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Abstract—In this paper, we propose a novel H-infinity filter based
particle filter (H∞PF), which incorporates the H-infinity filter (H∞F)
algorithm into the particle filter (PF). The basic idea of the
H∞PF is that new particles are sampled by the H∞F algorithm.
Since the H∞F algorithm can fully take into account the current
measurements, when the new algorithm calculates the proposed
probability density distribution, the sampling particles can take
advantage of the system current measurements to predict the system
state. The particles distribution we obtained approaches nearer to the
state posterior probability distribution and the H∞PF alleviates the
sample degeneracy problem which is common in the PF, especially
when the maneuvers of the target tracking are large. Furthermore,
the H∞F algorithm can adjust gain imbalance factor by adjusting
disturbance attenuation factor, from that the new algorithm can
get the compromise between the accuracy and robustness and we
can obtain satisfied accuracy and robustness. Some simulations and
experimental results show that the proposed particle filter performed
better than the PF and the Kalman particle filter (KPF) in tracking
maneuvering target.

1. INTRODUCTION

For linear or Gaussian problems of the tracking algorithm, the Kalman
filter (KF) is widely used to get optimal solutions, and it can achieve
good tracking performance [1, 2]. Unfortunately, many practical
maneuvering target tracking problems are nonlinear or non-Gaussian.
In this case, a variety of tracking algorithms have been proposed to
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evaluate the probability distribution, such as Extended Kalman filter
(EKF) and Unscented Kalman filter (UKF) [3–5]. Since the PF can
approach the Bayesian optimal estimate with infinite samples, it is
more accurate than the EKF and UKF and is often chosen over the
EKF or UKF. In recent years, the PF has attracted many researchers’
attention, which are also known as sequential Monte Carlo (SMC)
methods and can effectively deal with non-linear and non-Gaussian
problems [6–12]. Meanwhile, a large number of tracking methods about
the PF have been presented [13–15]. Although the PF has been proven
successful in dealing with tracking maneuvering target, it has some
disadvantages, and one of which is that employing uniform re-sampling
leads to the particle impoverishment problem [16–18]. To deal with
this problem in the filter, two key factors can be adopted, which are
the proper selection of the proposed distribution and the re-sampling
method mentioned in [19, 20]. In the light of the selection of proposed
distribution, the PF algorithm uses system state transition probability
as its importance density function. Since the density function, which
the PF adopted, does not utilize the latest measurements to generate
new particles, the result is that the produced particle samples focus
on the last of the posterior probability distribution, which leads to a
blind choice in the particles and makes the reduction of the filtering
precision. So the PF filter usually has unsatisfactory performance,
and sometimes the PF algorithm cannot be effectively utilized. For
this problem, people try to find some other methods, which use latest
measurements to enhance performance, to generate new particles, such
as the KF, EKF and UKF [21–23]. For the KF, EKF and UKF, they
cannot always get both high accuracy and robustness at the same
time, but the H∞F can get the compromise between the accuracy and
robustness by adjusting disturbance attenuation factor. In this paper,
we incorporate the H∞F algorithm [24–28], which can fully take into
account the current measurements, into the PF for maneuvering target
tracking. The proposed H∞F based particle filter (H∞PF) both has
the inherent advantages of the PF and the H∞F and shows a marked
improvement in the maneuvering target tracking.

The layout of this paper is as follows: In Section 2, the PF
algorithm and H∞ algorithm are formulated; meanwhile, the proposed
H∞PF algorithm is presented in detail. Simulation results and
discussions are given in Section 3, and we conclude this paper in
Section 4.
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2. H∞ FILTER BASED PARTICLE FILTER

2.1. Basic Theory of Particle Filter

Because the particle filter has good performance in tracking nonlinear
and non-Gaussian problems, we employ it to solve the state estimation
problem. The particle filter first starts with a number of particles
which are initialized. After that, each particle is generated by the
density function [29, 30].

Give a state space model:

xk = f(xk−1, uk−1) + wk (1)
zk = h(xk) + vk (2)

where, f(.) is the system dynamic function, h(.) is the system
observation function, xk and zk are the target state vector and target
observation vector at time k, respectively, wk is the Gaussian system
noise vector, vk is the Gaussian observation noise vector, we take k as
the time index. The detailed particle filter algorithm [5] is described
as follows:

step 1: Initialization. Sample the initial particles x
(1)
0 , x

(2)
0 ,

. . . , x
(N)
0 , N is the number of particles and ωi

0 = 1/N, i = 1, 2, . . . N .
step 2: Importance Computation. We get the predicted

particles at time k by bringing the particles at time k − 1 into (1).
The importance weight of each predicted particle is computed through
(3) when we obtain the target observation at time k, and then, we
normalize the particle weight by the Equation (4):

ωi
k = ωi

k−1

p(zk|xi
k)p

(
xi

k|xi
k−1

)

q
(
xi

k|xi
k−1, zk

) (3)

ω̃i
k = ωi

k/
N∑

j=1

ωi
k (4)

where, q(xi
k|xi

k−1, zk) is the importance density function, generally,
q(xi

k|xi
k−1, zk) = p(xi

k|xi
k−1). After normalizing the weight, we can

get the approximate posterior distribution p(xk|z1:k) by (5), δ(.) is the
Dirac function.

p(xk|z1:k) =
N∑

j=1

ω̃i
kδ(xk − xi

k) (5)

step 3: Resample. Accept the particles that have higher
importance weights, meanwhile, their cumulative probabilities are
bigger than a given threshold. Eliminate those particles that have
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lower importance weights and their cumulative probabilities are smaller
than the given threshold. Reset each particle weight ωi

k = 1/N, i =
1, . . . , N .

step 4: Output calculation. The posterior probability
estimation of the state is obtained approximately through (6):

x̂k ≈
N∑

i=1

ω̃i
kx

i
k (6)

step 5: k = k + 1, and move to step 2.
In the particle filter, we can choose some different proposed

distribution functions, and the most commonly used way is choosing
the prior density as its proposed distribution function [11, 12] in the PF,
that is, q(xi

k|xi
k−1, zk) = p(xi

k|xi
k−1). However, the shortcoming of this

method is that it does not consider the system current measurements,
which brings about the particle degeneracy problem. For now, two key
factors in preventing particle degeneracy [10] are the proper selection
of the proposed distribution and the re-sampling method. In the light
of the selection of proposed distribution, we need an algorithm that
can consider the system current measures. So we take advantage of
the H∞ Filter and incorporate it into the particle filter.

2.2. Basic theory of H∞ Filter

Generally, we can consider a time-varying discrete state model in the
Kerin space as following:





X(k) = Φ(k)X(k − 1) + Γ(k)W (K)

Z(k) = H(k)X(k) + V (k)

S̃(k) = L(k)X(k), k = 1, 2, 3, . . .

(7)

where, X(k) ∈ Rn is the system state vector at time k, Z(k) ∈ Rn is
the observation vector at time k and S̃(k) is the given state variable.
The matrixes Φ(k), Γ(k), H(k) and L(k) are preset to known matrixes
in general. We suppose the system noise W (k) and the observation
noise V (k) are energy bounded l2 signals, that is, Σ∞k=0||W (k)||2 < ∞
and Σ∞k=0||V (k)||2 < ∞, where the sign ||.||2 denotes the l2 norm. We
have no hypothesis on their statistical properties. X(0), W (k) and
V (k) meet the following requirements:

[ [
X(0)
W (j)
V (j)

]
,

[
X(0)
W (k)
V (k)

] ]
=

[ ∏
0 0 0

0 I/δjk 0
0 0 R∞(k)δjk

]
(8)
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where, R∞(k) =
[

I 0
0 −γ2

fI

]
δjk. For the given observations Z(k),

we denote X̂(k) as the estimate of X(k), so we can obtain the state
estimation error e(k) :

e(k) = X̂(k)−X(k) (9)

The H∞ filtering algorithm is a Kalman filter in Krein space actually,
so we design H∞ filter based on (6) and (7) as follows:

X(k|k − 1) = Φ(k|k − 1)X∞(k − 1) (10)

P (k|k − 1) = Φ(k|k − 1)P (k − 1)ΦT (k − 1)+Γ(k−1)ΓT (k−1) (11)

X∞(k) = X(k|k−1) + K∞(k−1)
[
Z(k)−H(k)X(k|k−1)
S̃(k)−L(k)X(k|k−1)

]
(12)

K∞(k) = P (k|k − 1)
[

HT (k) LT (k)
]
R−1

e (k) (13)
P (k) = (I −K∞(k) [ H(k) L(k) ])P (k|k − 1) (14)

Re(k) =
[
I 0
0 −γ2I

]
+

[
H(k)
L(k)

]
P (k|k − 1)

[
HT (k) LT (k)

]
(15)

The above formulas constitute the H∞ robust filtering algorithm.
Because of using the different filtering gain algorithm, the H∞ filter
is different from the standard kalman filter essentially. When the
disturbance attenuation factor γ → ∞, we can see that M(k) → 0
through (16), which makes the H∞ filter recursion degenerate into
the Kalman filter recursion. So the H∞ norm of the Kalman filter
may be very large, which result in poor robustness performance. As
the disturbance attenuation factor γ → min, we find M(k) → I
through (16), where I is the identity matrix, though we can get good
robustness, the estimation square error is quite large. So we can obtain
satisfactory requirement by adjusting the parameter γ according to
testing experiment in practice.

Under the Krein space conditions, suppose that M(k) is the
filtering gain imbalance factor, which describes the process that the
disturbance attenuation factor γ adjusts filtering gain. They meet the
following equation:

M(k) = Λ(k)(−γ2I + Λ(k))−1 (16)

where, Λ(k) = (I −Ks(k))H(k)P (k|k − 1). From the analysis of the
algorithms and the above formulas, we employ the decomposition of
matrix and inverse theory in Re(k), and bring the results into the
formula (13), assuming L(k) = I, we get:

K∞(k) = [ (I −M(K))Ks(k) M(k) ] (17)
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Ks(k) = P (k|k − 1)HT (k)(I + H(k)P (k|k − 1)HT (k))−1 (18)

We can know by the above knowledge: the process that disturbance
attenuation factor γ adjusts the robustness of the filter can be described
as to adjust the gain of the filter process essentially.

Ks(k)
γ→M(k)→ K∞(k)

(14)→ P (k)
(11)→ P (k + 1|k)

(18)→ Ks(k + 1) (19)

2.3. Proposed H∞PF

The process of the H∞PF is shown in Table 1, where N is the total
number of particles. xj

k (k > 0) is the new particle generated by
H∞F. H∞ prediction(.) is the function that performs the H∞ filter
algorithm using the formulas (10)–(15) described in Section 2.2. Pr(.)
is the probability that determines the resampling particle x̃j

k according
to the discrete weight distribution ω̃j

k.

3. SIMULATION RESULTS

3.1. Case 1: One-dimension Target Tracking With Large
Maneuvers

3.1.1. Target Scenario

For one-dimensional tracking problem, we adopt the following system
state space model, and at the same time we compare the performance
of the PF, KPF and H∞PF in terms of tracking accuracy.

{
xt = 0.5xt−1 + 25xt−1/

(
1 + x2

t−1

)
+ 8 cos[1.2(t− 1)] + wt

yt = x2
t /20 + vt

(20)

where, wt and vt are the vector input white noise with zero mean,
x0 = 0.1, and the particle number N is 50 and γ = 0.5. We have
implemented the algorithms in MatlabR2009a.

3.1.2. Tracking Performance Comparison

Figure 1 shows the tracking results by the PF, KPF and the proposed
H∞PF. We can see that the Kalman particle filter, and the proposed
method can well estimate the motion state of target throughout the
entire movement process.

Figure 2 shows the position error of estimated position
corresponding to PF, KPF and H∞PF. It is obvious that when the
target is during the maneuvering, the proposed H∞PF guarantees the
tracking accuracy and performed better than the KPF, but the PF
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Table 1. The simple description of the H∞PF algorithm.

Initialization: k = 0
for j = 1, . . . , N

Sample x̃j
0 from p(x0); Calculate the weight ωj

0 = 1/N

end
for k = 1, 2, . . . (main loop)

H∞ Prediction
for j = 1, . . . , N

xj
k=H∞ prediction (x̃j

k−1)
end

Importance Step
for j = 1 : N , calculate the importance weights:

ωj
k = ωj

k−1

p(zk|xj
k)p(xj

k|xj
k−1)

q(xj
k|xj

k−1, zk)
,

where, q(xj
k|xj

k−1, zk) = p(xj
k|xj

k−1).
end
Followed by normalization: ω̃j

k = ωj
k/

∑N
j=1 ωj

k

Resampling Step
for j = 1, . . . , N

Pr (xi
k = x̃j

k)=ω̃j
k,

Reset the weights ωi
k = 1/N , (i = 1, . . . N).

end
State Estimation Step

Calculate the desired estimate x̂k: x̂k =
∑N

j=1 ω̃j
kx

j
k

end

cannot ensure good tracking accuracy. The reason is that the PF does
not think over the current measurements but the KPF and the H∞PF
employ the current measurements. To the KPF and the H∞PF,
H∞PF can get the compromise between the accuracy and robustness
by adjusting disturbance attenuation factor, so, the proposed algorithm
is the best among the three. From Fig. 3, we can see that the proposed
algorithm is much more robust than the other two and that the H∞PF
keeps the satisfactory results throughout the whole process.
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Figure 1. Estimated trajectory
by PF, KPF and H∞PF.

Figure 2. Position Error by PF,
KPF and H∞PF.

Figure 3. Position RMSE by PF, KPF and H∞PF with different
particle number.

3.2. Case 2: Two-dimension Target Tracking With Large
Maneuvers

3.2.1. Target Scenario

For two-dimensional tracking problem, we consider a relatively
complicated scenario. There are seven target motion patterns as shown
in Table 2 for our experiment in which we track a target with large
maneuvers and the period is longer. We set the initial motion pattern
as (ux = 28m/s, uy = 28 m/s, θ = 0◦/s). The initial position
is (1000 m, 1000m) and γ = 100. The target motion is constant
velocity or constant turn in different time interval. Here, the particle
is described by a vector containing the position on X, the velocity on
X, the position on Y, the velocity on Y. The target is modeled by the
following model:

xt = F (θ, T )xt−1 + B(T )wt (21)
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where, θ is the turn rate,

F (θ, T ) =




1 sin(θT )/θ 0 −(1− cos(θT ))/θ
0 cos(θT ) 0 − sin(θT )
0 −(1− cos(θT ))/θ 1 sin(θT )/θ
0 sin(θT ) 0 cos(θT )


is the state

transition matrix, B =




T 2/2 0
T 0
0 T 2/2
0 T


 is the input matrix, wt is the

matrix of input white noise with zero mean.
Table 2 lists the detailed description of the target motion. The

target starts a constant velocity motion from position (1000 m, 1000 m)
with initial speed (ux = 28m/s, uy = 28 m/s, θ = 0◦/s) and γ = 100.

3.2.2. Tracking Performance Comparison

Figure 4 shows the tracking results by the PF, KPF and the proposed
H∞PF. Fig. 5 and Fig. 6 show the tracking results by the PF, KPF
and the proposed H∞PF on X and Y, respectively. It is clear that the
proposed method can well estimate the motion state of target.

Figure 7 shows the position error of estimated position
corresponding to the PF, KPF and H∞PF. We can see that though
the maneuvers are large, good performance can be obtained by H∞PF.

Figure 8 shows the position RMSE by the three filters with
different particle number. Form this figure, it is obvious that the
proposed algorithm is more precise and robust than the PF and KPF
even when the particle number is small.

Table 2. The process of target motion.

Time interval The target motion patterns
0–20 ux = 28m/s, uy = 28 m/s, θ = 0◦/s

21–100 ux = 28m/s, uy = 28 m/s, θ = 6◦/s
101–200 ux = 28m/s, uy = 28m/s, θ = 0◦/s
201–240 ux = 28m/s, uy = 28 m/s, θ = 9◦/s
241–300 ux = 28m/s, uy = 28 m/s, θ = 0◦/s
301–400 ux = 28m/s, uy = 28 m/s, θ = −7◦/s
401–440 ux = 28m/s, uy = 28 m/s, θ = 0◦/s
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Figure 4. Estimated trajectory
by the PF, KPF and H∞PF.

Figure 5. Estimated trajectory
on X by the PF, KPF and H∞PF.

Figure 6. Estimated trajectory
on Y by the PF, KPF and H∞PF.

Figure 7. Position error of
estimated position to the PF,
KPF and H∞PF.

Figure 8. Position RMSE by
the PF, KPF and H∞PF with
different particle number.

Figure 9. Position error of
estimated position to the KPF
and the H∞PF with different γ.
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Figure 9 shows the position error of estimated position to the
KPF and the H∞PF with different values of γ, where the values of γ
are 102, 103, and 105, respectively. When γ = 102, we can get good
robustness and accuracy. But when γ = 103 or γ = 105 or larger, the
filter recursion may approach nearer to the KPF recursion which leads
to poor robustness properties.

4. CONCLUSION

In this paper, a novel H∞PF for maneuvering target tracking
has been proposed, and the simulation results demonstrate that
the new algorithm has better accuracy and robustness in tracking
maneuvering target. The proposed H∞PF algorithm incorporates
the H∞F algorithm into the standard particle filter, so the new
algorithm can fully take into account the current measures and make
the particles distribution more approach to the station posterior
distribution. Furthermore, the proposed algorithm can get the
compromise between the accuracy and robustness by adjusting
disturbance attenuation factor. Finally, simulation results demonstrate
that the proposed algorithm can achieve higher prediction precision
and better robustness, and meanwhile, the H∞PF is proved to be
effective and practicable in tracking the maneuvering target with large
maneuvers.
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