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Abstract—Bistatic multiple-input multiple-output (MIMO) radar
can improve the system performance for obtaining the waveform
diversity and larger degrees of freedom (DoF), and effectively
counteract the stealthy target for its transmit antennas and receive
antennas separated placement. Similarly with the conventional bistatic
radar, the geometry configurations of bistatic MIMO radar also play an
important role in radar system’s performance. Aimed at considering
these effects of geometry configurations on the performance for bistatic
MIMO radar, in this paper the extended ambiguity function is defined
as the coherent cumulation of the matching output of all channels,
where the information of the system geometry configuration is included
in the received signal model. This new ambiguity function can be used
to characterize the local and global resolution properties of the whole
radar systems instead of only considering transmitted waveforms in
Woodward’s. In addition, some examples with the varying system
configurations or target parameters are given to illustrate their effects,
where the spatial stepped-frequency signal set (a quasi-orthogonal
waveform set) is used. The simulation results demonstrate that the
more approaching monostatic MIMO radar case, the better ambiguity
properties of time-delay and Doppler for bistatic MIMO radar.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) radar has gotten considerable
attention in a novel class of radar system, where the term MIMO
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refers to the use of multiple-transmit as well as multiple-receive
antennas [1–19]. MIMO radar can transmit, via its antennas, multiple
probing signals that may be correlated or uncorrelated with each
other. There are two basic regimes of architecture considered in the
current literature [6]. One is called statistical MIMO radar with
widely separated antennas, which captures the spatial diversity of
the target’s radar cross section (RCS) [2, 3]. This spatial diversity
gain can improve the target detection and estimation of variations
parameters. The other is called coherent MIMO radar with colocated
antennas, which can obtain the waveform diversity and larger degrees
of freedom (DoF) to improve the target parameters estimation,
parameter identifiability and much flexibility for transmit beampattern
design [1, 4]. Furthermore, based on whether the transmit antennas
and the receive antennas are separated or not, the coherent MIMO
radar can be distributed into two classes. One is the bistatic MIMO
radar [16]; the other is the monostatic MIMO radar [1]. The former is
commonly with the quite different transmit antennas’ locations from
the receive antennas’. And all the transmit antennas and the receive
antennas are colocated, respectively. Thus, the directions of the target
to the transmit antennas and the receive antennas are almost the
same in the far-field scenario, respectively. While monostatic MIMO
radar is with all transmit and receive antennas colocated, then the
directions of the target to all the antennas are almost the same in the
far-field scenario. In our paper, we mainly consider the bistatic MIMO
radar configuration. First, for this general antenna configuration, both
the coherent processing gain and the spatial diversity gain can be
achieved simultaneously. Second, we can consider monostatic MIMO
radar as a special case of bistatic MIMO radar. At last, we want
to show the performance of bistatic MIMO radar attended by many
researchers [16, 20–23].

It is well-known that the classical ambiguity function was
introduced by Woodward and is used to characterize the local and
global resolution properties of time-delay and Doppler for narrowband
waveforms [24]. Other authors have extended Woodward’s ideas to
larger classes of waveforms and whole radar systems [25, 26]. Normally,
the classical ambiguity function couldn’t illustrate the resolution
properties of bistatic radar system appropriately for the effects of
varying configuration. Then Tsao et al. proposed a new framework
for ambiguity function for a bistatic radar configuration and showed
the effects of geometry configurations on the performance of parameter
estimation [27]. Recently, Antonio et al. [28] extended the radar
ambiguity function to the MIMO radar case. It turns out that the
radar waveforms affect not only the range and Doppler resolution but
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also the angular resolution. They defined the MIMO radar ambiguity
function as the expected value of the data loglikelihood function
for the received data, which is viewed as a function of the whole
radar system, geometry, waveforms, and target characteristic. In [29],
some mathematical properties of the MIMO radar ambiguity function
defined as in [28] are derived. And using these properties, a new
algorithm for designing the orthogonal frequency-hopping waveforms
is proposed. Here we mainly focus on the effects of geometry
configurations of bistatic triangle [30] on the ambiguity properties
of bistatic MIMO radar. And we define the bistatic MIMO radar
ambiguity as the coherent cumulation of the matching output of all
channels enlighten by [27]. So the geometry information is considered
in this definition. It should be recognized that we are not defining a
notion of ambiguity function that is vastly different from those of other
authors. From statistical viewpoint, our definition is the somewhat
similar to the one in [28]. Since it deems that the true target appears
at the point with maximum probability in [28] while at the point
with maximum coherent cumulation energy of the matching output
in our definition, and both consider the ambiguity function from the
received signals, which are different from the conventional ambiguity
function from Woodward. A major difference between our definition
and Antonio’s [28] is that ours does not depend on the prior statistical
information of the received signals.

This paper is arranged as follows. In Section 2, we give some
preliminary elements. First, we review the geometry of bistatic
MIMO radar from conventional bistatic radar, using two-dimensional
(2-D) North-referenced coordinate system. Second, we derive the
relationship between bistatic geometry with range and range rate,
respectively, for a slowly fluctuating point target [27]. Third, we
show the signal model for each channel. An ambiguity function
for bistatic MIMO radar is given in Section 3, which includes the
geometry information of system. In Section 4, the design of a quasi-
orthogonal waveform set, i.e., spatial stepped-frequency signal set, is
shown first. Then using this designed waveform set, it is shown that
the effects of geometry configurations play an important role in the
systems’ ambiguity properties from the simulation results. A summary
including conclusions is presented in Section 5.

2. PRELIMINARIES

2.1. Review Geometry of Bistatic MIMO Radar

In this subsection, we review the North-referenced coordinate system
used in [30] to represent bistatic MIMO radar geometries.
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Figure 1. Bistatic MIMO radar geometry.

The North-referenced coordinate system is a 2-D coordinate
system confined to the bistatic plane formed by the target T , and
the reference transmit antenna Tref and the reference receive antennas
Rref . Fig. 1 shows the coordinate system and its parameters.
Connecting the reference transmit and receive antennas is the baseline
whose length is L. When L = 0, bistatic MIMO radar reduce to
the monostatic MIMO radar case. For the bistatic configuration, we
can assume all the look angels for all transmitters to target are the
same, called θT , and θR for all receivers. They are measured positive
clockwise from the north of the coordinate system, and are restricted
to the interval [−π/2, 3π/2]. The bistatic angle β is the angel at the
apex of the bistatic triangle, and β = θT −θR. β is in the interval [0, π]
when the target is to the north of the baseline and is negative and in
the interval [−π, 0] when the target is to the south of the baseline. The
line bisects the bistatic angel is called the bistatic bisector. RT and
RR are the distances from the reference transmit antennas to target
and from the reference receive antennas to target, respectively, their
sum being the total range sum, i.e., R = RT + RR. We know the
bistatic radar geometry can be completely specified in terms of any
three of six parameters, RT , RR, θT , θR, L and R. Assume that RR,
θR and L are known, i.e., the receiver-centered operating region. This
assumption is used in remainder work, and a similar procedure can
be used to determine the bistatic geometry for other three parameters
known, such as the transmitter-centered operating region (RT , θT and
L are known). The law of cosines applied to the bistatic triangle gives

RT =
√

R2
R + L2 + 2RRL sin θR (1)

Substituting (1) into R = RT + RR and simplifying, we have

R = RR +
√

R2
R + L2 + 2RRL sin θR (2)
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The law of cosines can also be written as
R2

R = R2
T + L2 − 2RT L sin θT (3)

Using (1) to solve for θT , we have

θT =





sin−1 RR sin θR+L√
R2

R+L2+2RRL sin θR

, −π
2 ≤ θT < π

2

π − sin−1 RR sin θR+L√
R2

R+L2+2RRL sin θR

, π
2 ≤ θT < 3π

2

(4)

where −π
2 ≤ sin−1(·) ≤ π

2 . Thus (1), (2) and (4) provide the remaining
parameters of the bistatic geometry. In the next subsection, we will
show the relationship of range and range rate with the geometry
parameters.

2.2. Effects of Bistatic Geometry on Range and Range Rate

Assume that a slowly fluctuating point target with the velocity v. And
the angle between the target velocity v and the bistatic bisector is φ, in
Fig. 1, as measured in a positive clockwise direction from the bisector.

First, we consider the relationship between range and the known
parameters of biastic geometry, i.e., RR, θR and L. From (2), the total
transmission time delay from the reference transmit antenna to the
reference receive antenna as a function of RR and θR is given by

τ (RR, θR, L) =
RR +

√
R2

R + L2 + 2RRL sin θR

c
(5)

where c is the wave propagation speed. Clearly, (5) reduces to the
monostatic case when L = 0.

Next, we consider the relationship between range rate and the
known parameters. And for simplicity, we assume that the transmit
and receive antennas are all stationary and the target is located north
of the baseline; by symmetry, similar conclusion can be drawn for
the case of the south of the baseline. Consider the first-order time-
derivative of the total range. From Fig. 1 it is clear that

d

dt
RT = v cos (φ− β/2) (6)

d

dt
RR = v cos (φ + β/2) (7)

where d
dtRT is the projection of the target velocity vector onto the

transmitter-to-target light of sight (LOS) [30], and similarly, d
dtRR is

the projection of the target velocity vector onto the receiver-to-target
LOS. Then we have

d

dt
R =

d

dt
RT +

d

dt
RR = 2v cosφ cos(β/2) (8)
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From the factor cos(β/2) we can see that the resulting range rate
is smaller in the bistatic radar than in the monostatic case, when
β = 0, (8) reduces to the monostatic case.

The dependence of cos(β/2) on the known parameters is shown in
the following. From trigonometry

cos (β/2) =

√
1 + cosβ

2
(9)

And from the law of cosines,

cosβ =
R2

T + R2
R − L2

2RT RR
(10)

Using (1) to express RT in (9), (10) becomes

cos (β/2) =

√√√√1
2

+
RR + L sin θR

2
√

R2
R + L2 + 2RRL sin θR

(11)

Then the Doppler shift for a given target velocity component along the
bisector becomes

ωD (RR, v, θR, L) = 2
ωc

c
v cosφ

√√√√1
2

+
RR + L sin θR

2
√

R2
R + L2 + 2RRL sin θR

(12)

where ωc is the carrier frequency. It is clearly that (12) reduces to the
monostatic case when L = 0.

2.3. Receive Antennas Output of Slowly Fluctuating Point
Target

Consider a bistatic MIMO radar system with Mt transmit and
Mr receive antennas. For simplicity, we assume that the transmit
and receive antennas are located along the baseline. Furthermore,
assume the distance between each transmit antenna with the reference
transmit antenna is dtk, k = 1, . . . , Mt, similarly, the distance between
each receive antenna with the reference receive antenna is drl, l =
1, . . . , Mr. Assume that the transmitted signal of the kth transmitting
antenna is given by xk(t) =

√
P
Mt

sk(t) =
√

P
Mt

bk(t) exp(jωct), k =

1, . . . , Mt, where
∫
Te
|sk(t)|2 = 1, P is the total transmitting energy,

bk(t) is the complex envelop, and Te is the waveforms’ duration.
Normalization by Mt makes the total energy independent of the
number of transmitters. Disregarding the propagation loss, the
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waveform transmitted by the kth antenna and received by the lth
receive antenna can be written as

rkl (t) ∼=
√

P

Mt
ζbk (t− τkl) · exp (j (ωc − ωkl) t) (13)

where ζ is the unknown complex target reflectivity, which is
proportional to the RCS of the target. Using (5), τkl can be written as

τkl = τ (RR, θR, L) + τk + τl (14)

where τk = dtk cos θT
c and τl = drl cos θR

c , and τkl and ωkl are the
total transmission time delay and Doppler shift for the kth transmit
antenna-target-lth receive antenna channel, respectively. dtk cos θT

c is
the difference of time delay from the kth transmit antenna to target
with the one from the reference transmit antenna to target, drl cos θR

c is
defined in the similar way.

We assume that the transmitted waveforms are narrowband so
that the complex envelop of the waveforms are insensitive to the
motion of the target. And for the bistatic MIMO radar configuration,
the time delay in the envelop for all channels can be approximate
to the time delay of the reference transmit antenna-target-reference
receive antenna channel, i.e., τkl ≈ τ(RR, θR, L); the Doppler shift
for all channels can be the same as the Doppler shift of the reference
transmit antenna-target-reference receive antenna channel, i.e., ωkl ≈
ωD(RR, v, θR, L). Then (13) can be rewritten as

rkl (t) =
√

P

Mt
ζbk (t− τ (RR, θR, L))

· exp (j (ωc − ωD (RR, v, θR, L)) t) (15)

From above equation, we can see that the received signal depend on
the geometry configuration of radar system heavily. For conventional
bistatic radar, its configuration employs only a single transmit antenna
and a single receive antenna. Then the waveform received by the
receive antenna can be written as

r (t) =
√

Pζb (t− τ (RR, θR, L)) · exp (j (ωc − ωD (RR, v, θR, L))t) (16)

3. AMBIGUITY FUNCTION FOR BISTATIC MIMO
RADAR

The conventional ambiguity function just determine limitations on
radar resolution in range and range rate only considering the
transmitting waveform [24]. For bistatic MIMO radar, the geometry
configuration of the triangle constituted by the transmit antennas,
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target and receive antennas is a very important factor for system
ambiguity performance. Then ambiguity function including the
geometry information can illustrate the more actual performance of
bistatic MIMO radar system. The authors in [27] gave the ambiguity
function for conventional bistatic radar expressed as

A (RRH
, RRa , vH , va| θR, L)

∝
∣∣∣∣
∫ ∞

−∞
b (t− τa (RRa , θR, L)) b∗ (t− τH (RRH

, θR, L))

· exp (−j (ωDa (RRa , va, θR, L) −ωDH
(RRH

, vH , θR, L)) t) dt

∣∣∣∣
2

(17)

where the subscripts a and H are used to denoted the actual and
hypothesized value of the parameters associated with the target,
respectively, and {·}∗ denotes the complex conjugate operator. For
notational brevity, we omit the argument RRH

or RRa , vH or va, θR

and L of τa, τH , ωDa and ωDH
in remainder paper. This ambiguity

function is the result of matching the received signal corresponding
to the actual total delay and Doppler. Similarly, we can define the
ambiguity function for bistatic MIMO radar as the coherent cumulation
of the matching output of all channels, i.e.,

AMIMO (RRH
, RRa , vH , va| θR, L)

=

∣∣∣∣∣
Mr∑

i=1

Mt∑

k=1

∫ ∞

−∞
rkl (t)|(RRa ,va,θR,L) r∗kl (t)|(RRH

,vH ,θR,L) dt

∣∣∣∣∣

2

∝
∣∣∣∣

Mr∑

i=1

Mt∑

k=1

∫ ∞

−∞
bk (t− τa) b∗k (t− τH)exp [j (ωDH

− ωDa) t] dt

∣∣∣∣
2

(18)

where τ and ω functions include the geometry information, see (5)
and (12), respectively. Intuitively speaking, our ambiguity function
definition deems that the true target appears at the point with
maximum coherent cumulation energy of the matching output. The
difference between in (17) and (18) is mainly from the waveform
diversity with bistatic MIMO radar.

4. NUMERICAL EXAMPLES

4.1. Orthogonal Waveform Models

In this subsection, the spatial stepped-frequency signal set is designed,
which satisfies the “quasi-orthogonal” condition. The kth transmit
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antenna emits the waveform in the form

xk (t) =
√

P

MtTe
rect (t) exp (j2π (fc + ck∆f) t) , k = 1, . . . , Mt (19)

where

rect (t) =
{

1, 0 ≤ t ≤ Te

0, otherwise

and fc is the base frequency, ck∆f is the increase value of carrier
frequency for the kth signal. With loss generality, we assume that
ck = k − 1 holds in the remainder paper (see Fig. 2). Denoting tk
as the propagation time from the kth transmit antenna to the target
and then arrive at the receive antennas. In the far-field scene, the
correlation function of the kth and lth transmitting signals can be
expressed as (without loss generality, assuming tk ≥ tl)

rk,l (t) =
∫ ∞

−∞
xk (t− tk) x∗l (t− tl)dt

=
∫ Te+tr

tk

P

MtTe
(exp j2π [fc (tl − tk)

+∆f (ltl − ktk) + ∆f (l − k)] t) dt

≈ P

MtTe
exp (j2π [fc (tl − tk) + ∆f (ltl − ktk)])

·
∫ Te

0
exp (j2π∆f (l − k) t) dt (20)

=
P

Mt
exp (j2π [fc (tl − tk) + ∆f (ltl − ktk)])

·sinπ∆f (l − k) Te

π∆f (l − k) Te
(21)

1 2 tM
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0
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Figure 2. Spatial stepped-frequency signal set for MIMO radar.
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It is worth to note that we have a approximate consideration in (20):
tk ≤ t ≤ Te + tl

app−−→ 0 ≤ t ≤ Te for Te À tk, tl, where A
app−−→ B denotes

that A is approximate of B. To guarantee the orthogonality of the kth
and lth transmitting signals, we have rk,l(t) = 0, ∀k, l = 1, . . . , Mt, and
k 6= l. Then we can get the following results

∆f (l − k)Te ∈ Z, ∀k, l = 1, . . . , Mt, and k 6= l (22)

4.2. Examples Illustration

In the following examples, we focus on the effects on the ambiguity
function by the system geometry. RR and v as the independent
arguments of ambiguity function are given for a variety of bistatic

Table 1. Specification of a variety of bistatic configurations and target
parameters.

Case index θR (degree) L (km) RRa (km) va (m/sec)

case 1 90 2000 1300 200

case 2 45 2000 1300 200

case 3 0 2000 1300 200

case 4 −45 2000 1300 200

case 5 −90 2000 1300 200

case 6 −45 2000 1300 100

case 7 −45 2000 3300 200

case 8 −45 500 1300 200

case 9 −45 0 1300 200
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configurations. The receiver-centered operating region is adopted
in the geometry considered [30], shown in Table 1. In the similar
manner, geometry effects can be examined for transmitter-centered
operating regions. Especially, in case 6, bistatic MIMO radar reduces
to monostatic MIMO radar case for L = 0.

Assume a bistatic MIMO radar with 4 transmit antennas and
4 receive antennas, the inter-elements paces of transmit antennas and
receive antennas are both half of wavelength, respectively. Here we use
the signals designed in Section 4.2. Here we give a set of orthogonal
signals for MIMO radar with 4 transmit and 4 receive antennas: P = 1,
Te = 1ms, fc = 1GHz and ∆f = 10 kHz in (19).

In Figs. 3–11 (all the leftward sub figures are the ambiguity
surface in terms of total delay and Doppler, and the rightward sub
figures are the corresponding equal-height plots, respectively), we
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Figure 8. Bistatic MIMO radar ambiguity function plots for case 6.

give the plots of AMIMO (RRH
, RRa , vH , va|θR, L) corresponding to

the geometry configuration or different target parameters cases in
Table 1, respectively. In other words, Figs. 3–10 are the ambiguity
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Figure 10. Bistatic MIMO radar ambiguity function plots for case 8.

function plots corresponding to the bistatic MIMO radar with different
configurations or different target parameters and Fig. 11 is the
ambiguity function plots corresponding to the monostatic MIMO
radar. We can see that the geometry configurations play an important
role in the systems’ ambiguity properties. For case 1, the system
configuration is somewhat similar to the monostatic MIMO radar in
case 9 (since in case 1 the transmit antennas, the receive antennas
and the target are collinear and the target is located at the same
side of all the antennas, this is somewhat similar with the monostatic
MIMO radar case), then they have the similar ambiguity function
plots between Fig. 3 and Fig. 11. In Figs. 4–6 and 8–10, we find
that the true target parameters can be estimated with the worse
performance than monostatic MIMO case in Fig. 10. However, Fig. 7,
corresponding to case 5 in Table 1, shows that the resolution is totally
lost when the target is on the baseline. From Figs. 6, 9, 10 and 11,
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Figure 11. Monostatic MIMO radar ambiguity function plots for
case 9.

corresponding to cases 4, 7, 8 and 9 in Table 1, respectively, we find
that the better ambiguity performance can be gotten by approaching
monostatic MIMO radar configuration (it is worth noting that the
geometry configuration with the longer target range in case 7 or the
shorter baseline length in case 8 is more approaching the monostatic
MIMO radar case (case 9) than one in case 4).

In conclusion, the bistatic MIMO radar configuration is more
approaching the monostatic MIMO radar case, the better ambiguity
performance will be gotten.

5. CONCLUSION AND DISCUSSION

This paper presented a new framework of the ambiguity function
for a bistatic MIMO radar. The effects of geometry configurations
of bistatic triangle on ambiguity properties were emphasized. We
defined the ambiguity function for a bistatic MIMO radar as the
coherent cumulation of the matching output of all channels, where
the information of the system geometry configuration is included in the
received signal model. It was also worth to note that the bistatic MIMO
radar ambiguity function needs to be considered with respect to an
appropriate reference point. Here we considered the receiver-centered
operating region. The examples, using the spatial stepped-frequency
signal set, demonstrated the fact that the bistatic geometry plays an
important role in the shape of ambiguity function. Furthermore, the
resolution was totally lost when the target is on the baseline. In a
word, the better ambiguity performance of bistatic MIMO radar can
be obtained from a more approaching monostatic MIMO configuration.

It is worth noting that bistatic MIMO configuration is needed in
some practical applications for obtaining its spatial diversity gain, such
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as the case of effectively detecting a stealthy target. Furthermore,
it is worth noting that effects of geometry configurations cannot be
given when using the conventional ambiguity function disregarding the
geometry information. The methodology presented here can be used
to evaluate the capability of transmitted waveform set and the system
performance for bistatic MIMO radar.

As in array signal processing [31, 32], the antennas placement
strategy for MIMO radar (a multiple antennas frame), which we did
not consider here, also plays an important role in the performance of
systems. Honestly speaking, we mainly focused on the effects of the
geometry configuration of bistatic triangle on the ambiguity properties
for bistatic MIMO radar in this paper. And the optimal antennas
placement strategy will be further studied in near future.
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