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ARTIFICIAL MAGNETIC PROPERTIES OF DIELEC-
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L. Y. Liu, J. B. Sun, X. J. Fu, J. Zhou, and Q. Zhao

State Key Lab of New Ceramics and Fine Processing
Department of Materials Science and Engineering
Tsinghua University, Beijing 100084, China

B. Fu and J. P. Liao

School of Electrical and Electronic Engineering
Hubei University of Technology, Wuhan 430068, China

D. Lippens

Institut d’Electronique de Microlectronique et de Nanotechnologies
UMR CNRS 8520
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Abstract—An effective series RLC model for the electromagnetic
response of weakly absorbing dielectric sphere near the first magnetic
dipole resonance was developed, and the effective magnetic properties
of Mie resonance-based dielectric metamaterials were obtained in terms
of this model. In comparison with traditional effective medium theory
such as extended Maxwell-Garnett (EMG) theory based on Mie model,
this approach is more intuitive and can give an analytical dependence
of the magnetic properties of the composite on the electromagnetic and
geometric parameters of the constituting dielectric particles.
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1. INTRODUCTION

Left-handed metamaterials (LHM) are artificially structured media
which exhibit many exotic electromagnetic behaviors not observed
in nature [1, 2]. A big challenge for realization of LHM is to attain
artificial magnetism, especially that of negative permeability. Since
Pendry firstly proposed that metallic split ring resonator (SRR) can
provide negative magnetic permeability [3], many researchers focused
on the study of different metallic resonance structure to obtain the
negative magnetic permeability, including the double SRR [3–5], single
SRR [6–8], S-ring resonator [9, 10], fishnet structures [11, 12] and so
on. In order to interpret the artificial magnetism of various metallic
structures, researchers presented various models which are all based
on the RLC -resonance of the metallic structure [3, 6, 13, 14]. Then the
macroscopic electromagnetic parameters are obtained by use of the
so-called effective medium theory. The RLC circuit model presented
a clear and instructive physics paradigm for the metallic structured
metamaterials, and became a powerful tool for the prediction and
design of metamaterials.

As a new route to obtain LHM instead of metallic structure,
metamaterials composed of dielectric particles in which the negative
permeability is derived from the first Mie resonance (magnetic dipole
resonance) of the particle attracted much attention for their simple
structure and isotropy [15–20].

For the aforementioned studies on dielectric metamaterials,
the analyses are based on the Extended Maxwell-Garnett (EMG)
theory [21–23], which is essentially the dynamic generalization of
Clausius-Mossotti relation. When the particles are arranged in cubic
lattice, the effective magnetic permeability of the metamaterial is given
by EMG as,

µeff =
x3 + 3ifb1

x3 − 3
2 ifb1

, (1)

where f is the volume fraction of the dielectric particles, and the
magnetic dipole scattering coefficient is given by

b1 =
ψ1(mrx)ψ′1(x)−mrψ1(x)ψ′1(mrx)
ψ1(mrx)ξ′1(x)−mrξ1(x)ψ′1(mrx)

, (2)

where mr = mp/mh is the complex refractive index of the dielectric
particle relative to the host, and mp and mh are respectively the
refractive indexes of the particle and the host in vacuum. The size
parameter of the dielectric particle is x = mhωr/c, where ω is the
angular frequency of incident wave, r is the radius of the dielectric
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particle, and c is the velocity of light in vacuum. ψ1 and ξ1 are the
first order Riccati-Bessel functions.

The EMG approach can be used to numerically predict the
effective permeability of the composite, whereas we cannot obtain
analytically the dependence of the effective magnetic properties of the
composite on the electromagnetic and geometrical parameters of the
constituting particles due to the expression of b1 being complicated
and not intuitive.

In this work, we developed an effective series RLC loaded
conductive loop model of the weakly absorbing dielectric particle
metamaterials to overcome the deficiency of EMG. With this model, we
can conveniently analyze the magnetic dispersion relation of dielectric
metamaterials, and obtain the dependence of the important physical
quantities such as resonance frequency and relative broadness of
negative permeability on the parameters of constituting particles. This
work provides us a new and intuitive insight into the physics of
magnetic properties of dielectric metamaterials.

2. DERIVATION OF THE MODEL

Consider a dielectric sphere embedded in a host with a refractive index
mh, being incident by a plane wave, as shown in Fig. 1(a). The
radius of the dielectric sphere r is much smaller than the incident
wavelength in the host, implying the particle size parameter x ¿ 1.
The complex refractive index of the dielectric particle relative to the

(a) (b)

Figure 1. Schematic view of the structure under study. The left
dielectric sphere is incident by a plane wave with the magnetic field
directed along z axis and wave vector directed along y axis, and eddy
currents are induced inside it. The eddy currents generate magnetic
moment and provide the magnetic property. The arrows represent the
eddy currents on the xy plane. The right conductive ring loaded by
an impedance Z is the effective circuit model of the dielectric sphere.
The radius of the ring is same as that of the sphere.
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host is mr = m′
r + im′′

r = (m′
p + im′′

p)/mh, where m′
p and m′′

p are the
real part and imaginary part of particle refractive index in vacuum
respectively. We assume that m′′

r ¿ m′
r, which is satisfied by weakly

absorbing dielectrics including the Ba0.5Sr0.5TiO3 (BST) cube used in
the experiment [2, 20]. For small x, Videen ever gave mrx = Nπ where
N is an integer, as the resonance condition of the scattering coefficient
b1. In order to meet the resonance condition and the effective medium
theory which requires that the dimension of the particles must be much
less than the wavelength in host, the real part of the particle refractive
index have to be much larger than that of the host. When the dielectric
sphere is excited into b1 resonance, the eddy currents which consist
of conductive and displacement currents, are generated around the
electromagnetic wave magnetic field direction as shown in Fig. 1(a).
The magnetic moment generated by the eddy currents interacts with
the electromagnetic wave magnetic field, and provides the artificial
magnetism. For the dielectric particle with weak absorption, b1 can be
expanded about the first resonance location and simplified as [24],

b1 =
x

x + mrm′′
r

1

1 + (∆̃+x/mr)
ix2/mr+im′′

r x

, (3)

where ∆̃ = m′
rx − π. Considering that m′

r À m′′
r and x ¿ 1, Eq. (3)

can be simplified further,

b1 ' x

m′
rm

′′
r


 1

1 +
(

m′
r

m′′
r
− π/m′′

r
x

)2 + i

(
m′

r
m′′

r
− π/m′′

r
x

)

1 +
(

m′
r

m′′
r
− π/m′′

r
x

)2


 . (4)

First of all, we derive the effective resistance R of the dielectric
particle. We assume that the effective circuit is a circular conductive
ring loaded by an effective impedance Z = R − iωL + i/ωC as shown
in Fig. 1(b), where R, L, and C are the effective resistance, effective
inductance, and effective capacitance respectively, which are in series
connection. The radius of the ring is same as that of the sphere.
Considering x ¿ 1, the electromotive force (emf) induced on the ring
is

E = −∂
(
Bπr2

)

∂t
= iωπr2B, (5)

where the harmonic factor e−iωt is assumed. The power dissipated
in the resistor is equal to the power absorbed and scattered by the
sphere. In the case of resonance, the power dissipated in the effective
resistor of the effective RLC circuit is equal to E2

0

/
2R, where E0 is the

amplitude of the emf. The power absorbed and scattered by the sphere
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is cB2
0Cext

/
2µ0mh, where B0 is the amplitude of the magnetic vector,

and Cext is the extinction cross section of the dielectric particle, which
is equal to

Cext =
2π

k2

∞∑

n=1

(2n + 1)Re(an + bn). (6)

The Mie scattering coefficients except for b1 are negligible when the
particle is excited into magnetic dipole resonance. So the extinction
cross section is equal to Cext = 6πRe(b1)/k2

0, where k0 denotes the
wavenumber at resonance. Therefore we have

1
2
E2

0

R
=

cB2
0

2µ0mh

6π

k2
0

Re(b1). (7)

When the particle is in magnetic dipole resonance, from Eq. (4) we
have Re(b1) = x/m′

rm
′′
r . Together with the first b1 resonance condition

m′
rx = π, i.e., ω0 = πc/m′

rmhr = πc/m′
pr, we derive the effective

resistance R as follows,

R =
µ0π

4cm′′
r

6m′2
r mh

=
µ0π

4cm′′
p

6m′2
p

. (8)

Assuming that m′
r/m′′

r = A1, π/m′′
r = A2, and X = A2/x, we can

obtain real b1 according to Eq. (4) as follows,

Re(b1) =
x

m′
rm

′′
r

1
(X −A1)2 + 1

=
x

m′
rm

′′ y. (9)

The right term of Eq. (9) y = 1/[(X −A1)2 + 1] is a typical Lorentzian
function, so it reaches its peak at X = A1, and gets its half maximum
at X = A1±1, i.e., at x = A2/(A1 ± 1). Therefore the full width at half
maximum (FWHM) of y is ∆x = 2A2/(A2

1 − 1). Seeing that m′′
r ¿ m′

r,
which means that the dielectric particle is a high Q resonator, we can
consider x as a constant in the FWHM. Therefore, we think that the
FWHM of real b1 is approximately equal to that of y as follows,

∆x =
2π/m′′

r

(m′
r/m′′

r)2 − 1
. (10)

So the relative broadness of b1 resonance is
∆f

f0
=

∆x

x0
=

∆x

π/m′
r

=
2π/m′′

r

(m′
r

/
m′′

r)2 − 1
m′

r

π
' 2m′′

r

/
m′

r, (11)

which means that the quality factor of the first b1 resonance is Q =
f0/∆f = m′

r/2m′′
r . It is well-known that the quality factor of a series

RLC circuit is Q = (1/R)
√

L/C. Therefore we have

(1/R)
√

L/C = m′
r

/
2m′′

r . (12)
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On the other hand, the resonance frequency of RLC circuit is ω0 =
1/
√

LC. Together with ω0 = πc/m′
pr, Eqs. (8) and (12), we can

derive the effective inductance and capacitance of the effective circuit
as follows,

L =
µ0π

3r

12
, C =

12rm
′2
p

µ0π5c2
. (13)

Now we can make use of previous theoretical research on SRR
metamaterials to obtain the effective magnetic permeability of the
dielectric particle array. The effective magnetic permeability of SRR
array is given by [3, 6],

µzz(ω) = 1− Aω2

ω2 − ω2
r + iΓω

, (14)

in which the parameters A, ωr, Γ are related to the effective R,
C, and L of the SRR element by [6]: A = π2µ0r

4nL−1ω2
rω

−2
0 ,

ωr = ω0(1 + µ0rΣL−1 + π2µ0r
4nL−1/3)−1/2, Γ = RL−1ω2

rω
−2
0 , where

ω0 = 1/
√

LC is the resonance angular frequency of the SRR, r and
n are the radius and number density of the SRR respectively. Σ is a
dimensionless parameter which depends only on the lattice type and
the values of the lattice constants, and in the case of cubic lattice it
equals to zero due to symmetry. The relative broadness of negative
magnetic permeability is given as follows [6],

∆ =
ω̃2 − ω2

r

ω2
r

=
π2µ0r

4nL−1

1 + µ0rΣL−1 − 2
3π2µ0r4nL−1

, (15)

where ω̃ denotes the magnetic plasma frequency.
In the case of cubic lattice and the volume fraction of the dielectric

particles being f , by substituting the formulae of R, L, C, and ω0 into
the expressions of A, ωr, and Γ, we derive the parameters as follows,

A =
9f

3f + π2
, Γ =

2π3cm′′
p

m′2
p r(3f + π2)

, ωr =
π2c

m′
pr

√
3f + π2

. (16)

Therefore the effective magnetic permeability of the dielectric
composite can be obtained by substituting these parameters into
Eq. (14). On the other hand we can calculate the effective magnetic
polarizability of the dielectric particle by using the expressions of
the emf, R, L, and C, and then substitute the effective magnetic
polarizability into Clausius-Mossotti relation to obtain the same result
as well.

The relative broadness of negative magnetic permeability is also
derived as follows,

∆ =
9f

π2 − 6f
. (17)
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3. NUMERICAL VERIFICATION AND DISCUSSION

In order to verify our derivation, we compare the calculation results
using our model with those provided by EMG based on accurate Mie
theory and numerical simulations respectively. The S parameters are
computed by numerical simulation software CST Microwave Studio,
and the boundary conditions are set as paired perfect conductor
conditions and paired perfect magnetic conditions perpendicular to the
propagation direction. Thus we used the calculated S parameters to
retrieve the effective permeability by using the methods presented by
Refs. [25, 26]. We choose the BST sphere as the constituting dielectric
particle. The radius of the BST sphere is 0.5 mm and the lattice
constant is 2 mm, and the dielectric permittivity is 1600+4.8i [20].
The permittivity of the host is set to 2. The BST spheres are
arranged in cubic lattice. The calculation results using the model are
shown in Fig. 2, and are both in good agreement with the results
provided respectively by EMG and simulation. As shown in Fig. 2(a),
compared with the results given by EMG, the maximums of the real
and imaginary parts given by our model are a little higher, and
the resonance frequency shifts a little to high frequency. The little
discrepancy is due to the approximation we adopt in Eq. (4). There

(a) (b)

Figure 2. Comparisons of the effective magnetic permeability of
the composite consisting of BST sphere obtained by three different
methods. The permittivity of the BST sphere and the host are
1600+4.8i and 2 respectively. The radius of the BST sphere is 0.5 mm,
and the lattice constant is 2 mm. (a) Permeability obtained by use of
our model and the permeability obtained by EMG. (b) Permeability
obtained by our model and the permeability retrieved from the S
parameters calculated by CST Microwave Studio.
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exists a similar discrepancy in Fig. 2(b), but a little bigger than
that in Fig. 2(a). The reason is that the accuracy of the numerical
simulation software is limited, and we can decrease the difference
between Figs. 1(a) and (b) by increasing the mesh density.

The resonance frequency is an important parameter of Mie
resonance-based dielectric metamaterials. We calculate the depen-
dence of the resonance frequency on the volume fraction f according
to Eq. (16), as shown in Fig. 3. The maximum filling ratio of the com-
posite with cubic lattice is 4π × 0.53/3 =π/6. With the increasing of
the volume fraction of particles, the interactions among particles get
strong [27], so the EMG is not applicable any more [13]. Therefore
we set the maximum f to be 0.425. We change the lattice constant
to obtain different volume fraction, and carry out the numerical sim-
ulations. The simulation and EMG results are also shown in Fig. 3.
In the case of low volume fraction f , the three results are in good
agreement. It is evident that the resonance frequency shifts to lower
frequencies with the increase of volume fraction. According to Ref. [6],
we obtained the expression of resonance frequency in the case of cubic
lattice: ωr = ω0(1 + π2µ0r

4nL−1/3)−1/2. We can see that ω0 and L
are all constants for a dielectric particle with given permittivity and
radius from Eq. (13). So ωr is the decreasing function with respect to
the number density n. Therefore the resonance frequency ωr decreases
with the particle volume fraction f increasing.

With the further increase of f , the simulated resonance frequencies
get higher than those given by the model and EMG. The reason is that
when the particles get denser the interactions among them play a more

 

Figure 3. Resonance frequency
against volume fraction of dielec-
tric particles.

Figure 4. Relative broadness
of negative magnetic permeability
against volume fraction of dielec-
tric particles.
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important role, and the model is not applicable as well as the EMG.
We note that at low f the dependence of the resonance frequency on
f takes on a kind of linear relation with a negative slope. Considering
3f ¿ π2 at low f , we expand the expression of resonance frequency as
follows,

ωr =
π2c

m′
pr

√
3f + π2

' πc

m′
pr

(
1− 3

2π2
f

)
. (18)

The approximate expression Eq. (18) is also depicted in Fig. 3. The
four curves are in good agreement at the low volume fraction as
expected.

Another important parameter of the dielectric metamaterials is
the relative broadness of negative permeability ∆. The dependence of
∆ on the volume fraction f , obtained by three methods, are all shown in
Fig. 4. The three curves are in good agreement at low volume fraction,
while the relative broadness ∆ given by Eq. (17) is a little wider at
high volume fraction than those provided by EMG and numerical
simulation. Despite the little discrepancy, Eq. (17) gives a direct
depiction with regard to the dependence of the relative broadness of
negative permeability on the volume fraction of the dielectric particles.
Eq. (17) can be changed into 1/∆ = (π2/9)/f−2/3, which means that
∆ is an increasing function with respect to volume fraction f .

4. CONCLUSION

In summary, we developed an effective series RLC circuit model for
weakly absorbing dielectric sphere to approximate and simulate its
electromagnetic response near the first magnetic dipole resonance.
In terms of the model we can give analytically the relation between
the effective magnetic properties of weakly absorbing dielectric
metamaterials and the physical parameters of the dielectric particles.
Although this approach is derived in the case of spherical particles,
it is also valid to analyze approximately the magnetic properties of
metamaterials consisting of dielectric cube [20], or finite dielectric
cylinder. The reason is that the dielectric cube and finite dielectric
cylinder can be considered approximately as sphere when the
wavelengths in host are much larger than the dimension of particles.
This approach cannot be applied to interpret the effective magnetic
properties of dielectric metamaterials consisting of infinite dielectric
cylinder, such as in Ref. [28] The simple effective RLC circuit model
analysis provides us an intuitive and deep understanding on the Mie
resonance-based dielectric metamaterials, and will play an important
role in the future design of dielectric metamaterials.
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