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Abstract—We investigate numerically the collision of nonlinear
envelope pulses in composite right- and left-handed transmission lines
with regularly spaced Schottky varactors. Because of the nonlinearity
caused by the Schottky varactors, the dispersive distortion of envelope
pulses is well compensated. We find that when two nonlinear envelope
pulses traveling in the opposite directions collide, two envelope pulses
are newly developed. The carrier wave frequency of the newly
developed pulse is the harmonic of the colliding pulses that satisfies
the phase-matching condition.

1. INTRODUCTION

A nonlinear transmission line (NLTL) is defined as a lumped
transmission line containing a series inductor and a shunt Schottky
varactor in each section [1]. NLTLs are used for the development
of solitons and are employed in high-speed electronic circuits such as
an electrical shock generator [2]. Recently, we consider the weakly
dispersive coupled NLTLs [3]. It is well-known that the c mode and π
mode are two different propagation modes on a linear coupled line. We
find that both modes can support soliton-like pulses, and small c-mode
pulses are generated by the collision of two π-mode pulses traveling in
the opposite directions. It is expected that similar properties can be
observed in strongly dispersive nonlinear lines.
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We consider composite right- and left-handed (CRLH) transmis-
sion lines [4]. Several interesting managements of dispersive proper-
ties of propagating waves have been investigated [5, 6]. A CRLH line
also receives attention as a platform for pulse managements [7]. Wave
properties in purely LH transmission lines whose series capacitors are
replaced by the varactors have also been investigated [8–12]. We con-
sidered the situation where each shunt capacitor was replaced with
the Schottky varactor, such that the dispersion of CRLH lines can be
compensated through the nonlinearity introduced by the varactors, re-
sulting in a soliton-like envelope pulse [13]. As expected, we found
that the collision of two nonlinear envelope pulses leads to the devel-
opment of a pair of envelope pulses (one travels forward and the other
backward). This paper discusses the detailed properties of this newly
developed envelope pulses.

We first review briefly the fundamental aspects of nonlinear
pulses in the Schottky CRLH lines, including the circuit configuration,
dispersive properties, and predictions given by the nonlinear
Schrödinger equation that perturbatively models the line. We next
discuss several results of time-domain calculations that describe the
collision of two nonlinear envelope pulses to characterize the pulses
newly developed by the collision. The relationship of the wave numbers
and carrier frequencies between the colliding and newly developed
pulses is examined to see that the phase-matching condition determines
the properties of the newly developed pulses.

2. SCHOTTKY CRLH LINES

Figure 1(a) shows a unit cell of the line under investigation.
The parameters LR, CL, and LL are the series inductance,
series capacitance, and shunt inductance, respectively. The shunt
capacitance is represented by CR. As the source of nonlinearity,
the Schottky varactor is employed for CR. Its capacitance voltage
relationship is generally defined as

CR(V ) =
C0(

1− V
VJ

)m , (1)

where C0, VJ , and m are the zero-bias junction capacitance, junction
potential, and grading coefficient, respectively. Hereafter, the bias
voltage of the Schottky varactor is represented by V0, and CR(V0) is
denoted by C

(0)
R for brevity. Using this representation, the transmission
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Figure 1. Schottky CRLH lines. (a) The unit cell and (b) the
dispersion of the line.

equations are given by

LR
d2In

dt2
= − In

CL
− d

dt
(Vn − Vn−1) , (2)

CR
d2Vn

dt2
= − Vn

LL
+

d

dt
(In − In+1)− dCR

dVn

(
dVn

dt

)2

, (3)

where In and Vn are the current and voltage at the nth cell,
respectively.

We first linearize Eqs. (2), (3) to examine the dispersive property
of the line. The dispersion relationship is then shown in Fig. 1(b). We
set C

(0)
R , CL, LR, and LL to 1.0 pF, 1.0 pF, 2.5 nH, 2.5 nH, respectively.

The line is balanced for this example. The wave number becomes zero
at the frequency f0 ≡ 1/2π

√
CLLR (= 3.2GHz). The line exhibits the

left- (right-)handedness for frequencies less (greater) than f0.
In order to investigate the contributions of nonlinearity, we apply

the reductive perturbation method [14] to Eqs. (2) and (3). We then
obtain the nonlinear Schrödinger (NS) equation whose dispersion and
nonlinearity coefficients determine the properties of nonlinear envelope
pulses. See Ref. [13] for the explicit expressions for the dispersion
coefficient p and the nonlinearity coefficient q. The pulse width of the
single soliton with the amplitude of A0 is given by (A0vg

√
q/8p)−1,

where vg represents the group velocity. In Fig. 2, we show the
dependence of the pulse width of a single solition with A0 = 1.0V
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Figure 2. Pulse width of single soliton developed in Schottky CRLH
lines. At the filled frequencies, the development of bright solitons is
prohibited.

on the carrier frequency. For the Schottky varactor, V0, m, and VJ

are set to −1.0V, 2.0, and 2.0 V, respectively. Because p · q becomes
negative, bright solitons cannot develop in the filled frequency range.

3. COLLISION OF TWO NONLINEAR ENVELOPE
PULSES

To characterize the collision of two nonlinear envelope pulses, we
numerically solved Eqs. (2), (3) for the same parameters as used to
obtain Fig. 1(b) and Fig. 2. First, we solved the loss-free line. Total cell
size was 4000 to ensure the time window to discriminate the colliding
and newly developed pulses.

Figure 3 shows the properties for the colliding pulses with 1.6-
GHz carrier frequencies. The carrier wave with the fundamental
frequency (1.6 GHz) is located at P1 on the dispersion curve in
Fig. 3(a). Moreover, the 2nd, 3rd, and 4th harmonics correspond
to P2, P3, and P4, respectively. Note that the wave number of the
2nd harmonic is nearly equal to zero. On the other hand, Fig. 3(b)
shows the numerically obtained waveforms. The width of the incident
pulse was set to 4.1 ns, which was given by the analytically expected
value for a single bright soliton with 0.3-V amplitude. Six spatial
waveforms recorded in 60-ns increments are shown. As indicated by the
red circles, long-wavelength envelope pulses develop by the collision.
Figs. 4(a) and (b) show the temporal waveforms of the incident and
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Figure 3. Collision of two nonlinear envelope pulses with 1.6-GHz
carrier frequencies. The positions of the fundamental and harmonics
on the dispersion curve are shown in Fig. 3(a). The fundamental,
2nd-, 3rd-, and 4th-harmonic are represented by P1, P2, P3, and P4,
respectively. Six spatial waveforms recorded in 60-ns increments are
shown in Fig. 3(b). The newly developed pulses are marked with the
circles.

newly developed pulses monitored at the 1000th cell. We can see that
both pulses have isolated shapes. The Fourier analysis proves that the
newly developed pulse has the spectral peak at 3.2 GHz, i.e., the 2nd
harmonic of the incident pulses.

Another example is shown in Fig. 5. At present, the carrier
frequency of the incident pulses was set to 1.9 GHz. Fig. 5(a) shows
the dispersion curve of the calculated line with the positions of the
fundamental and harmonics of the incident carrier waves. Note that
the wave number of the 2nd harmonic becomes non-zero. Moreover,
the wave number of the 3rd harmonic wave becomes close to that
of the fundamental wave. Fig. 5(b) shows the numerically obtained
waveforms. The analytically expected pulse width is 2.3 ns. By the
collision, envelope pulses too develop. In contrast to Fig. 3(b), the
wavelengths of the newly developed pulses are comparable to that of
the incident ones. Figs. 6(a) and (b) show the temporal waveforms of
the incident and newly developed pulses monitored at the 1000th cell.
The newly developed pulse has the spectral peak at 5.6 GHz, being
close to the 3rd harmonic of the incident pulses.

To obtain the conditions on what harmonics dominantly develop
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(a) (b)

Figure 4. Waveforms of incident and newly developed envelope
pulses. The carrier frequency of the incident pulses was 1.6 GHz. The
incident and newly developed pulses are shown in Figs. 4(a) and (b),
respectively.

(a) (b)

Figure 5. Collision of two nonlinear envelope pulses with 1.9-GHz
carrier frequencies. The positions of the fundamental and harmonics
on the dispersion curve are shown in Fig. 5(a). The fundamental,
2nd-, 3rd-, and 4th-harmonics are represented by P1, P2, P3, and P4,
respectively. Six spatial waveforms recorded in 60-ns increments are
shown in Fig. 5(b). The newly developed pulses are marked with the
circles.
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Figure 6. Waveforms of incident and newly developed envelope
pulses. The carrier frequency of the incident pulses was 1.9 GHz. The
incident and newly developed pulses are shown in Figs. 6(a) and (b),
respectively.

(a) (b)

Figure 7. Properties of newly developed envelope pulses. The ratios
of (a) the peak frequencies and (b) the peak wave numbers of newly
developed pulses to that of incident pulses are shown. Two dashed
lines in Fig. 7(a) emphasize the positions where the frequency ratio
becomes 2.0 and 3.0. Similarly, the dashed line in Fig. 7(b) emphasizes
the position where the wave number ratio becomes 1.0.
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by the collision, we carried out similar calculations for several different
carrier frequencies. We varied the carrier frequency from 1.5 to
1.95GHz with the increment of 0.05 GHz. We estimated the frequency
corresponding to the spectral peak for both the incident and newly
developed pulses. Fig. 7(a) shows the ratio of the peak frequencies of
newly developed pulses to that of incident pulses. We can see that
the 2nd harmonic dominates the newly developed pulses for carrier
frequencies ≤ 1.7GHz, and the 3rd harmonic dominates them for
carrier frequencies ≥ 1.75GHz. Similar spectral analysis was done
for the spatial waveforms to obtain Fig. 7(b). The ratios of the peak
wave number of newly developed pulses to that of incident pulses are
shown. Consistently, the ratios of the wave numbers are close to zero
for carrier frequencies ≤ 1.7GHz, and are close to unity for carrier
frequencies ≥ 1.75GHz.

As is well known [15], the efficiently of the harmonic-wave
generation in two-wave mixing becomes maximal, when the phase-
matching condition is satisfied, which is given by

k3 ∼ m1k1 + m2k2, (4)
where k1 and k2 represents the wave numbers of incident waves, and k3

represents that of the newly generated harmonic wave. Moreover, m1

and m2 are integers to be specified by the order of generated harmonics.
At present, incident pulses have the common carrier frequency, and one
travels to the left and the other to the right, resulting in the condition

Figure 8. Efficiency of harmonic-wave generation. The left
vertical axis indicates the ratio of the spectral magnitude of the
newly developed 2nd harmonic frequency and that of the incident
fundamental frequency. Moreover, the right vertical axis indicated the
ratio of the wave numbers of the newly developed and incident pulses.
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k1 = −k2 ≡ k0. For the 2nd harmonic generation, both m1 and m2

have to be equal to 1. Hence, the maximal 2nd harmonic generation can
be observed, when k3 ∼ 0. Similarly, for the 3rd harmonic generation,
k3 has to be close to k0. The numerically obtained result mentioned
above can be well explained by what types of the phase-matching
dominates the newly developed pulses, when taking CRLH lines’
dispersion into consideration. Fig. 8 reinforces this observation. The
ratio of the spectral magnitude of the newly developed 2nd harmonic
frequency and that of the incident fundamental frequency is shown
by the thick curve. It becomes maximal at 1.6 GHz. On the other
hand, the thin curve shows the ratio of the wave numbers of the newly
developed and incident pulses. We can see that the maximal efficiency
of the 2nd harmonic generation is observed when the wave number of
newly developed pulses approaches zero mostly. Similar behavior of the
3rd harmonic magnitude is observed for carrier frequencies≥ 1.75 GHz,
although it becomes more complicated than in Fig. 8, because the 4th-
harmonic pulses develop at the same time at around 1.85 GHz.

Finally, we examined the influences of losses. As an estimate of
the loss magnitude, we considered the typical parasitic resistance of
microwave surface-mount inductors, which is roughly 0.1Ω. Fig. 9
shows how much the magnitude of the 2nd harmonic wave is degraded
by the line resistance. We introduced resistors in series to both
LR and LL, whose resistance was varied from 0.1 to 0.5 Ω with the
increment of 0.1 Ω. At present, the cell size was 500. The spectral
magnitude of the 2nd harmonic wave monitored at the 100th cell is

Figure 9. Influence of losses. The normalized magnitude of the newly
developed 2nd harmonic wave is shown for five difference values of
inductors’ parasitic resistance.
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shown normalized by the loss-free magnitude. The generation efficiency
decreases exponentially. However, the device still has finite efficiency
for some practical values of resistances. Optimization of the cell
size, the input pulse amplitude and the line parameters will widen
its applications.

4. DISCUSSION

As a potential application of colliding nonlinear envelope pulses in
Schottky CRLH lines, we consider a leaky-wave antenna for the 2nd-
harmonic envelope pulses developed by the collision.

The wave number corresponding to the 2nd harmonic wave, being
set close to zero, can be inside the light cone; therefore, some part of
the 2nd harmonic pulses may radiate to the direction specified by the
wave number.

On the other hand, if the carrier frequency of the right-going pulse
fr is smaller than that of the left-going pulse fl, the amplitude of the
wave vector of the right-going pulse |kr| becomes larger than that of
the left-going one |kl|. As a result, the wave vector of the 2nd harmonic
wave directs to the left, because both of incident pulses are carried by
the left-handed mode. Then, if the 2nd harmonic wave is carried by
the right-handed mode, the newly developed envelope pulse travels to

Figure 10. Collision of two nonlinear envelope pulses with
incoincident carrier frequencies. The right- and left-going pulses have
the carrier frequencies of 1.60 and 1.65 GHz, respectively. The left-
and right-going pulses developed by the collision are marked with the
solid and dashed circles, respectively.
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the left. By the similar consideration, only the right-going envelope
pulse develops, if fr > fl. In Fig. 10, we show the calculated results,
where fr and fl are 1.60 and 1.65 GHz, respectively. Total cell size was
2000. Six spatial waveforms recorded in 41.0-ns increments are shown.
As expected, the left-going pulse dominates the right-going one.

Using these properties, the direction of the radiated pulse can be
managed by changing the carrier frequency of one of colliding pulses.

5. CONCLUSION

We characterized the Schottky CRLH line as a platform for interacting
nonlinear envelope pulses. Envelope pulses having harmonic carrier
frequencies are newly developed by the collision of two nonlinear
envelope pulses. The efficiency of the newly developed pulses becomes
maximal, when the phase-matching condition is satisfied. The
mechanism can potentially be used to manage the directivity of
radiating waves as the line operates as a leaky-wave antenna. Although
further investigations must be carried out for the methods to develop
large pulses, we believe that the line may significantly increase the
applications of nonlinear pulses in high-speed electronics.
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