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Abstract—This paper presents a novel contribution to the analysis
of skin effect phenomena in inhomogeneous tubular conductors. For
homogeneous tubular geometries the skin effect diffusion equation has
an analytical solution described by a combination of Bessel functions,
but, when the conductivity and magnetic permeability of the tubular
conductor arbitrarily depend on the radial coordinate an analytical
solution cannot be found. However, this work shows that simple closed
form solutions for the electromagnetic field and conductor internal
impedance do exist, provided that a specific type of radial variation
of medium parameters is properly chosen — these novel structures
are coined here Euler-Cauchy Structures. Analytic and computation
results concerning general and particular Euler-Cauchy Structures are
presented, validated, and discussed. Future research on this seminal
topic may lead to new engineering applications.

1. INTRODUCTION

The skin effect phenomenon is of major concern for high frequency
regimes. The topic is usually connected with transmission-line
problems, where both the real and imaginary parts of the per unit
length (pul) internal impedance of line conductors depend on the
frequency, leading to signal attenuation and distortion.

Skin effect analysis has been a research issue for a long time: from
circular cylindrical conductors to conductors with more complicated
cross sections [1–9]. Recently, the interest in circular and tubular
geometries has apparently rebirth [10–21], however, most of published
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work has been focused on the development of approximate formulas
for internal impedance evaluation of homogeneous structures. Those
formulas are basically used to circumvent the troublesome computation
of Bessel functions.

Results concerning skin effect analysis of inhomogeneous tubular
conductors are very scarce. Nonetheless, the current state of the art
in material technology may already allow the radial profile of both
the conductivity σ(r) and magnetic permeability µ(r) of cylindrical
conductors to be tailored to meet any realistic specification.

In general, the wave equation describing the electromagnetic field
(EMF) in radially inhomogeneous conducting media does not have an
analytical solution. In this paper, the research problem of finding exact
closed form solutions for skin effect phenomena in circular cylindrical
tubular geometries with inhomogeneous media is addressed. The
goal is to devise appropriate functions for σ(r) and µ(r) that may
transform the radial wave equation into a simpler differential equation
that exhibits closed form analytical solutions.

The differential equation referred to above is the Euler-Cauchy
equation [22]. Inhomogeneous cylindrical structures that fit in the
framework of this equation will be coined Euler-Cauchy Structures
(ECS).

To the best of our knowledge, the research developed in this paper
is an absolutely novel contribution to the area of skin effect analysis.

In addition to its intrinsic theoretical importance, the closed form
solutions that have been obtained can be of great help as benchmark
tools for checking the accuracy and performance of EMF software
packages.

2. FIELD EQUATIONS

For time harmonic regimes (ejωt) and for the case of very good
conductors, σ >> ωε, the displacement current can always be
neglected for frequencies up to the optical range [23], therefore, the
frequency-domain Maxwell curl equations read as{ ∇× H̄ = J̄ + jωD̄ ≈ J̄ = σĒ

∇× Ē = −jωB̄ = −jωµH̄ (1)

where σ, ε, and µ respectively denote the conductivity, permittivity,
and magnetic permeability of the material medium; ω = 2πf is the
angular frequency.

Overbar quantities in (1) represent complex amplitudes of field
vectors. H is the magnetic field, B is the magnetic induction field, E
is the electric field, D is the electric displacement vector, and J is the
conduction current density.
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In addition, from ∇· B̄ = 0, it results B̄ = ∇× Ā, where Ā is the
complex amplitude of the magnetic vector potential, with ∇ · Ā = 0
(Coulomb gauge).

Combination of the above results yields
{

Ē = −jωĀ
H̄ =

(∇× Ā
)
/µ

(2)

For the particular case of a solid homogeneous circular cylindrical
conductor (of radius r2) with axial currents, the governing equation of
the magnetic vector potential Ā = Ā(r) ~ez is determined, from (1) and
(2), as

d2Ā

dr2
+

1
r

dĀ

dr
+ k̄2Ā = 0 (3a)

where k̄ =
√−jωµσ is the complex wave number. Equation (3a) is the

Bessel equation of zeroth order [23]. Its solution is well-known:

Ā =
µĪ

2πr2k̄

J0(k̄r)
J1(k̄r2)

(3b)

where J0 and J1 are Bessel Functions [22], and Ī denotes the complex
amplitude of the sinusoidal current flowing in the conductor.

From (2) and (3), the following results for the electric and
magnetic field in the conductor are found [23],





Ē = k̄ Ī
2πσr2

J0(k̄r)

J1(k̄r2)
~ez

H̄ = Ī
2πr2

J1(k̄r)

J1(k̄r2)
~eφ

, for 0 < r < r2 (3c)

The pul internal impedance of the homogeneous cylindrical
conductor is [23],

Z̄ =
Ē(r2)

Ī
=

k̄

2πσr2

J0(k̄r2)
J1(k̄r2)

(3d)

For a homogeneous tubular conductor, Z̄ is also obtained
from (3a), yielding a combination of Bessel functions — see for
example [19, 21].

For the general case of inhomogeneous media, where both µ and
σ vary with r, the governing equation of the magnetic vector potential
is no longer described by (3a).

The new equation for Ā is obtained from (1) and (2), and reads
as

r2 d2Ā

dr2
+ r

dĀ

dr

(
1− r

µ

dµ

dr

)
+

(
r k̄(r)

)2
Ā = 0 (4)
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where k̄(r) is the complex wave number

k̄(r) =
√
−jωµ(r)σ(r) (5)

In general, for arbitrary µ(r) and σ(r) functions, the solution of
(4) can only be found numerically.

As a parenthetical remark it should be added that, in the case of an
isolated single conductor, the electric field in (2) is to be interpreted as
a purely electric induction field, since its gradient component is absent
(the conductor is not charged).

3. EULER-CAUCHY STRUCTURES

Consider a tubular conductor characterized by inner radius r1 and
outer radius r2 (Fig. 1).

(a) (b)

i

H

H

J

J

r1 r2

z

S

H

r

z

J

Jσ (r)

µ (r)

Figure 1. Tubular conductor. (a) Transverse section. (b) Longitudi-
nal section.

For the outer boundary, r = r2, the conductivity is σ2, the
magnetic permeability is µ2, and the complex wave number k̄2 and
the skin depth δ2 [23], are

k̄2 =
√
−jωµ2σ2 =

1− j

δ2
; δ2 =

√
2

ωµ2σ2
(6)

The key idea is to transform the coefficients (set in parentheses)
of the second and third terms of the left hand side of (4) into constant
coefficients independent of r, so that one may arrive to the following
equation

r2 d2Ā

dr2
+ αr

dĀ

dr
+ βĀ = 0 (7)
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where{
α = 1− r

µ(r)
dµ(r)

dr = constant independent of r

β = −jωr2µ(r)σ(r) =
(
k̄2r2

)2 = constant independent of r
(8)

The result in (7) describes the so-called homogeneous second
order Euler-Cauchy equi-dimensional equation [22]. Henceforth,
any cylindrical structure whose material medium is described by
constitutive parameters µ(r) and σ(r) conforming to (8) will be called
an ECS.

The solution of (7) can be written in closed form [22], for r1 ≤
r ≤ r2, as

Ā(r) = Frm1 + Grm2 (9)

where m1 and m2 are the roots of the characteristic equation

m2 + (α− 1)m + β = 0;
{

m1 + m2 = 1− α
m1m2 = β

(10)

The constants F and G in (9) will be determined by using the pertinent
boundary conditions of the problem; see (15)–(16).

In (8), the top equation for α, leads to

µ(r) = µ2

(
r

r2

)p

; p = 1− α (11)

where p is a real number, and r1 ≤ r ≤ r2.
Combining (11) with the bottom equation for β, in (8), leads to

σ(r) = σ2

(r2

r

)2+p
(12)

From (11) and (12), the complex roots of the characteristic equation
in (10) are found to satisfy




m1,2 = p
2 ±

√(p
2

)2 − (
k̄2r2

)2

m1m2 = β =
(
k̄2r2

)2 ∈ =(−)

m1 + m2 = p ∈ <
Im {m1} = −Im {m2}
Re {m1}Re {m2} < 0

(13)

The set of conditions in (13) points out that, independently of p,
one root is on the 1st quadrant of the complex plane, whereas the other
is on the 3rd. Hereafter, without loss of generality, m1 is considered
to belong to the 1st quadrant.

For the sake of conciseness, the brief notation ECS-Cp is
introduced to classify different types of Euler-Cauchy structures, where
underscript p is a reminder for the power law variation assigned to µ(r).



94 Brandão Faria

4. GENERAL SOLUTION OF THE WAVE EQUATION
FOR ECS-Cp

From (2) and (9), the complex amplitude of the azimuthal magnetic
field can be determined through

H̄(r) = − 1
µ(r)

dĀ

dr
= − 1

µ(r)
(
Fm1r

m1−1 + Gm2r
m2−1

)
(14)

The F and G complex constants are evaluated in (16) by taking
into account the boundary conditions

H̄(r1) = 0 ; H̄(r2) = Ī/(2πr2) (15)

The boundary conditions in (15) are a direct consequence of the
application of Ampère Law to circumferential paths of radius r1 and
r2, respectively [23],

F =
µ2Ī

2πm1

rm2
1

rm1
1 rm2

2 − rm2
1 rm1

2

; G = −F
m1

m2

rm1
1

rm2
1

(16)

Substituting (16) into (14), yields

H̄(r) =
Ī

2πr

(r1/r)m1 − (r1/r)m2

(r1/r2)m1 − (r1/r2)m2
(17)

The complex amplitude of the axial current density in the
conductor, J̄(r) = −jωσ(r)Ā(r), is obtained from (2), (9), (12) and
(16)

J̄(r) =
Ī

2πr2

m2(r1/r)m2 −m1(r1/r)m1

(r1/r2)m1 − (r1/r2)m2
(18)

At last, the frequency-dependent pul internal impedance Z̄ of the
tubular conductor is determined as

Z̄ =R+jX =
Ē(r2)

Ī
=

J̄(r2)
σ2Ī

=
m2(r1/r2)m2−m1(r1/r2)m1

2πσ2r2
2 ((r1/r2)m1−(r1/r2)m2)

(19)

For the limit case of a solid inhomogeneous cylindrical conductor
(r1 → 0), the pul internal impedance in (19) transforms into Z̄ =
jωµ2/(2πm1). This result was obtained from (19) by taking into
consideration that Re(m1) > 0 and Re(m2) < 0.

5. PARTICULAR SOLUTIONS OF THE WAVE
EQUATION FOR ECS-Cp

Next, for illustration purposes, the general results derived in Section 4
are particularized for ECS of class p, with p = 0 and p = −2.
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The analysis of these two particular cases is motivated by
the special circumstance that p = 0 corresponds to the situation
of invariant permeability (magnetic homogeneity conditions), while
p = −2 corresponds to invariant conductivity (electric homogeneity
conditions).

5.1. ECS-C0

Here, the tubular conductor is characterized by µ = µ2, whereas the
conductivity varies with 1/r2. The roots of the characteristic equation
in (13) are m1 = −m2 = m = (1 + j) (r2/δ2).

From (17), (18), and (19) we find

H̄(r) =
Ī

2πr

(
r

r2

)m
(

1− (r1/r)2m

1− (r1/r2)
2m

)
(20)

J̄(r) =
mĪ

2πr2

(
r

r2

)m
(

1 + (r1/r)2m

1− (r1/r2)
2m

)
(21)

Z̄ = R + jX = RHF (1 + j)

(
1 + (r1/r2)

2m

1− (r1/r2)
2m

)
(22)

where RHF = 1/(2πr2δ2σ2) is the high-frequency limit of the pul
resistance of a homogeneous cylinder (µ2, σ2) of radius r2.

For the solid cylinder case r1 → 0, we obtain from (22):
Z̄ = RHF (1 + j). Remarkably, the real and imaginary parts of
the pul impedance turn out to be equal to each other no matter
the frequency. This surprising conclusion contrasts with the well-
known result for homogeneous cylindrical conductors, where R(ω) >
X(ω) [23]. Another interesting fact is that, for the inhomogeneous
cylinder, both R and X depend on the square root of the frequency
from DC to high-frequency — bear in mind that this type of behavior in
homogeneous cylinders is exceptionally observed for strong skin effect
phenomena (ω →∞) [23].

5.2. ECS-C−2

Here, the tubular conductor is characterized by σ = σ2, whereas the
permeability varies with 1/r2. The roots of the characteristic equation
in (13) are m1 = m and m2 = −(2 + m), where m + 1 = n =√

1 + 2j(r2/δ2)2.
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From (17), (18), and (19) we find

H̄(r) =
Ī

2πr2

(
r

r2

)n
(

1− (r1/r)2n

1− (r1/r2)
2n

)
(23)

J̄(r) =
Ī

2πr2
2

(
r

r2

)n−1
(

(n + 1) + (n− 1) (r1/r)2n

1− (r1/r2)
2n

)
(24)

Z̄ = R + jX =
1

2πσ2r2
2

(
1 + n

(
1 + (r1/r2)

2n

1− (r1/r2)
2n

))
(25)

6. COMPUTATION RESULTS

For exemplification purposes the following fixed parameters will be
used r2 = 3r1 = 3 mm; σ2 = 0.5× 107 S/m; µ2 = µ0 = 4π× 10−7 H/m,
which yield an absolute value for the wave number, (6),

∣∣k̄2

∣∣ = 2π
√

f
rad/m.

Without loss of generality, the rms value of the sinusoidal current
in the tubular conductor is chosen as Irms = 1 A.

6.1. ECS-C0

Consider µ(r) = µ2, and σ(r) = σ2(r2/r)2, with σ varying in the range
σ(r) ∈ [

0.5× 106, 4.5× 107
]

S/m.
Making use of (20) and (21), graphics of the radial variation of

the rms value of the magnetic field and current density were obtained
for f = 0.5 Hz, f = 50 kHz, and f = 0.5MHz. Results are depicted
in Fig. 2, showing, for low frequencies, that the current density J has
its larger values in the vicinity of r1 because, there, the conductivity
is higher.

The real and imaginary parts of the pul internal impedance, (22),
are presented in Fig. 3 as a function of the frequency (up to 0.1MHz).
The superposed circle marks correspond to numerical results obtained
by employing a multi-layer technique where the inhomogeneous
medium is broken down into 100 concentric homogeneous layers [24],
— discrepancies are not visible.

6.2. ECS-C−2

Consider σ(r) = σ2 and µ(r) = µ2(r2/r)2, with µ varying in the range
µ(r) ∈ [µ0, 9µ0].

Making use of (23) and (24), graphics of the radial variation of the
rms value of the magnetic field and current density were obtained for
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Figure 2. Plots of Hrms(r) and Jrms(r) against the normalized radial
coordinate r/r2, for three different frequencies, for an ECS of class 0.
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Figure 3. Pul internal impedance against the square root of the
frequency, for an ECS of class 0.

f = 0.5Hz, f = 50 kHz, and f = 0.5 MHz. Results are depicted
in Fig. 4, showing, for low frequencies, that the rate of growth of
the magnetic field H is smaller than the one observed in Fig. 2
(for a magnetically homogeneous conductor), this is so because the
permeability increases for decreasing values of r.

The real and imaginary parts of the pul internal impedance, (25),
are presented in Fig. 5 as a function of the frequency (up to 0.1MHz).
The superposed circle marks correspond to numerical results obtained
employing a multi-layer technique [24], — discrepancies are not visible.
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Figure 4. Plots of Hrms(r) and Jrms(r) against the normalized radial
coordinate r/r2, for three different frequencies, for an ECS of class −2.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

P
U

L
 I
m

p
e
d
a
n
c
e
 (
o
h
m

/k
m

)

SQRT(f/fmax)

fmax = 0.1 MHz

R

X

Figure 5. Pul internal impedance against the square root of the
frequency, for an ECS of class −2.
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7. CONCLUSION

A novel theoretical contribution to the analysis of skin effect
phenomena in radially inhomogeneous tubular conductors was
presented, whereby, to the best of our knowledge, the concept of Euler-
Cauchy Structure was introduced for the first time: µ(r) ∝ rp and
σ(r) ∝ r−(2+p), where the arbitrary real valued parameter p defines
the ECS class.

The specific radial variation assigned to the permeability and
conductivity of the tubular conductor was shown to allow for the
existence of simple closed form analytical solutions of the diffusion
equation — a remarkable feature for inhomogeneous structures, since,
ordinarily, such an equation can only be solved by numerical means.

This paper is, by its own nature, a theoretical work. The technical
implications and practical significance of Euler-Cauchy structures are
not clear yet. However, most technological applications occur after
previous theoretical developments have been put forward. Since the
inhomogeneity factor p (a real number) can be chosen arbitrarily, the
possibilities to explore are immense (future work).

Nowadays, inhomogeneous structures made from multilayered
conductors are already produced for the purpose of losses mitigation
in superconductors. It is hoped that this work may trigger interest
enough to the point of leading to practical engineering applications in
that field, or others.
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