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Abstract—This paper presents a new dual-mode stub-loaded
resonator, which consists of a microstrip resonator with internal
coupled lines and an open-circuited stub. Based on the odd- and
even-mode equivalent circuits, the resonant characteristics of the
proposed microstrip resonator are investigated. It is found that the
fundamental even-mode resonant frequency of the proposed resonator
can be flexibly controlled while the fundamental odd-mode resonant
frequency remains unaffected. Then, based on the proposed resonator,
three compact dual-mode bandpass filters, namely filer A, filter B and
filter C, are designed, fabricated and measured to validate the design
concept. Filters A and B demonstrate opposite asymmetric responses
with two transmission poles in the passband and a transmission
zero in the stopband. Filter C has three transmission poles in the
passband and two transmission zeros respectively in the lower and
upper stopbands to enhance selectivity. The experimental results show
excellent agreement with the theoretical simulation results.

1. INTRODUCTION

Generally speaking, bandpass filters can be designed using single- or
dual-mode resonators. Dual-mode resonators are attractive because
each dual-mode resonator can be used as a doubly tunable resonant
circuit. Therefore the number of resonators in a filter can be reduced by
half, thus resulting in a compact configuration. Various kinds of dual-
mode resonators have been investigated, including the circular ring [1],
square loop [2], and triangular patch [3]. Meanwhile, several new types
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of dual-mode resonators [4–9] have been reported for filter applications
recently. Practically, some special applications of bandpass filters may
require high selectivity on only one side of the pass band, but less or
none on the other side. In such cases, using filters with asymmetric
frequency responses would be desirable [10–12].

This paper presents a dual-mode stub-loaded resonator with
internal coupled lines. The properties of the proposed resonator are
analyzed theoretically and confirmed by full-wave simulations. The
fundamental even-mode resonant frequency of the proposed resonator
can be flexibly controlled while the fundamental odd-mode resonant
frequency is unaffected. It is also found that there is a finite-frequency
transmission zero inherently through the stopband. Then, based on
the proposed resonator, three compact dual-mode bandpass filters,
namely filer A, filter B and filter C, are designed, fabricated and
measured to validate the design concept. Filters A and B are designed
with two transmission poles in the passband and demonstrated with
opposite asymmetric responses which result from different locations of
the transmission zero. Filter A exhibits a nice asymmetric frequency
response with a finite-frequency transmission zero above passband,
thus leading to a good upper stopband rejection. Filter B also exhibits
a nice asymmetric frequency response but with a finite-frequency
transmission zero below passband, thus resulting in a good lower
stopband rejection. Filter C is designed with three transmission
poles in the passband and two finite-frequency transmission zeros
respectively in the lower and upper stopbands to enhance selectivity.
All the presented filters are fabricated on a Rogers4003 substrate with
a dielectric constant of 3.38, a loss tangent of 0.0027, and a thickness
of 0.813 mm.

2. DUAL-MODE RESONATOR

The structure of the proposed dual-mode resonator, which consists
of a microstrip resonator with internal coupled lines and an open-
circuited stub, is displayed in Fig. 1(a), where Y1, θ1, Y3 and θ3 denote
the characteristic admittances and electric lengths of the microstrip
line and open stub, respectively. Yodd, Yeven and θ2 indicate the odd-
and even-mode characteristic admittances and electrical length of the
coupled lines. Since the resonator is symmetrical in structure, the
resonant condition can be analyzed by the classical method of even-
and odd-mode excitation

For odd-mode excitation, there is a voltage null along the
symmetrical plane A-A’. The equivalent circuit is shown in Fig. 1(b)
Taking θ1 = θ2 = θ3 = θ for convenience, we can derive the input
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Figure 1. (a) Structure of the proposed dual-mode stub-loaded
resonator, (b) odd-mode equivalent circuit, and (c) even-mode
equivalent circuit.

admittance for odd-mode (Yino) as follows:

Yino = jY1
Y1 tan2 θ − Yodd

(Y1 + Yodd) tan θ
(1)

From the odd-mode resonance condition of Yino = 0, we obtain the
following equation,

tan2 θ = K1 =
Yodd

Y1
. (2)

Therefore the fundamental odd-mode resonant frequency (fodd) can be
expressed as,

fodd =
c tan−1(

√
K1)

2πL1
√

εeff
(3)

where c is the speed of light in free space, L1 is the length of the
microstrip line, and εeff denotes the effective dielectric constant of the
substrate. It can be observed that the fundamental odd-mode resonant
frequency is not affected by the open-circuited stub.

For even-mode excitation, there is no current flow through the
symmetrical plane A-A’. The equivalent circuit is shown in Fig. 1(c).
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When we ignore the discontinuity of the folded section, the input
admittance for even-mode (Yine) can be expressed as follows:

Yine = jY1
(2Y1Yeven + Y3Yeven + 2Y 2

even) tan θ − Y1Y3 tan3 θ

2Y1Yeven − (Y1Y3 + Y3Yeven + 2Y 2
even) tan2 θ

(4)

From the even-mode resonance condition of Yine = 0, we obtain the
following equation,

tan2 θ = K2 =
Yeven

Y1
+

2Y 2
even

Y1Y3
+

2Yeven

Y3
. (5)

Therefore the fundamental even-mode resonant frequency (feven) can
be expressed as,

feven =
c tan−1(

√
K2)

2πL1
√

εeff
(6)

From the analysis above, we can conclude that the resonance
conditions of the proposed resonator are determined by K1, K2 and
θ. If K1 = K2, both fundamental resonant frequencies are exactly
the same. If K1 < K2, then the resonator can generate a higher
feven than fodd . And if K1 > K2, the resonator will make feven lower
than fodd . In our investigation, we only change the value of Y3, while
keeping all other parameters constant. The structural parameters of
the resonator are listed as follows: Y1 = 0.0125 S, Yodd = 0.02 S,
Yeven = 0.01 S, θ1 = θ2 = θ3 = θ = 0◦ at 2GHz. To observe the
mode splitting, full-wave simulations have been carried out by using
ADS. As shown in Fig. 2, two coupling capacitors of 0.05 pF are used
for a loose coupling. By tuning the value of Y3, different frequency
responses can be achieved. As Y3 increases, K2 decreases while K1

is constant. The simulated responses are shown in Fig. 3. When K2

Yodd, Yeven θ2

Y3, θ3 

Y1, θ1 

Y0 Y0 

C C

Figure 2. Proposed resonator with coupling capacitor C for a loose
coupling.
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Figure 3. Modal resonant characteristic of the proposed resonator.

is larger than K1, the fundamental even-mode resonant frequency is
beyond the fundamental odd-mode resonant frequency. When K1 is
equal to K2, the fundamental resonant frequencies of the two modes
are the same. And when K2 is smaller than K1, the fundamental
even-mode resonant frequency is below the fundamental odd-mode
resonant frequency. As a result, the fundamental even-mode resonant
frequency of the proposed resonator can be flexibly controlled while
the fundamental odd-mode resonant frequency is unaffected.

Besides, it can be seen from Fig. 3 that there is a transmission zero
inherently through the stopband. And the transmission-zero frequency
of the resonator can also be tuned by varying the value of Y3. As
Y3 increases, the transmission zero will shift from the upper to lower
stopband. This unique property allows an easy design of asymmetric
responses with improved selectivity below or above the passband, by
just varying the width of the open-circuited stub We can predict the
transmission zero from the analysis of the transmission coefficient S21.
Taking the source and load admittances of the circuit shown in Fig. 2
as Y0, we can obtain the transmission coefficient S21 as [13],

S21 =
Y0(Yino − Yine)

(Y0 + Yine)(Y0 + Yino)
. (7)

By letting S21 = 0, the condition of transmission zero is,

Yino = Yine. (8)

From the above condition, we obtain the following equation

tan2 θ = K3 =
−b−√b2 − 4ac

2a
, (9)
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with

a = Y3Yeven − Y3Yodd + 2Y 2
even,

b = Y3Yeven + 2Y 2
even + 2YevenYodd − Y3Yodd,

c = 2YevenYodd.

Therefore the transmission-zero frequency (fzero) can be expressed as,

fzero =
c tan−1(

√
K3)

2πL1
√

εeff
(10)

Figure 4 shows the variation of the fundamental resonant
frequencies and the transmission-zero frequency against different values
of Y3, with all other dimensions constant. It can be seen clearly
that as Y3 increases, the fundamental odd-mode resonant frequency
is fixed, while the fundamental even-mode resonant frequency and the
transmission-zero frequency keep decreasing.
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Figure 4. Variation of the fundamental resonant frequencies and the
transmission-zero frequency against different values of Y3.

Figure 5 shows the current distributions for the two modes of
the proposed resonator. At the fundamental odd-mode resonant
frequency, there is no current flowing on the open-circuited stub, and
the open-circuited stub does not perturb the fundamental resonant
current distribution. On the other hand, at the fundamental even-
mode resonant frequency, there is current flowing on the open-circuited
stub, which changes the current distribution path, thus changing the
resonant frequency

As we know, coupling coefficient of resonator plays a key role
in determining the bandwidth of a filter. The inter-stage coupling
coefficient of a dual-mode filter corresponds to the coupling between the
two modes of the dual-mode resonator. An approximate method based
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Figure 5. Simulated current distributions for the two modes of the
proposed resonator, (a) odd mode, (b) even mode.

on the conditions of a given passband bandwidth and ripple can be
used to design a dual-mode bandpass filter where capacitive coupling
is adopted for input and output coupling [14]. Here we discuss the
design technique for a basic dual-mode bandpass filter with only one
resonator When the normalized Chebyshev low-pass filter prototype
element values are g0 ∼ g3, the relative bandwidth is w, and the
odd- and even-mode resonance frequencies of the resonator are fodd

and feven, respectively, the inter-stage coupling coefficient is given as
follows:

k12 =
w√
g1g2

=
2 |feven − fodd|
feven + fodd

. (11)

And the input and output coupling capacitor Cs is expressed as,

Cs =
J01

ω0

√
1− (J01/Gs)2

, (12)

with

J01 =

√
Gsbrw

g0g1
,

where the parameter ω0 is the center angular frequency of the basic
dual-mode bandpass filter, Gs is the source conductance, and br is the
resonator slope parameter.

Based on the above design method, three basic dual-mode filters
with center frequencies f0 of 2.04 GHz and relative bandwidths of 2.0%,
4.0%, and 77% respectively, have been designed with the proposed
resonator. The normalized element values of the Chebyshev low-pass
filter prototype with 0.01 dB ripple can be obtained from [15] as, g0 = 1,
g1 = 0.4488, g2 = 0.4077, g3 = 1.1007. Subsequently the design
parameters are summarized in Table 1 while the simulated results are
shown in Fig. 6.
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Table 1. Dual-mode filter design parameters.

Filter Type I II III
Center frequency f0 2.04GHz

Relative Bandwidth w 2.0% 4.0% 7.7%
Coupling Coefficient k12 0.0468 0.0935 0.180
Coupling Capacitance Cs 0.17 pF 0.24 pF 0.37 pF
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Figure 6. Simulated responses of the basic dual-mode filters.

3. FILTER DESIGN

3.1. Two-pole Filter

To validate the design concept, two two-pole filters using the proposed
resonator are fabricated and measured, namely filer A and filter B.
The two filters demonstrate opposite asymmetric responses with two
transmission poles in the passband and a transmission zero in the
stopband. Fig. 7 illustrates the configuration of the two-pole filter.
It consists of a resonator and two stepped-impedance feed lines which
feed the proposed resonator with tight coupling.

Figure 8 shows the photograph of filter A, of which the dimensions
are listed as follows: W0 = 1.81 mm, W1 = 0.76 mm, W2 = 0.81mm,
W3 = 2.8mm, L0 = 10 mm, L1 = 12.9 mm, L2 = 13.1mm, L3 =
12.27mm, L4 = 14mm, S1 = 0.12mm, S2 = 0.21mm, d = 3.62mm.
Fig. 9 illustrates the simulated and measured results of filter A.
Frequency responses are simulated by CST-MWS and measured by
Agilent 8722ES network analyzer. As shown in Fig. 9, the filter has
an asymmetrical frequency response with two transmission poles in
the passband and a transmission zero in the upper stopband. Owing
to the fabrication tolerance, the measured center frequency (f0) of
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Figure 7. Configuration of the two-pole filter.

Figure 8. Photograph of filter A.
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Figure 9. Frequency responses
of filter A.

1.95GHz is slightly lower than the simulated 1.96 GHz. The filter has
an insertion loss of better than 0.8 dB and a return loss nearly of 19 dB
at 1.95 GHz. The fractional 3-dB bandwidth of this filter is 13.1%, and
the transmission zero at 2.40 GHz has an attenuation level of 53 dB.
Besides, it can be seen that the first spurious response of the filter does
not occur at 2f0, but at a higher frequency, thus accounting for the
wide upper stopband. The rejection is better than 30 dB from 2.3 to
4.3GHz.

The results shown in Fig. 4 indicate that the transmission-zero
frequency can be controlled by Y3. Hence, the dimension of W3 is
tuned in order to achieve an asymmetrical frequency response with a
transmission zero in the lower stopband. Fig. 10 shows the photograph
of filter B. All the dimensions of filter B are the same as those of filter A
except the width of the open-circuited stub. For filter B, W3 is chosen
to be 9.5 mm. As shown in Fig. 11, the filter has an asymmetrical
frequency response with two transmission poles in the passband and
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Figure 10. Photograph of
filter B.
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Figure 11. Frequency responses
of filter B.

a transmission zero in the lower stopband. Owing to the fabrication
tolerance, the measured center frequency (f0) of 1.80GHz is slightly
lower than the simulated 1.81 GHz. The filter has an insertion loss of
better than 0.85 dB and a return loss nearly of 25 dB at 1.80GHz. The
fractional 3-dB bandwidth of this filter is 12.2%, and the transmission
zero at 1.45 GHz has an attenuation level of 58 dB. Besides, it can be
seen that the first spurious response of the filter does not occur at 2f0,
but at a higher frequency, which leads to a wide upper stopband.

3.2. There-pole Filter

The above two-pole filters are useful for diplexer design, as each of
them has a controllable transmission zero, as well as high selectivity.
However, for most applications, bandpass filters with symmetrical
frequency responses are preferable. The presented two-pole filters can
only provide only one transmission zero. To alleviate this difficulty, a
there-pole filter is introduced.

Figure 12 illustrates the configuration of filter C. It consists of two
resonators and two stepped-impedance feed lines. By properly tuning
the resonant frequencies of the upper and lower resonators, filter C can
provide three transmission poles in the passband and two transmission
zeros respectively in the lower and upper stopbands. Fig. 13 displays
the photograph of filter C. The dimensions of the filter are listed as
follows: W0 = 1.81mm, W1 = 0.76mm, W2 = 0.81mm, L0 = 10 mm,
L1 = 12.9mm, L2 = 13.1mm, L3 = 12.27mm, L4 = 14 mm,
S1 = 0.12mm, S2 = 0.21mm, d = 3.62mm. All dimensions of
two resonators are the same except the width of the open-circuited
stub. For the lower resonator, W3 is chosen to be 2.8mm. While
for the upper one, W ′

3 is chosen to be 15mm. From the previous
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Figure 12. Configuration of filter C.

Figure 13. Photograph of
filter C.
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Figure 14. Frequency responses
of filter C.

analysis, odd-mode resonant frequencies of these two resonators are
the same, but even-mode ones are different. As a result, a three-
pole filter is designed with two transmission zeros located at the two
edges of the passband, as shown in Fig. 14. Owing to the fabrication
tolerance, the measured center frequency of 1.84 GHz is slightly lower
than the simulated 1.85GHz. As observed from the frequency response,
the filter has a 3-dB fractional bandwidth of 22.7%, an insertion
loss of better than 0.7 dB, and two rejections of greater than 20 dB.
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Furthermore, the two transmission zeros are at 1.46 and 2.19 GHz with
54 and 48 dB rejection, respectively. It can also be seen that, the first
spurious response of the filter does not occur at 2f0, but at a higher
frequency, thus resulting in a wide upper stopband.

4. CONCLUSION

In this paper, a dual-mode stub-loaded resonator with internal
coupled lines is proposed. The properties of the resonator have
been obtained by theoretical analysis and thereafter verified by
simulation and experiment. The proposed resonator possesses the
merit that its fundamental even-mode resonant frequency can be
flexibly controlled while the fundamental odd-mode resonant frequency
remains unaffected. Based on the proposed resonator, three compact
dual-mode bandpass filters have been designed and manufactured.
With the measured results, filter A exhibits a good insertion loss of
better than 0.8 dB in the passband, and a nice asymmetric frequency
response with a transmission zero in the upper stopband leading to
good rejection. Similarly, the insertion loss of filter B is no more
than 0.85 dB, whereas the transmission zero is located in the lower
stopband. Combining the advantages of the former two filters, filter
C owns an insertion loss of better than 0.7 dB inside the passband
and two transmission zeros at each edge of the passband resulting
in an excellent performance of frequency response. Meanwhile, the
first spurious response of these three filters does not occur at 2f0,
but at a higher frequency, thus resulting in a wide upper stopband.
The measured results agree well with the simulations. Therefore, the
proposed filters can be integrated in microwave circuits and systems
due to their compact structures, and high performance.
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