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Abstract—A method for modeling and designing of coupled
resonators photonic crystal (PC) filters for wavelength division
multiplexing (WDM) systems is presented. This proposed method
is based on coupling coefficients of intercoupled resonators and the
external quality factors of the input and output resonators based on
the circuit approach. A general formulation for extracting the two
types of parameters from the physical structure of the PC filters is
given. At last, we redesign a third-order Chebyshev filter which has
a center frequency of 193.55THz, a flat bandwidth of 50 GHz, and
ripples of 0.1 dB in the pass-band. The filter’s structure derived from
the proposed method is more compact.

1. INTRODUCTION

Photonic crystal filters are the essential components of photonic
integrated circuits and optical communication systems [1–5]. High-
Q-factor optical resonant filters, utilizing a single-defect mode in PC,
have been demonstrated experimentally. And the transmission spectra
of such filters are Lorentzian [6, 7]. For optical resonant filters used in
WDM optical communication systems, the transmission characteristics
need to be improved, so as to have steep roll-off and flattened pass-
band. This demands higher order filters. Higher order filters can be
created by coupling multiple resonators. A third-order filter [8, 9] and
an N-coupled-resonators filter [10] have been designed for improving
the filtering performance. Presently, an approach based on the time
domain coupled-mode theory (CMT) [11] was adopted for analyzing
and designing many types of filters [12–15] including the coupled-
resonators PC filters [9]. Based on the CMT method, the coupling
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between two resonators can be treated as if the resonators interact
through a waveguide with a phase shift. However, the phase shift is
determined by the center frequency of the filter, the effective index
of the waveguide and the choice of reference planes. The exact
computation of the phase shift would be difficult. The relatively
simple model used for description of coupling structures, which was
previously developed in solid state physics and known as tight-binding
approximation [16], make them all more attractive for investigation
and applications. The linear interaction of light with photonic cavities
is analogous to interaction of electrons with quantum dots in solid state
physics [17] once one ignores the polarization effects in the former and
the multi-particle nature in the latter. If the cavities are relatively
small and contain a few eigenstates, the light propagation through
series of them is essentially one-dimensional. Therefore, a device built
on these cavities is analogous to an electric circuit.

Recently, some approximate methods such as effective impedance
model [18–20] and transmission-line model [21] which had been used
in analyzing microwave phenomena are applied to analyze the PC and
PC waveguides. In this paper, we propose a simple method to model
photonic crystal filters by using the multiple cavities which based on
the coupling matrix. The coupling matrix is important for representing
a wide range of multi-coupled-resonator filters topologies [22, 23].
This idea is based on coupling coefficients of intercoupled resonators
and the external quality factors of the input and output resonators.
These parameters can be easily extracted by means of a numerical
method, such as the finite-difference time-domain (FDTD) method.
The frequency characteristic of the filter is developed directly from the
circuit approach, which introduce the microwave filter theory to design
the PC filters and avoid the calculations of the phase shift between the
resonators. Although the derivations are based on circuit models, the
outcomes are also valid for any other type of filter on a narrow-band
basis.

2. THEORETICAL MODEL

The structure of the filter is shown in Fig. 1(a) with its schematic
diagram shown in Fig. 1(b). It consists of n resonators and
input/output waveguide. By lumped parameter approximation with
lossless, the model of the filter is represented as the circuit which
is illustrated in Fig. 1(c), where L, C and R denote the inductance,
capacitance, and resistance, respectively; i represents the loop current;
and es the voltage source. Generally, the coupling between two
resonators can be magnetic or electric or even the combination of both.
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Figure 1. (a) Structure of the coupled resonator filter in a PC,
which is composed of n resonators. (b) Schematic diagram of the
filter. (c) Equivalent circuit of the structure in (a). (d) Its network
representation.
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Here we assume that the coupling is magnetic. By using the voltage
law, which is one of Kirchhoff’s two circuit laws and states that the
algebraic sum of the voltage drops around any closed path in a network
is zero, we can write down the loop equations for the circuit of Fig. 1(c):(

R1 + jwL1 +
1

jwC1

)
i1 − jwL12i2 · · · − jwL1nin = es

−jwL21i1 +
(

jwL2 +
1

jwC2

)
i2 · · · − jwL2nin = 0

...

−jwLn1i1 − jwLn2i2 · · ·
(

Rn + jwLn +
1

jwCn

)
in = en

(1)

in which Lij = Lji represents the mutual inductance between resonator
i and j, and the all loop currents are supposed to have the same
direction, so that the voltage drops due to the mutual inductance have
a negative sign. This set of equations can be represented in matrix
form


R1+jwL1+ 1
jwC1

−jwL12 · · · −jwL1n

−jwL21 jwL2+ 1
jwC2

· · · −jwL2n

...
...

...
...

−jwLn1 −jwLn2 · · · Rn+jwLn+ 1
jwCn







i1
i2
...
in


=




es

0
...

en


 (2)

or

[Z] · [i] = [e]

where [Z] is an n× n impedance matrix.
For simplicity, let us first consider a synchronously tuned filter.

In this case, the all resonators resonate at the same frequency, namely
the mid-band frequency of filter w0 = 1/

√
LC, where L = L1 = L2 =

. . . = Ln and C = C1 = C1 = . . . = Cn. The impedance matrix in
Eq. (2) may be expressed by

[Z] = w0L ·
[
Z̄

]
(3)

where [Z̄] is the normalized impedance matrix, which in the case of
synchronously tuned filter is given with assuming w/w0 ≈ 1 for a
narrow-band approximation:

[
Z̄

]
=




1
Qe1

+ Ω −jM12 · · · −jM1n

−jM21 Ω · · · −jM2n
...

...
...

...
−jMn1 −jMn2 · · · 1

Qen
+ Ω


 (4)
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where Ω = j(w/w0 − w0/w) is the normalized complex low-pass
frequency variable, Qei = w0L/Ri (for i = 1 or n) is the external
quality factor, and Mij = Lij/L is the coupling coefficient.

A network representation of the circuit of Fig. 1(c) is shown in
Fig. 1(d), a1, a2, b1 and b2 are the wave variables. Referring to the
relationships between the wave variables and the voltage and current
variables, we can get

a1 =
es

2
√

R1
, b1 =

es − 2i1R1

2
√

R1
, a2 = 0, b2 = in

√
Rn (5)

and hence the transmission coefficient and the reflection coefficient can
be expressed as

S21 =
b2

a1
|a2=0 =

2√
Qe1 ·Qen

[
Z̄

]−1

n1
(6)

S11 =
b1

a1
|a1=0 = 1− 2√

Qe1

[
Z̄

]−1

11
(7)

where [Z̄]−1
ij denotes the ith row and jth column element of [Z̄]−1.

If the coupling is electric, the formulation of normalized
admittance matrix is identical to that of normalized impedance matrix.
It implies that we could have a unified formulation for an n-coupled
resonator filter regardless of whether the couplings are magnetic or
electric or even the combination of both. Accordingly, the transmission
coefficient and the reflection coefficient may be incorporated into a
general one:

S21 = 2
1√

Qe1 ·Qen
[A]−1

n1 (8)

S11 = ±
(

1− 2√
Qe1

[A]−1
11

)
(9)

with [A] = [Q] + Ω[U ] − j[M ], where [Q] is an n × n matrix with all
entries zero, except for Q11 = Qe1 and Qnn = Qen, [U ] is the n×n unit
or identity matrix, and [M ] is the so-called general coupling matrix,
which is an n × n reciprocal matrix (i.e., Mij = Mji). In this paper,
we call the method the coupling resonator method (CRM).

For filters based on resonators structures, the external quality
factor and the coupling coefficient can be extracted as [23]:

Qe =
2w0

∆w3dB
(10)

Mij = ±
(

w0j

w0i
+

w0i

w0j

) √√√√
(

w2
j − w2

i

w2
j + w2

i

)2

−
(

w2
0j − w2

0i

w2
0j + w2

0i

)2

(11)
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where w0 and ∆w3dB represent the resonant frequency and bandwidth
for a doubly loaded resonator respectively; w0i = (LiCi)−1/2 and
w0j = (LjCj)−1/2 are the two resonant frequencies of uncoupled
resonators, wi and wj are the characteristic frequencies of two coupled
resonators corresponding to odd and even modes which are shown in
Fig. 2.

a

1r 2r

r

(a)

(b)

(c)

Defect 1 Defect 2
Odd

Even

L

Figure 2. (a) Structure of two coupled resonators formed by point
defects. And electric field profiles of two states of two coupled
resonators: (b) even mode, (c) odd mode.

It is remarked that the interaction of the coupled resonators is
mathematically described by the dot operation of their space vector
fields, which allows the coupling to have either positive or negative
sign. A positive sign would imply that the coupling enhances the
stored energy of uncoupled resonators, whereas a negative sign would
indicate a reduction. Therefore, the electric and magnetic couplings
could either have the same effect if they have the same sign, or have the
opposite effect if their signs are opposite. In this paper, we specify that
the positive sign is taken when the frequency of odd mode is greater
than that of even mode; conversely, the negative sign is taken.

If the coupling coefficients of the resonators are obtained, the
coupling matrix is formed. Then the frequency response of the filter
can be calculated by the Eq. (8) and Eq. (9). It can be seen that the
normalized transmission spectrum is determined by two parameters:
the quality factor Qe, and the coupling coefficient Mij .

At first the effect of the quality factor is considered in case of
two identical resonators. The transmission spectra of the filters with
the different quality factors are shown in Fig. 3(a). In this situation,
we assume that the coupling between the two cavities is unchanged.
It can be seen that the degree of resonance peaks’ deviator factor
decreases with decreasing quality factor but not with its bandwidth,
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(a) (b)

Figure 3. Comparison of the transmission spectra of the coupled
cavities filter with different parameters. (a) Different external quality
factors: Qe = 20 (dot line), Qe = 50 (dash line), and Qe = 80
(solid line). (b) Different coupling coefficients: Mij = 0.02 (dot line),
Mij = 0.04 ( dash line), Mij = 0.06 (solid line).

so the full-width at half maximum (FWHM) ∆w remains virtually
unchanged. And the larger of deviator factors the sharper roll-off of
the transfer response. But the amplitude of the in-band ripple grows
with increasing of the external quality factor. Subsequently, Fig. 3(b)
shows the transmission spectra of the filters which are composed of
the same two coupled cavities with different coupling coefficients and
fixed quality factor. It shows that the bandwidth and the in-band
ripple increase with the increase of coupling intensity, but the roll-
off of transfer response is almost unchanged. So designing a filter with
desired response requires a rational selection of external quality factors
and coupling coefficients.

3. EXAMPLE

To demonstrate the robustness of the proposed method for modeling
photonic crystal filters, we present an example in this section. In order
to design the higher order PC filter, the resonators are separately
designed in a 2-D PC waveguide to have the determined center
frequency and the proper Qe factors. Those parameters may be tuned
by changing the radius of the defects and the radius of the rods near
the defects, then, the coupling coefficient can be extracted by treating
every two resonators as a whole. By adjusting the radius of the rods
between the defects, the coupling coefficient can also be tuned to
approach that we desired. With the software ‘Rsoft’ [24], the values of
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the above parameters can be obtained.
At last, we redesign the coupled-resonators band-pass photonic

crystal filter by the method presented in the paper. The specifications
for the filter under consideration are [9]:

• Center frequency 193.55THz
• Flat bandwidth 50 GHz
• Pass-band ripple 0.1 dB

First, an n = 3 Chebyshev low-pass prototype is required, and,
the external quality factors and the coupling coefficients can also be
obtained by Synthesis methods [22, 23], which are shown followed:

• Qe1 = Qe3 = 4800
• M1,2 = M2,3 = 0.093, M1,3 = 0.0084

Second, we choose a PC topology structure which two parameters
are closed to that obtained above. The rods in air type PC based on
square lattice is adopted with the radius and the dielectric constant of
the rods in the background 2-D PC are set to 0.2a (here a = 580 nm)
and 11.56 respectively. In this paper, all the dimensions are specified
in unit of the lattice constant so that future studies can make use of the
scalability of PC. By plane-wave expansion technique, the normalized
frequency of the TE band-gap of the PC is 0.28547 to 0.41987. To form
a waveguide, a row of rods are removed in the complete PC and the
dispersion diagram of the guide mode is shown in Fig. 4(a). Then, it
is found that the resonance frequency of 193.55 THz is attained when
the three defect rods r1 = r2 = r3 = 0.098a. The dependence of the
resonant frequency of the coupled cavity on the coupled defect radii is
shown in Fig. 4(b).

It is known that the coupling coefficients are affected by the
position of the resonators, so we first extract the coupling coefficients
with different position and the dimension of the defects, which are
shown in Table 1 and Table 2.

Substantial work is to set the three coupled cavities at proper
position so that the coupling coefficients of every two resonators are

Table 1. Coupling coefficients of different length between the two
resonators.

L(a) 3 4 5 6 7
Mij 0.116 0.0502 0.0125 0.0032 0.00083

*The table shows the relation between the coupling coefficients and the different

length of the two defects. The radius of the two defect rods are both 0.1a.
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Table 2. Coupling coefficients of two resonators with different defect
radius.

ri

(resonant frequency)

0.1

(0.32585)

0.09

(0.335044)

0.08

(0.343505)

0.07

(0.351339)

rj

(resonant frequency)

0.1

(0.32585)

0.11

(0.316988)

0.12

(0.308489)

0.13

(0.30083)

Mij 0.0502 0.2412 0.3463 0.4273

*The table shows the relation between the coupling coefficients and the radius of

the two individual defects with its normalized resonator frequencies in the brackets.

The length of the two defects L is 4a.
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Figure 4. (a) Dispersion diagram of the guided mode inside the PBG
(photonic band gap) in the Γ-X direction. (b) Dependence of the
resonant frequency of the coupled cavity on the coupled defect radii.

close to the calculated values. The coupling coefficients are considered
at first. We first put the three resonators in a straight line with 4a
spacing of which the topology structure is shown in Fig. 5(a), then,
extract the coupling coefficients of them, the results are: M1,2 =
M2,3 = 0.051, M1,3 = 0.000092. It appears very different from the
desired ones. After extensive calculations, it has been found that M1,2

and M2,3 and M1,3 factors of 0.072, 0.072 and 0.0049 are attained when
the second resonator is placed below the waveguide shown in Fig. 5(b).

Then, considering that the bandwidth and the ripple of the pass-
band are both affected by coupling intensity, we first tune the second
defect rod r2 to 0.96a so as to make the band-width of the device
approach the given specification, next, the radius of the rods ra placed
between defect and waveguide are fine tuned to 0.018a to make the
pass-band ripple reduced to less than 0.1 dB. The theoretical result
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Figure 5. (a), (b) Schematic diagram of the designed filter, which is
composed of 3 resonators. (c) Transmission spectra of the desired filter
by the synthesized method (real line) and the simulation result by the
FDTD method (dotted line).

which uses Eq. (8) is plotted as real line and compared to the result
obtained by 2-D FDTD method with dotted line in Fig. 5(c). It
indicates that the method presented in this paper is valid for designing
coupled-resonators band-pass photonic crystal filters.

In order to obtain the desired filter based on photonic crystal, in
general, the structure parameters need to be adjusted, that consumes
substantial computation. However, based on the external quality
factors and the coupling coefficients deduced from circuit approach
model, it would be purposeful to change the structure when the
relationship between the frequency characteristics and the structure
parameters of the filter is known.

4. CONCLUSION

We presented a circuit-based approach for modeling and designing
coupled-resonators band-pass photonic crystal filters. It was shown
that a chain of serially coupled-resonators can be represented by
an equivalent baseband LC ladder network in the narrowband
approximation. By introducing the external quality factor and the
coupling coefficient, the circuit model allows the standard analog-filter-
realization techniques to be directly applied to design the coupled-
resonators filters based on photonic crystal. Compared with the
previous methods, the proposed method is simple and efficient for
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designing the band-pass PCs filters, which avoids the calculation of the
phase shift between the resonators. And the structure derived from
the method is more compact. Examples were provided to illustrate
the application of the technique for designing the standard Chebyshev
filters, and the characteristics were in good agreement with the design
specifications, so the designed filter is suitable for the use in WDM
optical communication systems.
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