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Abstract—This paper proposes a rigorous theory of the H-plane four-
port (cruciform) waveguide junction with a conducting diaphragm and
a dielectric layer in the main (input) waveguide arm. This theory
is based on the mode matching method in conjunction with Fourier
transform technique and including the edge conditions in vicinity of the
diaphragm edges. The numerical analysis of the cruciform waveguide
junction is done, and optimal parameters of inclusions are predicted
based on the minima of voltage standing wave ratio (VSWR) in the
main arm.

1. INTRODUCTION

Multiport (three and higher order) waveguide junctions are widely used
in microwave devices, such as directional couplers, filters, multiplexers,
phase shifters, power dividers, etc. [1–6]. However, effectiveness of
these devices is highly dependent on matching quality of waveguide
arms, especially of the input arm with the energy supplied. Therefore,
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different type artificial inclusions, such as cylindrical rods, metallic
diaphragms, etc., are included in the junctions as adjusting elements
to improve their matching properties [7, 8].

Recently, a lot of work has been published to analyse and
design the three- and higher order multiport port waveguide junctions
with different types of artificial inclusions [9–18]. Besides, various
optimization techniques have been proposed to optimize the geometric
and material parameters of these junctions [19–23]. However, though
the three-port waveguide junctions have been faithfully studied in
rigorous formulation, four-port and higher order junctions have been
mainly considered in approximate way and, therefore, need the more
careful consideration.

This paper develops a rigorous electromagnetic theory of the
H-plane four-port (cruciform) waveguide junction with a conducting
diaphragm and a dielectric layer in the main arm. The numerical
analysis of scattering characteristics of such the junctions is done,
optimal parameters of the diaphragm are predicted, and a near field
structure of the total field in optimised cruciform waveguide junction
is analysed.

2. METHOD

2.1. Boundary Problem Formulation

The geometry of the problem presented in Fig. 1 consists of 4-port H-
plane waveguide junction with a symmetric diaphragm and a dielectric
layer placed in the main arm. The main arm 1 and the bottom arm 6
of the junction have the widths a, whereas the branched (side) arms 4
and 5 have the widths b. The diaphragm consists of the two strips of
the width ∆ separated by the aperture of the width d. The distances
from the strips to the upper and bottom waveguide junctures are,
respectively, ` and L. The strips are assumed to be infinitely thin and
perfectly conducting, whereas the dielectric layer filling an intermediate
area 2 has permittivity ε. The origin of the Cartesian coordinate
system is taken at the centre of the aperture.

Let the waveguide junction be excited by the fundamental
waveguide wave (H10) incident from the main arm 1. This wave is
fully defined by the y component of the electric field given by

Einc
y = cos(σ1x)e−ih1z (z ≤ 0, |x| ≤ a/2) (1)

where h1 =
√

k2
0 − σ2

1, Imh1 < 0, k0 = 2π/λ, σ1 = π/a. Hereinafter,
the time dependence is assumed to be exp(iωt) and is omitted. We seek
for the electromagnetic field arisen in different areas of the structure
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Figure 1. Cruciform waveguide junction with a diaphragm and
dielectric layer in the input waveguide.

due to the diffraction of incident wave by diaphragm and waveguide
junctures.

The total fields in areas 1, 2 and 6 are represented as Fourier series,
and those in areas 3, 4, and 5 are represented as Fourier integrals in
terms of modal spectra of reflected, transmitted, and interfering waves
as:

Ey1 = Einc
y +

∞∑

m=1

Am cos(σmx)eihmz (z ≤ 0, |x| ≤ a/2) (2a)

Ey2 =
∞∑

m=1

[Bmeih′m(z−`) + Cme−ih′m(z+`)] cos(σmx)

(0 ≤ z ≤ `, |x| ≤ a/2) (2b)

Ey3 =

∞∫

−∞
dt

{
D(t)sh [α(t)(L− z)] + D̃(t)ch [α(t)(L− x)]

}
eitx

(` ≤ z ≤ L,−∞ < x < ∞) (2c)

Ey6 =
∞∑

m=1

Nm cos(σmx)e−ihm(z−`) (z ≥ L, |x| ≤ a/2) (2d)

where hm =
√

k2
0 − σ2

m, h′m =
√

k2 − σ2
m, σm = (2m − 1)π/a,

k = k0
√

εr, εr = ε/ε0, α(t) =
√

t2 − k2
0, and Imhm < 0, Imh′m < 0. In

Eqs. (2a)–(2d), {Am} are the unknown Fourier amplitudes of modal



142 Bogdanov et al.

spectra of waves reflected from the diaphragm, {Bm} and {Cm} are
those of waves interfering between the diaphragm and upper juncture,
D(t) and D̃(t) are the amplitudes of continues Fourier spectra of waves
interfering in the resonance area 3 and transmitted to the side arms 4
and 5, and {Nm} are Fourier amplitudes of waves transmitted to the
bottom arm 6.

The unknown coefficients {Am}, {Bm}, {Cm}, D(t), D̃(t) and
{Nm} are to be determined from the zero boundary conditions on the
surfaces of the conducting diaphragm (z = 0, d/2 ≤ |x| ≤ a/2) and
side waveguide walls (z = `, z = L, |x| ≥ a/2), and the continuity
conditions on the interfaces between the areas 1 and 2, 2 and 3, and 3
and 6:

Ey1 = Ey2 (z = 0, |x| ≤ a/2) (3a)
Ey2 = 0 (z = 0, d/2 ≤ |x| ≤ a/2) (3b)

∂Ey1

∂z
=

∂Ey2

∂z
(z = 0, |x| ≤ d/2) (3c)

Ey3 =
{

Ey2 (z = `, |x| ≤ a/2)
0 (z = `, |x| ≥ a/2) (3d)

∂Ey3

∂z
=

∂Ey2

∂z
(z = `, |x| ≤ a/2) (3e)

Ey3 =
{

Ey6 (z = L, |x| ≤ a/2)
0 (z = L, |x| ≥ a/2) (3f)

∂Ey3

∂z
=

∂Ey6

∂z
(z = L, |x| ≤ a/2) (3g)

Besides, expansions (2a) and (2b) should satisfy the edge condition
on the diaphragm plane (z = 0) as |x| → d/2

lim
x→±d/2

Ey(x)|z=0
∼= const ·

√
1− (2x/d)2 = 0 (4)

2.2. System of Functional Equations

Applying the boundary conditions (3a)–(3h) to (2a)–(2d) reduces the
formulated problem to the following system of functional equations

cos(σ1x)+
∞∑

m=1

Am cos(σmx)

=
∞∑

m=1

(Bm+Cm) e−ih′m` cos(σmx) (|x|≤a/2) (5a)
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∞∑

m=1

(Bm + Cm) e−ih′m` cos(σmx) = 0 (d/2 ≤ |x| ≤ a/2) (5b)

∞∑

m=1

h′m (Bm − Cm) e−ih′m` cos(σmx)

= −h1 cos(σ1x) +
∞∑

m=1

Amhm cos(σmx) (|x| ≤ d/2) (5c)

∞∫

−∞
dt

{
D(t)sh [α(t)b] + D̃(t)ch [α(t)b]

}
eitx

=





∞∑
m=1

(
Bm + Cme−2ih′m`

)
cos(σmx) (|x| ≤ a/2)

0, (|x| ≥ a/2)
(5d)

∞∫

−∞
dtα(t)

{
D(t)ch [α(t)b] + D̃(t)sh [α(t)b]

}
eitx

= −
∞∑

m=1

ih′m
(
Bm − Cme−2ih′m`

)
cos(σmx) (|x| ≤ a/2) (5e)

∞∫

−∞
D̃(t)eitxdt =

{
Nm cos(σmx) (|x| ≤ a/2)
0 (|x| ≥ a/2) (5f)

∞∫

−∞
D(t)α(t)eitxdt =

∞∑

m=1

ihmNm cosσmx (|x| ≤ a/2) (5g)

Besides, applying the edge condition (4) to (2b) allows the
following expansion for the aperture field
∞∑

m=1

(Bm+Cm) e−ih′m` cos(σmx)=
∞∑

s=1

XsU2s−1[(2x/d] (|x|≤d/2) (5h)

where U2s−1(x) is the (2s − 1)-th Chebyshev function of the second
kind, and Xs are the unknown expansion coefficients. Thus, utilization
of (5h) guarantees the solution to satisfy the edge condition (4).

2.3. Reduced System of Functional Equations

Let transform the system of functional Eqs. (5a)–(5h) to the reduced
system being more convenient for further analysis. First, we use the
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orthogonality of the transverse eigen-functions {cos(σmx)}∞m=1 on the
segment −a/2 ≤ x ≤ a/2 to reduce (5a) to the following relation

(Bm + Cm)e−ih′m` = δm1 + Am (6)

where δmn denotes the Kronecker’s delta.
Equation (6) is substituted into (5c) to obtain

∞∑

m=1

[(h′m + hm)Cm − (h′m − hm)Bm]e−ih′m` cos(σmx)

= 2h1 cos(σ1x) (−d/2 ≤ x ≤ d/2) (7)

Further, we multiply Eqs. (5d) and (5f) by e−it′x and integrate over
the interval −∞ < t′ < ∞ to obtain the following relations between
the coefficients of the continuous and discrete Fourier spectra

D(t)sh[α(t)b]+D̃(t)ch[α(t)b] =
1
2π

∞∑

m=1

(
Bm+Cme−2ih′m`

)
Φm(t) (8)

D̃(t) =
1
2π

∞∑

m=1

NmΦm(t) (9)

where

Φm(t) = (−1)m−1σm
eita/2 + e−ita/2

σ2
m − t2

(10)

Next, we eliminate D̃(t) from Eqs. (8) and (9) to yield

D(t)=
1

2πsh[α(t)b]

∞∑

m=1

[(
Bm+Cme−2ih′m`

)
−Nmch[α(t)b]

]
Φm(t) (11)

Substituting Eqs. (9) and (11) into Eqs. (5e) and (5g) leads to the
following functional equations:

∞∑

m=1

ih′m
(
Bm − Cme−2ih′m`

)
cos(σmx)

= −
∞∑

m=1

[(
Bm+Cme−2ih′m`

)
Fm(x)−NmF̃m(x)

]
(|x| ≤ a/2) (12)

∞∑

m=1

ihmNm cos(σmx)

=
∞∑

m=1

[(
Bm+Cme−2ih′m

)̀
F̃m(x)−NmFm(x)

]
(|x| ≤ a/2) (13)
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where

Fm(x) =
1
2π

∞∫

−∞

α(t)Φm(t)ch [α(t)b]
sh [α(t)b]

eitxdt (14)

F̃m(x) =
1
2π

∞∫

−∞

α(t)Φm(t)
sh [α(t)b]

eitxdt (15)

The integration in Eqs. (14) and (15) can be easily performed
using the residual calculus to obtain

Fm(x) = (−1)m−1σm

{
(−1)m−1

√
σ2

m − k2
0

cth(
√

σ2
m − k2

0b)
σm

cos(σmx)

+i
∞∑

n=1

(t2n − k2
0)

eitn(a/2+x) + eitn(a/2−x)

btn(σ2
m − t2n)

}

F̃m(x) = (−1)m−1σm

{
(−1)m−1

√
σ2

m − k2
0

σmsh(
√

σ2
m − k2

0b)
cos(σmx)

+i

∞∑

n=1

(−1)n(t2n − k2
0)

eitn(a/2+x) + eitn(a/2−x)

btn(σ2
m − t2n)

}

where tn = −
√

k2
0 − (πn/b)2.

Finally, multiplying Eq. (5h) by the eigen-functions {cos(σnx)}∞n=1
and integrating over the segment−a/2 ≤ x ≤ a/2 leads to the following
relations

(Bm + Cm) e−ih′m` =
2

2m− 1

∞∑

s=1

XsJ2s−1[(2m− 1)α] (16)

where α = πd/(2a), and J2s−1(x) is the (2s − 1)-th order Bessel
function.

It can be shown, that Eq. (16) automatically satisfies Eq. (5b)
that excludes it from further consideration. Thus, the initial system of
functional Eqs. (5a)–(5h) is reduced to the equivalent system (7), (12)
and (13) in terms of unknown coefficients Bm, Cm and Nm, with
substitution of (16) to satisfy the edge condition (4).

2.4. System of Algebraic Equations

Let now reduce the obtained functional system to the algebraic
equations convenient for the numerical analysis. First, we change the
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variables in Eq. (7) as σmx = (2m−1)αξ, ξ = 2x/d to use the following
series expansion of trigonometric functions in domain ξ ∈ [−1, 1]

cos[(2m− 1)αξ]

= 2
∞∑

n=1

(−1)n−1(2n− 1)
J2n−1 [(2m− 1)α] U2n−1(ξ)

α(2m− 1)
√

1− ξ2
(−1 ≤ ξ ≤ 1)

Using now the orthogonality of Chebyshev functions {U2n−1(αξ)}∞n=1
over the segment −1 ≤ ξ ≤ 1 yields the following set of algebraic equa-
tions ∞∑

m=1

(R′
nmCm + R′′

nmBm) = an(n = 1, 2, 3 . . .) (17)

where

an = 2h1(−1)n−1(2n− 1)
J2n−1(α)

α
(17a)

R′
nm = (h′m + hm)rnm, R′′

nm = −(h′m − hm)rnm

rnm = e−ih′m`(−1)n−1(2n− 1)
J2n−1 [(2m− 1)α]

α(2m− 1)
Next, using the orthogonality of eigen-functions {cos(σnx)}∞n=1 on

the segment −a/2 ≤ x ≤ a/2, we obtain from Eq. (12) the following
set of algebraic equations, considered together with Eq. (17)

Bn − Cne−2ih′n` =
∞∑

m=1

[
Bm + Cme−2ih′m`

]
Q̃nm + NmQ̃′

nm

(n = 1, 2, 3 . . .) (18)
where

Q̃nm = −2Qnm/(ih′na), Q̃′
nm = 2Q′

nm/(ih′na) (18a)
and

Qnm =

a/2∫

−a/2

Fm(x) cos(σmx)dx = (1)m−1σm ×
{

(1)m−1ζm

σmth(ζmb)
a

2
δnm

−2i(−1)n−1 σn

b

∞∑

s=1

(h2′′
s − k2

0)(1 + e−ih′′s a)
h′′s(h2′′

s − σ2
n)(h2′′

s − σ2
m)

}
(18b)

Q′
nm =

a/2∫

−a/2

F̃m(x) cos(σmx)dx = (1)m−1σm ×
{

(1)m−1ζm

σmsh(ζmb)
a

2
δnm

−2i(−1)n−1 σn

b

∞∑

s=1

(−1)s(h2′′s − k2
3)(1 + e−ih′′s a)

h′′s(h2′′
s − σ2

n)(h2′′
s − σ2

m)

}
(18c)
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where h′′n =
√

k2
0 − (nπ/b)2, ζm =

√
σ2

m − k2
0.

Applying now the same procedure to Eq. (13) yields the following
set of algebraic equations, considered together with Eqs. (17) and (18)

−Nn =
∞∑

m=1

(
Bm+Cme−2ih′m`

)
Q̂′

nm+NmQ̃′′
nm (n=1, 2, 3 . . .) (19)

where
Q̃′′

nm = −2Qnm/(ihna), Q̂′
nm = 2Q′

nm/(ihna) (19a)

Finally, using Eq. (16), we eliminate the unknowns Cm from the
algebraic system (17) to (19) to meet the edge condition (4) and obtain
the following triple set of linear algebraic equations

∞∑

s=1

(RnsBs + R∗
nsXs) =an

Bnbn +
∞∑

s=1

(PnsBs + P ∗
nsXs + Q̃′

nsNs) =0 (n = 1, 2, 3 . . .)

−Nn +
∞∑

s=1

(GnsBs + G∗
nsXs + Q̃′′

nsNs) =0

(20)

where an is defined by Eq. (17a), and

Rns =−2h′se
−ih′s`(−1)n−1(2n− 1)

J2n−1 [(2s− 1)α]
α(2s− 1)

(20a)

R∗
ns =

2
α

(−1)n−1(2n− 1)

×
∞∑

m=1

(hm + h′m)J2n−1 [(2m− 1)α] J2s−1 [(2m− 1)α]
(2m− 1)2

(20b)

P ∗
ns =−βnJ2s−1 [(2n− 1)α]−

∞∑

m=1

βmQ̃nmJ2s−1 [(2m− 1)α] (20c)

bn =1+e−2ih′n`, Pns =−(1−e−2ih′s`)Q̃ns, βn =
2e−ih′n`

2n− 1
(20d)

Gns =(1−e−2ih′s`)Q̂′
ns, G∗

ns =
∞∑

m=1

βmQ̂′
nmJ2s−1 [(2m− 1)α] (20e)

and Q̃ns, Q̃′
ns, Q̃′′

ns and Q̂′
ns and are defined by Formulas (17a), (18a)

to (18c) and (10a), respectively. The linear set (20) fully determines
the solution to the boundary problem.
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2.5. Field in the Side Branches and Power Balance Equation

After solution of the linear set (20), fields in the main arm (areas 1 and
2) and the bottom arm (area 6) of cruciform waveguide junction may
be calculated using Eqs. (1), (2a), (2b), (2d), (6) and (16). However,
calculation of fields in the resonance region 3 and the side branches 4
and 5 requires additional analytical treatment.

Substituting Eqs. (9) and (11) into Eq. (2c) yields

Ey3 =
∞∑

m=1

[(
Bm + Cme−2ih′m`

)
Ψm(x, z) + NmΨ̂m(x, z)

]

(` ≤ z ≤ L,−∞ < x < ∞) (21)
where

Ψm(x, z) =
1
2π

∞∫

−∞

Φm(t)sh [α(t)(L− z)]
sh[α(t)b]

eitxdt (22)

Ψ̂m(x, z) = − 1
2π

∞∫

−∞

Φm(t)sh [α(t)(`− z)]
sh[α(t)b]

eitxdt (23)

and Φm(t) is defined by Eq. (10).
Equation (21) is applied to characterise the fields at all areas

(3, 4 and 5) in side waveguide, but the results of integration in (22)
and (23) depend on the chosen area (value of variable x). From the
mathematical point of view, this is because of choosing different half
planes for finding poles of integrand expressions. From the physical
point of view, this is because of the change of physical meaning of the
solution.

Thus, integration of (22) and (23) in area 3 yields

Ψm(x, z) = cos(σmx)
sh [ζm(L− z)]

sh(ζmb)

− 2iσm

(−1)m−1

∞∑

n=1

qne−ih′′na/2 cos(h′′nx)
(−1)nh′′nb(h2′′

n −σ2
m)

sin [qn(L−z)] , |x|≤a/2 (22a)

Ψ̂m(x, z) = − cos(σmx)
sh [ζm(`− z)]

sh(ζmb)

+
2iσm

(−1)m−1

∞∑

n=1

qne−ih′′na/2 cos(h′′nx)
(−1)nh′′nb(h2′′

n −σ2
m)

sin [qn(`−z)] , |x|≤a/2 (23a)

where qn = πn/b. Eqs. (22a) and (23a) describe the standing waves in
resonance area 3.
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The integration of (22) and (23) in areas 4, 5 yields

Ψm(x, z) = −2i(−1)m−1σm ×
∞∑

n=1

qn(−1)n cos(h′′na/2)
bh′′n(h2′′

n − σ2
m)

sin [qn(L− z)] e±ih′′nx, |x| ≥ a/2 (22b)

Ψ̂m(x, z) = 2i(−1)m−1 σm

h2′′
n − σ2

m

×
∞∑

n=1

qn cos(h′′na/2)
bh′′n

sin [qn(L− z)] e±ih′′nx, |x| ≥ a/2 (23b)

where “+” sign in exponents stands for area 4 (x < −a/2), and “−”
sign stands for area 5 (x > a/2). Eqs. (22b) and (23b) describe the
outgoing waves in the side waveguide arms 4 and 5.

Substituting Eqs. (22b) and (23b) in Eq. (21) and changing the
order of the summations allows rewriting it in more convenient form

Ey4,5 =
∞∑

n=1

Tn sin [qn(L− z)] e±ih′′nx (` ≤ z ≤ L, |x| ≥ a/2) (24)

where

Tn = −2(−1)ni
qn cos(h′′na/2)

bh′′n

×
∞∑

m=1

[
Bm + Cme−2ih′m` −Nm(−1)n

]
(−1)m−1 σm

h2′′
n − σ2

m

are the amplitudes of modal spectra of waves transmitted into the side
waveguide arms 4 and 5.

The field representations (1), (2a), (2e) and (21) define the
power balance equation in cruciform waveguide junction written in
normalized form as

M∑

m=1

(P̂1m + P̂6m)+
N∑

n=1

(P̂4m + P̂5m) = 1 (25)

where

P̂1m =
hm

h1
|Am|2

P̂4n = P̂5n =
h′′nb

h1a
|Tn|2
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and
P̂6m =

hm

h1
|Nm|2

are the normalized reflected and transmitted powers in the main, side
and bottom waveguide arms, respectively, and M and N denote the
numbers of propagating modes in these arms. Eq. (25) may be used to
validate the accuracy of the solution from the energetic point of view.

3. NUMERICAL RESULTS AND DISCUSSION

The obtained solution (20) has been numerically investigated for
different truncation indexes Ntr, geometry parameters b/a, inclusion
parameters `/a, d/a, εr and frequency parameters 2a/λ. It has been
stated, that a stable solution with a graphical accuracy is obtained
already for Ntr = 5 to 7. It has been also verified, that power
balance Eq. (25) is satisfied with accuracy 10−10, besides the points of
generating of new waveguide modes. Finally, the near field structure
has been investigated to confirm, that the obtained solution satisfies
all the boundary conditions. Hence, this solution totally satisfies the
formulated problem [24].

Further, the obtained solution was used to calculate the scattering
characteristics and find the optimal parameters of the included
diaphragm ensuring minimum reflection in the main arm of the
cruciform waveguide junction at the desired frequency band. Let
demonstrate them first for equal arm widths (b/a = 1) and missed
dielectric filling (εr = 1).

Figures 2(a) and (b) present the maps of voltage standing wave
ratio (VSWR) in the main arm of the cruciform waveguide junction
versus the frequency parameter 2a/λ and geometric parameters of
the diaphragm. The different colours in palette maps correspond
to different values (levels) of VSWR, which are shown on the scroll
bars on the right. Thus, the dark blue colour area in the maps
corresponds to the minimum VSWR (minimum reflection) in the
main arm given the values of optimal geometric parameters of the
diaphragm. These optimal parameters of inclusions are dependent
on the chosen frequency range (regime of propagation). So, chosen
the frequency range 2a/λ = 1.75 to 1.85, the optimal diaphragm
parameters are found to be `/a = 0.56, d/a = 0.67.

Figure 3 shows the frequency behavior of the reflected and
transmitted powers in cruciform waveguide junction for the diaphragm
parameters `/a = 0.56, d/a = 0.67. These graphs illustrate a rather
good power balance performance in waveguide junction and allow
determining the frequency bands with admissible reflection. Thus,
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(a) (b)

Figure 2. VSWR maps in cruciform waveguide junction with a
conducting diaphragm for b/a = 1, εr = 1 and different diaphragm
parameters: (a) `/a = 0.56, (b) d/a = 0.67.
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Figure 3. Energetic characteristics of cruciform waveguide junction
with a conducting diaphragm versus the frequency parameter 2a/λ at
diaphragm parameters `/a = 0.56, d/a = 0.67.

in one-mode regime of propagation minimum reflection is observed for
2a/λ = 1.28 and 1.78.

Figure 4 demonstrates a near field structure in waveguide junction
calculated at optimal diaphragm parameters `/a = 0.56, d/a =
0.67, 2a/λ = 1.78. This figure illustrates the boundary conditions
performance in waveguide junction, allows evaluating the peak values
of the electric field nearby the resonance region, and demonstrates the
formation of a regular field structure nearby the juncture regions.

Finally, Figs. 5(a) and (b) show the VSWR maps in the main arm
of the cruciform waveguide junction with a conducting diaphragm and
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(a) (b)

Figure 4. The electric field structure in the y-cut plane of waveguide
junction with a conducting diaphragm for bα = 1, εr = 1 and optimal
diaphragm parameters `/a = 0.56, d/a = 0.67, 2a/λ = 1.78: (a) 3D-
view, (b) 2D-view.

d/a

2a/λ 2a/λ

l/a

(a) (b)

Figure 5. VSWR maps in cruciform waveguide junction with a
conducting diaphragm for b/a = 1, εr = 2.1 and different diaphragm
parameters: (a) `/a = 0.49, (b) d/a = 0.67.

dielectric layer (εr = 2.1). For the comparison, Fig. 5(b) is calculated
for the same diaphragm gap (d/a = 0.67), as that in Fig. 2(b). It is
seen, that the presence of dielectric results in the shift of the optimal
distance `/a and the decrease of the operation frequency corresponding
to minimum reflection. Thus, the presence of the metallic and dielectric
inclusions allows one to find the optimal regime of propagation in
cruciform waveguide junction with minimum reflection in the main
arm.
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It should be noted that the described optimization strategy
allows only optimization of the main (input) waveguide arm. It
results in a number of the sets of optimized parameters. The
further selection of the acceptable optimized set should be done
depending on the specification of the designed device. The more
severe specification requires the further modification of the structure
by including additional adjusting elements to match each waveguide
juncture and considering the multi-parameter optimization strategy.

4. CONCLUSIONS

In this work, a rigorous theory has been developed for H-plane four-
port (cruciform) waveguide junction with a conducting diaphragm and
a dielectric layer in the main arm. The scattering characteristics of such
a junction have been analysed, and optimal parameters of inclusions
have been predicted based on the palette maps for the voltage standing
wave ratio (VSWR) versus the parameters of inclusions in the main
arm of the junction.
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