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ARBITRARILY POLARIZED PLANE-WAVE DIFFRAC-
TION FROM SEMI-INFINITE PERIODIC GROOVESAND
ITS APPLICATION TO FINITE PERIODIC GROOVES
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Abstract—Arbitrarily polarized plane-wave diffraction equations
for semi-infinite periodic rectangular grooves (RG) in a perfectly
conducting plane are approximately proposed. To obtain diffraction
equations for semi-infinite periodic RG, we utilize an overlapping
T-block method as proposed for the analyses of finite and infinite
numbers of RG, and the subtraction technique with infinite periodic
solutions. The proposed semi-infinite solutions are then applied to
finite periodic RG with very large number of diffracting elements. For
verification of our approach, we performed numerical computations for
finite periodic RG and compared our solutions based on semi-infinite
equations with previously published analytic solutions, thus obtaining
favorable agreement and proving computational efficiency.

1. INTRODUCTION

Periodic gratings are widely used to control electromagnetic field
distributions such as optical disks, interferometers, diffraction gratings,
non-destructive crack detectors, and solar cells [1–4]. Rectangular
metallic grooves (RG) in a conducting plane can constitute diffracting
periodic gratings and they are well discussed in [4–7]. The problem of
a semi-infinite array with various diffracting elements has been also
analyzed with several numerical techniques [7–17]. The diffraction
characteristics of periodic gratings are mainly analyzed with periodic
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boundary conditions based on the Floquet theorem and modes, even
though actual gratings have finite width and their solutions are
incorrect near the edges of gratings [1, 2]. Since a semi-infinite array
has edge effect on one side, the analysis of a semi-infinite array enables
us to understand the diffraction characteristics of a finite periodic
array [13]. Thus, it is of theoretical and practical interest to obtain the
solutions for the semi-infinite array and extend them to the problem
of real diffraction gratings.

In this work, we adopt and extend the same method proposed
in [6, 7] to obtain arbitrarily polarized plane-wave solutions for semi-
infinite periodic RG. To accelerate the convergence of summations
of electromagnetic fields diffracted from each RG, we subtract
original fields with infinite periodic ones and constitute the
simultaneous equations which are numerically computable. The
subtraction technique in [6, 7] was already proposed for acoustic wave
scattering [8, 9]. Recently, the analysis method in [8, 9] has been
extended to the problem of semi-infinite metal-nanoparticle chains [10].

In the next step, we will judiciously combine the diffracted fields
and phases of semi-infinite periodic RG and approximately predict
the diffraction behaviors of very large number of finite periodic
RG without the loss of precision. In addition to the subtraction
technique, the extended Wiener-Hopf factorization technique [11, 14]
and a domain reduction technique [12] were proposed to understand
the diffraction and coupling effects of semi-infinite arrays. Using the
Poisson summation formula [15] and the Floquet waves [16, 17], the
Green’s functions of a semi-infinite array have been also obtained.

2. SEMI-INFINITE PERIODIC GROOVES

Assume that an arbitrarily polarized plane-wave impinges on semi-
infinite periodic RG in a perfectly conducting plane illustrated in
Figure 1. The semi-infinite periodicity means that the structure is
periodic in only one direction but not both. Each RG in Figure 1 has
identical structure and parameters. The time factor e−iωt is suppressed
throughout. The incident and reflected electric fields are written as

Ēi(x, y)=[ui (cos θix̂+sin θiŷ)+viẑ] exp [ik2 (sin θix− cos θiy)] (1)
Ēr(x, y)=[ui(−cos θix̂+sin θiŷ)−viẑ] exp [ik2 (sin θix+cos θiy)] , (2)

where k1,2 = ω
√

µ1,2ε1,2, ui and vi are constants representing the
polarization type, and θi is an incident angle of the plane-wave. To
obtain the diffracted fields from semi-infinite periodic RG Ētot(x, y),
we systematically represent the scattered electric fields for regions (I)
(y < 0) and (II) (y > 0) based on the superposition of overlapping
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Figure 1. Geometry of semi-infinite periodic rectangular metallic
grooves in a perfectly conducting plane.

Figure 2. Divided geometry of semi-infinite periodic rectangular
metallic grooves based on superposition principle.

T-blocks [6, 7] shown in Figure 2. Superposing and translating a single
RG on the PEC plane in Figure 2 from n = 1 to n = ∞ yields the
same geometry of Figure 1. By matching the appropriate boundary
conditions, we can determine all fields in Figure 1. Then, we represent
the total diffracted fields as

Ētot(x, y) = φ̂uiη2

∞∑

n=1

T
(n)
H [x−(n−1)T, y]+ẑvi

∞∑

n=1

T
(n)
E [x−(n−1)T, y],

(3)
where η2 =

√
µ2/ε2, am = mπ/(2a), ξm =

√
k2

1 − a2
m, ηm =√

k2
2 − a2

m,

T
(n)
H (x, y)=





∞∑
m=0

q
(n)
m cos am(x+a) cos ξm(y+d) for − d ≤ y < 0

− ε2
ε1

∞∑
m=0

q
(n)
m ξm sin(ξmd)

[
Hm(x, y)+RH

m(x, y)
]

for y≥0

(4)
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T
(n)
E (x, y)=





∞∑
m=1

p
(n)
m sin am(x + a) sin ξm(y + d) for − d ≤ y < 0

∞∑
m=1

p
(n)
m sin(ξmd)

[
Em(x, y) + RE

m(x, y)
]

for y ≥ 0
(5)

Hm(x, y)=
eiηmy

iηm
cos am(x + a) (6)

Em(x, y)=eiηmy sin am(x + a) (7)

RH
m(x, y)=

∫ ∞

0

[
Hm(r̄′1)

∂Gyy
A (r̄, r̄′1)
∂x

−Hm(r̄′2)
∂Gyy

A (r̄, r̄′2)
∂x

]
dy′ (8)

RE
m(x, y)=

∫ ∞

0

[
Gzz

A (r̄, r̄′1)
∂Em(r̄′1)

∂x′
−Gzz

A (r̄, r̄′2)
∂Em(r̄′2)

∂x′

]
dy′, (9)

r̄′1 = (−a, y′), r̄′2 = (a, y′), and Gyy,zz
A (r̄, r̄′) are the vector potential

Green’s functions for the y- and z-directed currents. The unknown
modal coefficients, q

(n)
m and p

(n)
m , are defined for the TM (Hz) and

TE (Ez) fields for the nth single RG which are rigorously formulated
in [6, 7], respectively.

Matching the tangential magnetic fields at y = 0, we can
determine the unknown modal coefficients of multiple RG, q

(n)
m and

p
(n)
m for the Hz and Ez fields [6, 7], where m and n indicate the mth

modal index for the nth RG in Figure 1, and m, n are used for modal
expansion and superposition of RG, respectively. It should be noted
that the scattered fields, T

(n)
H (x, y) and T

(n)
E (x, y) in (3), include the

unknown modal coefficients, q
(n)
m and p

(n)
m , in terms of modal expansion

method [6, 7]. However, the geometry in Figure 1 produces semi-
infinite periodic RG (n = 1, 2, 3, . . .) and then it results in semi-infinite
number of unknown modal coefficients, q

(n)
m and p

(n)
m . Therefore, it

is difficult to obtain the modal coefficients, q
(n)
m and p

(n)
m , rigorously.

In this work, we use the observation that the fields, T
(n)
H (x, y) and

T
(n)
E (x, y), become those of infinite periodic RG as the index n in

Figure 1 increases (n → ∞) [7]. When the index n is large enough,
we can replace the modal coefficients of multiple RG, q

(n)
m and p

(n)
m ,

with those of infinite periodic RG, q∞m and p∞m , which may be easily
obtained by the Floquet modal expansion [6, 7]. This means that
subtracting q∞m ei(n−1)k2T sin θi and p∞mei(n−1)k2T sin θi from q

(n)
m and p

(n)
m

makes the difference of modal coefficients converge to zero [7] when
n → ∞, whereas lim

n→∞ q
(n)
m and lim

n→∞ p
(n)
m oscillates. Based on the

method in [7], we will derive the simultaneous equations for the TE



Progress In Electromagnetics Research M, Vol. 18, 2011 47

modal coefficients p
(n)
m of semi-infinite periodic grooves. Multiplying

the Hx field continuity at y = 0 by sin al [x− (p− 1)T + a] (l = 1, 2, . . .
and p = 1, 2, . . .) and integrating over (p− 1)T − a ≤ x ≤ (p− 1)T + a

yields the full-wave simultaneous equations for p
(n)
m as

∞∑

n=1

∞∑

m=1

p(n)
m ψ

(n)
ml = vi · s(p)

E,l, (10)

where l, p are used for mode-matching procedure such as the lth modal
index for the pth RG in Figure 1, δml is the Kronecker delta,

ψ
(n)
ml =

1
µ1

ξm cos(ξmd)aδnpδml

− 1
µ2

sin(ξmd)
[
iηmaδnpδml+IE

ml [(p−n)T ]
]

(11)

IE
ml(x0) =

∫ x0+a

x0−a

∂RE
m(x, y)
∂y

∣∣∣∣
y=0

sin al(x− x0 + a)dx (12)

s
(p)
E,l =− i2k2 cos θi

µ2
Fl(k2 sin θi)ei(p−1)k2T sin θi (13)

Fm(ξ) =
am

[
(−1)meiξa − e−iξa

]

ξ2 − a2
m

. (14)

To utilize the subtraction technique with infinite periodic solutions
for the geometry in Figure 1, we need to choose a groove index NG.
The groove index means that when n > NG, scattering behaviors of
a semi-infinite array are very similar to those of an infinite periodic
array and thus we can replace p

(n)
m in (10) with p∞m obtained with

the Floquet analysis. Therefore, for n > NG, we assume that p
(n)
m

is almost identical to that of infinite periodic RG p∞m . Utilizing the
Floquet theorem [6, 7], p

(n)
m ≈ p∞m exp[i(n − 1)k2T sin θi], we get the

simplified equations as
NG∑

n=1

∞∑

m=1

p(n)
m ψ

(n)
ml ≈ vi · s(p)

E,l −
k2al

πµ2

∞∑

m=1

p∞mamψ∞ml, (15)

where 1 ≤ p ≤ NG, p∞m should be determined in advance,

ψ∞ml=sin(ξmd)e−ik2T sin θi

∫ ∞

0

(1 + 2vi)η2g∞ml(−ξ)
ξ(ξ2 − a2

m)(ξ2 − a2
l )

dv (16)

g∞ml(ξ)=
[
(−1)me−i2ξa+(−1)lei2ξa−(−1)m+l−1

]ei[pξT+(NG+1)φ0]

1− eiφ0
, (17)
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η = k2v(v − i), ξ =
√

k2
2 − η2, and φ0 = (k2 sin θi − ξ)T . The

integrand in (16) decreases exponentially with the increase of v and it
does not have any singularities with respect to v, thus indicating that
our solution (15) is very efficient for numerical computations. Similarly,
enforcing the Hz field continuity at y = 0 yields the simultaneous
equations for the TM modal coefficients q

(n)
m which are already obtained

in [7]. For reader’s convenience, we write the final equations as
NG∑

n=1

∞∑

m=0

q(n)
m φ

(n)
ml ≈ ui · s(p)

H,l −
k2ε2

πε1

∞∑

m=0

q∞m ξmφ∞ml, (18)

where αm = 1 + δm0,

φ
(n)
ml = cos(ξmd)aαmδnpδml

+
ε2

ε1
ξm sin(ξmd)

[
aαmδnpδml

iηm
+ IH

ml [(p− n)T ]
]

(19)

φ∞ml = sin(ξmd)e−ik2T sin θi

∫ ∞

0

(1 + 2vi)ξg∞ml(−ξ)
(ξ2 − a2

m)(ξ2 − a2
l )

dv (20)

IH
ml(x0) =

∫ x0+a

x0−a
RH

m(x, 0) cos al(x− x0 + a)dx (21)

s
(p)
H,l = 2Gl(k2 sin θi)ei(p−1)k2T sin θi (22)

Gm(ξ) =
iξ

[
e−iξa − (−1)meiξa

]

ξ2 − a2
m

. (23)

Even though the simultaneous equations, (15) and (18), are
approximate, we can improve the numerical accuracy by increasing
a groove index NG in (15) and (18).

Summing all far-fields of semi-infinite periodic RG, we asymptot-
ically write the scattered electric fields (y > 0) as

Ētot(ρ, θ; θi) = φ̂uiη2Hz(ρ, θ) + ẑviEz(ρ, θ), (24)

where ρ →∞, θ = tan−1(x/y), φf = k2T (sin θi − sin θ),

Hz(ρ, θ)≈ei(k2ρ+π/4)

√
2πk2ρ

ε2

ε1

∞∑

m=0

{
NG∑

n=1

q(n)
m e−i(n−1)k2T sin θ + q∞m

e−iφf /2

sin(φf/2)
[
i

2
−eiNGφf /2 sin(NGφf/2)

]}
ξm sin(ξmd)Gm(−k2 sin θ)+

1
2
Hpw

z (ρ, θ)(25)
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Ez(ρ, θ)≈ei(k2ρ−π/4)

√
2πk2ρ

k2cos θ
∞∑

m=1

{
NG∑

n=1

p(n)
m e−i(n−1)k2T sin θ+p∞m

e−iφf /2

sin(φf/2)
[

i

2
−eiNGφf /2 sin(NGφf/2)

]}
sin(ξmd)Fm(−k2 sin θ)+

1
2
Epw

z (ρ, θ), (26)

and Hpw
z (ρ, θ), Epw

z (ρ, θ) are far-fields of infinite periodic RG which
can be obtained with the Floquet modes. In a dominant-mode
approximation (M = 1 and NG = 1), (24) for semi-infinite periodic
RG is simplified as

Ētot(ρ, θ; θi) ≈ ei(k2ρ−π/4)

√
2πk2ρ

2i

{
ε2

ε1
4k1a

2 sin(k1d) · Sa(k2a sin θi)

×Sa(k2a sin θ)
φ1

[
φ1 − φ2

φ3
+

ie−iφf /2

2 sin(φf/2)
− 1

]
uiφ̂

−k2
2 sin(ξ1d) cos θi · F1(k2 sin θi)

cos θ · F1(k2 sin θ)
ψ1

×
[

ψ1 − ψ2

ψ3
+

ie−iφf /2

2 sin(φf/2)
− 1

]
viẑ

}
, (27)

where M denotes the number of truncated modes in region (I) (y < 0),
Sa(x) = sinx/x,

φ1 = 2a cos(k1d) +
ε2

ε1
k1 sin(k1d)

×
{

2a

ik2
+

k2

π

∫ ∞

0

1 + 2vi

ξ3

[
fH
+ (ξ) + fH

− (ξ)
]
m=l=0

dv

}
(28)

φ2 =
ε2

ε1

2k1k2

π
sin(k1d)

∫ ∞

0

1+2vi

ξ3

[cos(2ξa)−1]ei(ξ+k2 sin θi)T

1− ei(ξ+k2 sin θi)T
dv (29)

φ3 = 2a cos(k1d) +
ε2

ε1
k1 sin(k1d)

×
{

2a

ik2
+

2k2

π

∫ ∞

0

1 + 2vi

ξ3

(
ei2ξa − 1

)
dv

}
(30)

ψ1 =
µ2

µ1
ξ1a cos(ξ1d)− sin(ξ1d)

×
{

iη1a− k2a
2
1

π

∫ ∞

0

η2(1+2vi)
ξ(ξ2−a2

1)2
[
fH
+ (ξ)+fH

− (ξ)
]
m=l=1

dv

}
(31)

ψ2 =−2k2a
2
1

π
sin(ξ1d)

∫ ∞

0

η2(1+2vi)
ξ(ξ2−a2

1)2
[cos(2ξa)+1]ei(ξ+k2 sin θi)T

1− ei(ξ+k2 sin θi)T
dv(32)
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ψ3 =
µ2

µ1
ξ1a cos(ξ1d)− sin(ξ1d)

×
{

iη1a +
2k2a

2
1

π

∫ ∞

0

η2(1 + 2vi)
ξ(ξ2 − a2

1)2

(
ei2ξa + 1

)
dv

}
(33)

fH
± (ξ) =

{
ei[ξ(T−a)±k2T sin θi] − (−1)meiξa

}

1− ei(ξ±k2 sin θi)T

[
(−1)le−iξa−eiξa

]
. (34)

The Floquet-modes based plane-wave terms, Hpw
z (ρ, θ) and

Epw
z (ρ, θ), are omitted in (27). When ui = 1 and vi = ±i, the total

scattered electric fields for the circularly polarized plane-wave incidence
in the far-field region are represented as

Ētot(ρ, θ; θi) =
1√
2

[uiη2Hz(ρ, θ)− iviEz(ρ, θ)] ĈR

+
1√
2

[uiη2Hz(ρ, θ) + iviEz(ρ, θ)] ĈL (35)

where ĈR and ĈL denote right-handed (RH) and left-handed (LH)
circular polarization (CP) unit vectors, respectively,

3. APPLICATION TO FINITE PERIODIC GROOVES

Although the finite periodic grooves can be rigorously analyzed by
(15) and (18) with q∞m = p∞m = 0 [6, 7], the formulations, (15) and
(18), are inefficient and time-consuming when N À 1 (N : the number
of finite grooves). Once we obtain the diffracted fields of semi-infinite
periodic grooves, we can approximately but efficiently calculate those
of finite periodic grooves with the summation of two semi-infinite
periodic grooves. The basic concept is illustrated in Figure 3. The

Figure 3. Interpretation of scattering by finite periodic grooves in
terms of the summation of semi-infinite periodic grooves.
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edge diffracted field is one of fundamental and important factors of the
GTD (Geometrical Theory of Diffraction) or UTD (Uniform Theory of
Diffraction). In the GTD, the summation of edge diffracted fields can
result in the approximate diffracted fields of a real structure. We can
adopt the similar method used in the GTD for finite periodic gratings
to obtain those of large gratings.

In our method, the diffracted fields (24) are similarly used as the
edge diffracted fields in the GTD. Combining (24) and corresponding
translational phases, we can obtain the diffraction solutions for actual
finite periodic gratings with numerous elements (N À 1) as

Ēfinite(ρ, θ)≈ lim
ρ→∞

[
e−ik2xl sin θĒleft(ρ, θ; θi)+e−ik2xr sin θĒright(ρ, θ; θi)

]
,

(36)
where xl and xr are the positions of left and right semi-infinite periodic
grooves in the x-axis,

Ēleft(ρ, θ; θi) = Ētot(x, y) = Ētot(ρ, θ; θi) (37)

Ēright(ρ, θ; θi) = Ētot(−x, y) = Ētot(ρ,−θ;−θi). (38)

When the number of finite grooves is N , we may set xl = 0 and
xr = (N − 1)T for (36).

4. NUMERICAL COMPUTATIONS

Figure 4 illustrates the behaviors of scattered electric fields of
semi-infinite periodic RG for RHCP incidence (ui = 1 and
vi = i). The scattered electric field [dB] is defined by
20 log10 |2Ētot(ρ, θ)/H

(1)
0 (k2ρ)|, where H

(1)
0 (·) is the zeroth order

Hankel function of the first kind. As a period T increases, maximum
cross-polarization ratio for LHCP and RHCP tends to increase. The
Floquet-mode related peaks also vary with the change of T . Figure 5
shows the scattered electric fields behaviors of large number of multiple
RG [6] for the TE plane-wave incidence (ui = 0 and vi = 1). The total
width of finite periodic gratings used for numerical computation is
almost 1500λ0. The analytic simulations for multiple RG (N = 1000)
were performed with the method in [6]. These analytic scattering
behaviors are compared with the combined equations based on semi-
infinite periodic RG shown in (36). Overall diffraction tendency in
Figure 5 resembles each other, thus confirming that an approximate
equation based on semi-infinite periodic RG (36) can be utilized to
predict the scattered fields of actual finite gratings. It should be also
noted that a dominant mode solution (27) agrees well with the full-
wave calculations. In our computations, the required matrix size for
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Figure 4. Behaviors of scat-
tered electric fields of semi-infinite
periodic rectangular grooves for
RHCP incidence with ui = 1,
vi = i, a = 0.25λ0, d = 0.6λ0,
ε1 = ε2 = ε0, µ1 = µ2 = µ0,
θi = 25◦, NG = 10, and M = 4.

Figure 5. Scattered electric
fields for large number of rectan-
gular grooves (RG) versus an ob-
servation angle θ with ui = 0,
vi = 1, T = 1.5λ0 and the same
parameters in Figure 4.

multiple RG is N ·M (= 4000), whereas that for (36) is only NG ·M
(= 40). The parameters, N , NG, and M , denote the numbers of actual
periodic gratings, RG necessary to formulate the semi-infinite periodic
RG, and truncated modal coefficients for each RG, respectively.

5. CONCLUSION

Using an overlapping T-block method and the subtraction technique
with infinite periodic solutions, we approximately derived the solutions
of semi-infinite periodic RG in a perfectly conducting plane. Our
solutions for semi-infinite periodic RG were, then, combined to
estimate the diffraction characteristics of finite periodic gratings with
numerous diffracting elements. We numerically proved that the
approximate solutions based on semi-infinite periodic grooves well
predict the diffracted fields of large finite gratings.
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