that the HIS-PEC region outside the groove
aperture exhibits a bandgap. Specifically, the HIS is accomplished here
through a bed of nails. The bed of nails prevents from the lateral field
leakage if its bandgap is designed to include the operational unimodal
bandwidth of the dominant groove mode.

In order to study the dispersion of the waveguide, an eigenvalues
problem has been settled, by resorting to a resonance condition at the
interface between the bed of nails and the groove. The problem has
been solved for the fundamental mode and the first higher order mode
of both TE-y and TM -y modes. This has allowed for investigating the
bandwidth properties of the gap-groove waveguide and its unimodal
region of propagation. In particular, a procedure to maximize the
unimodal bandwidth has been provided, based on an appropriate
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choice of the geometrical parameters. The dispersion characteristic
has been calculated by solving an implicit transcendental equation,
and successfully compared with full wave simulations. Also, the field
distribution of the fundamental mode has been shown, and its modal
impedance has been approximated and compared through numerical
simulations.
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