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Abstract—It is known that electromagnetic resonant tunneling
phenomenon can be found in the single-negative (SNG) bilayer, a
two-layer coating made of the epsilon-negative (ENG) and the mu-
negative (MNG) media. In this work, we report that this resonant
tunneling is strongly dependent on the static positive parameters in
SNG materials. The values of the static permeability in ENG layer
and the static permittivity in MNG layer for obtaining the resonant
tunneling are theoretically analyzed and discussed for two possible
cases of equal- and unequal-thicknesses. Useful design guidelines in
selecting positive parameters for the resonant tunneling are obtained.
We also investigate the possible influence in the resonant tunneling
due to the losses from the ENG and MNG materials. Additionally, we
examine the polarization-dependent resonant tunneling, that is, the
dependence of angle of incidence is examined.

1. INTRODUCTION

Electromagnetic metamaterials (MTMs) with simultaneously negative
real parts of the complex permittivity and the complex permeability
have attracted much attention over the past decade. The idea of
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MTMs was first suggested early in 1968 by Veselogo who considered
a lossless MTM and showed that in such a medium the Poynting
vector is antiparallel to the wave vector [1]. Today, the existence
of simultaneously negative real permittivity and permeability in a
medium leads to the definition of double-negative (DNG) medium. The
antiparallel property, in turn, gives rise to another familiar name for
this medium, the left-handed medium (LHM), since in this medium
the electric field, the magnetic field, and the wave vector follow a
left-handed triad. It was until in 2000 that the idea of Veselago
was experimentally realized in the microwave regime by Smith et al.,
who constructed an artificial composite medium consisting of arrays of
metallic thin wires (TWs) and split ring resonators (SRRs) [2, 3]. There
have been many reports on the electromagnetic and optical properties
for the structures containing DNG metamaterials [4–13].

The array of metallic TWs constitutes another type of MTMs, i.e.,
it is a medium with a negative real part of complex permittivity but
with a positive real permeability. This is called an epsilon-negative
(ENG) medium. Similarly, the array of SRRs leads to a medium
with a negative real part of complex permeability but with a positive
real permittivity, which is known as a mu-negative (MNG) medium.
Both ENG and MNG media are now referred to as the single-negative
(SNG) media. With this single-negative feature, the wave number
will be complex-valued, i.e., it has an imaginary part. As a result,
a wave in an SNG medium will be evanescent and thus it cannot
propagate in the medium. Nevertheless, like the DNG media, the SNG
media also exhibit some unusual electromagnetic wave features. By
pairing the SNG media in a conjugate manner, Fredkin and Ron have
shown that such a combination may effectively act as an LHM because
the effective group velocity is antiparallel to the phase velocity [14].
In a one-dimensional SNG photonic crystal (PC), that is formed by
repeating the ENG-MNG bilayers, there is an SNG gap which exhibits
some salient features different from the Bragg gap in a usual photonic
crystal [15–18]. This new SNG gap also called zero-effective-phase gap
stems from the interactions of the forward and backward evanescent
waves in the SNG layers. Layered structures containing SNG materials
have attracted much attention in recent years [19–31].

In a basic structure of ENG-MNG bilayer depicted in Fig. 1, we
assume that the regions 0 and 3 are the same media as free spaces. In
this conjugated configuration, Alu and Engheta have pointed out some
interesting wave characteristics, such as resonance, complete tunneling
and transparency [19]. Recently, Ding et al. have reported that the
resonant tunneling phenomenon can also be found in a nonconjugated
ENG-MNG bilayer [20]. Electromagnetic tunneling problem has been
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Figure 1. An SNG bilayer structure, in which the constituent ENG
layer (region 1) and MNG layer (region 2) have thicknesses of d1 and
d2, respectively. A wave is incident obliquely on the plane boundary
of z = 0. Two possible polarizations, TE and TM waves, are shown.
The incident angle is denoted by θ0.

extended to a trilayer structure containing SNG metamaterials [21–
23]. In reference [21], resonant tunneling has been found in a structure
of MNG-Air-ENG. A three-layer structure, SNG-DPS-DPS (DPS
means the double-positive medium), is investigated in reference [22].
Moreover, resonant tunneling in different combinations, such as ENG-
MNG-ENG, ENG-DPS-MNG, DPS-ENG-DPS, and ENG-DPS-ENG,
has been extensively studied by Cojocaru [23]. In addition to this
resonant tunneling in these bilayer and trilayer structures, there is
another unusual feature, i.e., the wave transmission can be enhanced
by increasing the loss from the constituent SNG media [24, 25]. Such
unusual transmission has never been seen in the simple lossy materials
like dielectric and metallic materials.

Referring to Fig. 1 and assuming the temporal part as exp(jωt)
for all fields, the permittivity and permeability for the SNG media are
expressible as

ε1 (ω, γe) = Re (ε1)− jIm (ε1) = 1− ω2
ep

ω2 − jγeω
, µ1 = a, (1)

with Re (ε1) < 0 and a > 0 for an ENG medium, and

µ2 (ω, γe) = Re (µ2)− jIm (µ2) = 1− ω2
mp

ω2 − jγmω
, ε2 = b, (2)

with Re (µ2) < 0 and b > 0 for an MNG medium, respectively.
In Eqs. (1) and (2), ωep and ωmp are respectively the electric and
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magnetic plasma frequencies. In addition, γe and γm are the electric
and magnetic damping frequencies, respectively, and, in the meantime,
they indicate the loss factors in the ENG and MNG media. It
is apparent that the negative parameters, Re(ε1) and Re(µ2), are
frequency-dependent, whereas the parameters, a and b, are positive
and static. In addition, based on Eq. (1), the refractive index of an
ENG medium is

n1 (ω, γe) =
√

ε1 (ω, γe) µ1 = Re (n1)− jIm (n1) , (3)

where

Re (n1) =
√

a

2
(|ε1|+ Re (ε1))

1/2 ,

Im (n1) =
√

a

2
(|ε1| − Re (ε1))

1/2 .

(4)

Similarly, the refractive index of an MNG medium is given by

n2 (ω, γm) =
√

µ2 (ω, γm) ε2 = Re (n2)− jIm (n2) , (5)

where

Re (n2) =

√
b

2
(|µ2|+ Re (µ2))

1/2 ,

Im (n2) =

√
b

2
(|µ2| − Re (µ2))

1/2 .

(6)

The imaginary parts of n1 and n2, Im (n1) and Im (n2), are known
as the extinction coefficients.

Previous studies on the wave properties of the ENG-MNG
bilayer [19, 20, 24, 25] and of the SNG photonic crystals [15–18] are
all done by assuming the static positive parameters, a and b, to be
fixed as constants. In this paper, however, we shall show that, in
this ENG-MNG bilayer structure, the resonant tunneling phenomenon
will be strongly dependent on these two static positive parameters.
It is found that electromagnetic resonant tunneling will happen when
suitable values of a and b are chosen. The results suggest that the
static positive material parameters may be playing important roles in
the study of wave properties of layered structure containing the SNG
media.

2. BASIC EQUATIONS

Let us start from the simple case of normal incidence. The resonant
tunneling can be investigated by setting the reflection coefficient to be
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zero, i.e., r = 0. Based on the transmission line theory (TLT), the
reflection coefficient r can be calculated by way of the effective surface
impedance Zs,eff (z = 0) at plane boundary of z = 0, namely,

r =
Zs,eff (z = 0)− Z0

Zs,eff (z = 0) + Z0
, (7)

where
Zs,eff (z = 0) = Z1

Z (z = d1) + Z1 tanh (γ1d1)
Z1 + Z (z = d1) tanh (γ1d1)

, (8)

where
Z (z = d1) = Z2

Z0 + Z2 tanh (γ2d2)
Z2 + Z0 tanh (γ2d2)

. (9)

Here, Z0 = 377 Ω is the characteristic impedance of free space, as
assumed in region 0 and 3, and Z1 = Z0

√
µ1/ε1, Z2 = Z0

√
µ2/ε2

are the characteristic impedances of the ENG and MNG layers,
respectively. In addition, γ1 = jk1 = j (ω/c) n1 and γ2 = jk2 =
j (ω/c) n2 are their corresponding propagation constants, where k1 and
k2 are the associated wave numbers, and c is the speed of light in free
space. The resonant tunneling occurs when the reflection coefficient is
equal to zero, that is

Zs,eff (z = 0) = Z0. (10)

If both ENG and MNG layers are lossless, then Eq. (10), with the help
of Eqs. (8) and (9) and some manipulations, leads to the following two
conditions [19]

Z1 = Z2, (11)

and
k1d1 = k2d2. (12)

Eq. (11) is known as the condition of impedance match, while Eq. (12)
is the phase match condition. With these two conditions, the ENG-
MNG bilayer is referred to as the matched pair. Eqs. (11) and
(12) reveal that the resonant tunneling relies on the static positive
parameters, a and b. That is, the occurrence of tunneling depends on
the suitable combinations of (a, b) when other material parameters are
fixed.

In fact, the phase match condition, Eq. (12), is a direct
consequence of the impedance match condition Eq. (11). This can
be understood from the viewpoint of a one-dimensional SNG PC
made by repeatedly stacking the resonant ENG-MNG bilayers. If the
characteristic impedances of the constituent ENG and MNG layers are
equal, as read in Eq. (11), then it is easy to have

k1µ2 = −k2µ1. (13)
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In a one-dimensional photonic crystal, the use of the Bloch
theorem leads to the following characteristic equation that can be used
to compute the band structure, [32]

cos [K (d1 + d2)] = cos (k1d1) cos (k2d2)

−1
2

(
k1µ2

k2µ1
+

k2µ1

k1µ2

)
sin (k1d1) sin (k2d2) , (14)

where K is the Bloch wave number, and k1, k2 are the wave numbers
in the ENG and MNG layers, respectively. With Eq. (13), Eq. (14)
can be reduced to

cos [K (d1 + d2)] = cos (k1d1 − k2d2) . (15)

Since k1 and k2 are both purely imaginary, it can be seen from
Eq. (15) that the condition for obtaining the real solution for K
is only at k1d1 − k2d2 = 0, which is the phase match condition in
Eq. (12). Conclusively, from TLT we have Eqs. (8) and (9), in which
the complicated mathematical manipulations will be involved. The use
of the photonic crystal, however, makes it easy to arrive at the match
conditions from which the resonant tunneling attains in the matched
pair.

Let us now consider the case of oblique incidence, in which
there are two possible polarizations, the transversal electric (TE) and
transversal magnetic (TM) waves, as illustrated in Fig. 1. In this case,
the phase match condition for the resonant tunneling reads as

k1d1 cos θ1 = k2d2 cos θ2, (16)

where the ray angles θ1 and θ2 are related to the Snell’s law of
refraction,

n0 sin θ0 = n1 sin θ1 = n2 sin θ2. (17)

In addition, the impedance match condition becomes [33]

Z1

cos θ1
=

Z2

cos θ2
, (18)

for TE wave, and
Z1 cos θ1 = Z2 cos θ2, (19)

for TM wave, respectively.
In our next analysis, the resonant tunneling will be investigated

through the transmittance T calculated by making use of the transfer
matrix method (TMM), with the result [34]

T =
∣∣∣∣

1
M11

∣∣∣∣
2

, (20)
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where M11 is a matrix element of the total transfer matrix given by

M =
(

M11 M12

M21 M22

)
= D−1

0

(
D1P1D−1

1 D2P2D−1
2

)
D3, (21)

where the dynamical matrix Di (i = 0, 1, 2, and 3) and the
translational matrix Pi (i = 1 and 2) in Eq. (21) can be found in
Ref. [32].

3. NUMERICAL RESULTS AND DISCUSSION

Before we present the numerical results for the transmittance, we first
illustrate the frequency range for the SNG materials. The plasma
frequencies for the ENG and MNG media are taken to be ωep(2πfep) =
10GHz and ωmp(2πfmp) = 17.3GHz, respectively [24]. According to
Eqs. (1) and (2) with no loss (γe = γm = 0), we can plot the frequency-
dependent Re(ε1) and Re(µ2), as shown in Fig. 2. It can be seen from
Fig. 2 that the valid linear frequency range is from 0.4GHz to 1.2 GHz,
over which both Re(ε1) and Re(µ2) are negative, and the absolute
values in Re(µ2) are larger than Re(ε1). This frequency range will be
used to calculate the transmittance for the ENG-MNG bilayer.

3.1. Lossless Bilayer with Equal-thicknesses Layers

Let us first consider the lossless bilayer with equal-thicknesses layers,
i.e., γe = γm = 0, and d1 = d2 = d. Fig. 3 depicts the normal-incidence
transmittance versus frequency for various values of a = µ1 = 0.1, 1,

Figure 2. The frequency range
for both negative Re(ε1) and
Re(µ2). Here, γe = γm = 0 is
used.

Figure 3. The frequency depen-
dence of transmittance in the loss-
less ENG-MNG bilayer at differ-
ent values of µ1 for a fixed ε2 = 3.
Here d1 = d2 = 15mm.
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5, 7, 9, and 11 at a fixed static b = ε2 = 3 and d = 15 mm. It can be
seen that the resonant tunneling can happen at a large value of a. A
salient tunneling peak starts to appear when a is larger than or equal
to five. The peak frequency is shifted to the lower frequency and the
peak shape becomes narrow as a increases. At a = 9, the peak height
arrives at T = 0.979. As shown in the figure, a complete resonant
tunneling, T = 1, will occur at a = 11 with a resonant frequency of
ωres = 0.79× 2π× 109 Hz. That is, a set of a = 11 and b = 3 can yield
the desired complete resonant tunneling. Such specific values of static
positive parameters can be understood by the impedance match and
phase match conditions, Eqs. (11) and (12). Using these two conditions
with d1 = d2, the values of a and b can be determined by the following
relations, namely

µ1 = a = |µ2| , ε2 = b = |ε1| . (22)

It is of interest to note that the positive parameter a (the
permeability) of the ENG medium is equal to the magnitude of the
negative parameter µ2 (the permeability) of the MNG medium, and the
positive parameter b (the permittivity) of the MNG medium is equal
to the magnitude of the negative parameter ε1 (the permittivity) of
the ENG medium. With this resonant frequency of ωres = 0.79 ×
2π × 109 Hz, simple calculations on Eqs. (1) and (2) give rise to
|ε1 (ωres, 0)| = 3, and |µ2 (ωres, 0)| = 11, which are in good agreement
with Fig. 3. Conversely, one can first assign the resonant frequency in
the interested frequency range and then, with this resonant frequency,
the static positive parameters can be determined from Eq. (22). Thus,
Eq. (22) plays a useful and important role in determining the static
material parameter in order to achieve the resonant tunneling. As for
the field distribution in the bilayer structure at resonant tunneling, we
mention the reference [19].

In addition, based on the above discussion, we find that at the
set of a = 11 and b = 3 the resonant frequency ωres has nothing to
do with the thickness d1 = d2 = d, that is, it remains unchanged no
matter what d is taken. This independence has been illustrated in
Fig. 4, in which the resonant frequency is the same for all different
values of d. The only influence of d is to cause the resonant peak to
be much narrower when d increases. At d = 30mm, an extremely
narrow resonant peak is obtained. If this bilayer is utilized to act
as a narrowband transmission filter, then the thicker bilayer will be
preferable to reaching this goal.
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Figure 4. The frequency depen-
dence of transmittance in the loss-
less ENG-MNG bilayer at different
values of d for a fixed µ1 = 11 and
ε2 = 3.

Figure 5. The effect of unequal-
thicknesses layers at µ1 = a = 11
and ε2 = b = 3. The resonant
frequency moves to the right for
d1 < d2, while it moves to the left
for d1 > d2.

3.2. Lossless Bilayer with Unequal-thicknesses Layers

In the case of unequal-thicknesses layers, d1 6= d2, the resonant
tunneling at a = 11 and b = 3 will be strongly suppressed. This is
depicted in Fig. 5, in which the resonant frequency will slightly be
shifted to the right or left, depending on d1 < d2 or d1 > d2. The
pronounced suppression in the peak height also reveals that the values
of a = 11 and b = 3 are no longer valid for the matched pair in this
case.

In case d1 6= d2 the expressions for determining the static positive
parameters a and b in Eq. (22) must be modified as follows:

µ1 = a =
d2

d1
|µ2| , ε2 = b =

d1

d2
|ε1| . (23)

Eq. (23), which can be easily obtained from the impedance and phase
match conditions, provides the guidance of how to select the static
positive parameters at a desired resonant frequency. For instance, as
in Fig. 4, we fix the resonant frequency at ωres = 0.79 × 2π × 109 Hz,
then |ε1 (ωres, 0)| = 3 and |µ2 (ωres, 0)| = 11. Thus, if we take d1 = 22
(33, 44)mm and d2 = 6 (9, 12) mm, then a complete resonance will
appear at a fixed set of a = 3 and b = 11 according to Eq. (23). This
complete resonance is evidently shown in Fig. 6. In addition to fixing
the resonant frequency at different sets of d1 and d2, it is seen that the
peak shape becomes narrow at a larger total length of d1 + d2. This
narrowing effect is also seen in the case of equal-thicknesses layers, as
depicted in Fig. 4.
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Figure 6. The effect of unequal-
thicknesses layers at µ1 = 3 and
ε2 = 11. The resonant frequency
remains fixed for three different
combinations of d1 and d2.

Figure 7. The frequency de-
pendence of transmittance for
the ENG-MNG bilayer at differ-
ent values of the magnetic loss.
Here, a = 11, b = 3, and γe = 0.

3.3. Effects of Losses on Resonant Tunneling

To investigate the effects of losses on the resonant tunneling, let us
limit to the case of equal-thicknesses layers with a = 11 and b = 3. In
Fig. 7, we plot the transmittance for different magnetic losses at zero
electric loss γe = 0 and d1 = d2 = 15mm. Like in the usual two-layer
dielectric Fabry-Perot resonator, the inclusion of loss strongly affects
the resonant peak height. Strong suppression will be seen at a higher
loss factor. The peak frequency, however, remains nearly unchanged
when the loss is below the moderate value.

The similar depression in the resonant peak height is also present
when we consider the electric loss or both losses. The nearly no shift
in the resonant frequency in the low-loss case allows us to safely use
Eqs. (22) and (23) to estimate the static positive parameters by first
setting the loss to zero. Strictly speaking on the results in Fig. 7, losses
change the resonance peak frequency somewhat as shown in Fig. 16 in
the reference [35].

3.4. Investigation of Polarization-dependent Resonant
Tunneling

Let us now examine how the polarization of incident wave affects the
resonant tunneling in the SNG bilayer. In Figs. 8 and 9, we have
respectively plot the TE- and TM-wave transmittance for the distinct
angles of incidence. Here, both ENG and MNG media are lossless, and
the static positive parameters, µ1 = a = 9 and ε2 = b = 3 are used.
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Figure 8. The frequency depen-
dence of TE-wave transmittance in
the lossless ENG-MNG bilayer at
different angles of incidence.

Figure 9. The frequency depen-
dence of TM-wave transmittance
in the lossless ENG-MNG bilayer
at different angles of incidence.

The transmittance spectra near the resonant point for TE and TM
waves are plotted in Figs. 8 and 9, respectively. It is of interest to see
that the resonant frequency is independent of the angle of incidence
for both polarizations. This insensitivity is similar to the SNG gap
existing in the one-dimensional SNG photonic crystal made of ENG-
MNG bilayers [15]. The role played by the incident angle is to narrow
the resonant shape, especially in the TM wave. This narrowing feature
as a function of angle of incidence is, however, not so strong in the TE
wave.

In view of the filter design, the narrow transmittance spectrum
indicates that the ENG-MNG bilayer can be used to function as a
narrowband transmission filter. That means, in the TM wave, the
increase in the angle of incidence can be used to significantly enhance
the quality factor. Based on Figs. 8 and 9, we conclude that a
narrowband transmission filter can be achieved by choosing the TM
wave instead of the TE wave.

3.5. Potential Application: A Multi-resonance Filter

Let us finally discuss the potential application of the resonant ENG-
MNG bilayer, i.e., a multichanneled transmission filter can be achieved
by cascading distinct bilayers of different resonant frequencies. A
cascaded structure will have multiple resonant peaks because it has
the collected resonant modes [36]. For instance, we can obtain a filter
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with double resonant peaks in a two-bilayer structure such as (ENG-
MNG)1(ENG-MNG)2. By selecting two different sets of (a, b) we can
arbitrarily design two different resonant frequencies, ω1 and ω2, for
(ENG-MNG)1 and (ENG-MNG)2, respectively. Thus, the cascaded
structure (ENG-MNG)1(ENG-MNG)2 will have two resonant peaks at
ω1 and ω2 and consequently two-channel filter is achievable. Similarly,
by cascading more bilayers with distinct resonant frequencies, we shall
arrive at a multichanneled filter. Such a multichanneled filter is
structurally different from that designed by using the photonic crystal
with the photonic-quantum-well defect [37].

4. CONCLUSION

The dependence of electromagnetic resonant tunneling on the two
static positive material parameters, a (the permeability of ENG
medium) and b (the permittivity of MNG medium), in the ENG-MNG
bilayer has been systematically investigated in this work. Since the
complete resonant tunneling occurs at the matched pair, we find that
the frequency for the resonant tunneling is strongly related to the
suitable values of a and b. We have studied the resonant tunneling
in two possible cases of the equal-thicknesses and unequal-thicknesses
bilayers. In the lossless equal-thicknesses SNG bilayer, we find the
relations of how to determine these two static positive parameters if
the desired resonant frequency is assigned in advance. These relations
are then extended to the case of the unequal-thicknesses case. We next
study the effects of losses coming from the ENG and MNG media. It is
found that the resonant frequency is nearly unchanged in the presence
of the low-loss and moderate loss cases. Finally, the frequency of the
resonant tunneling is independent of the angle of incidence for both
the TE and TM waves. In TM-polarization, the peak shape is strongly
narrowed as the angle increases. This narrowing feature leads to an
enhancement in the quality factor, which is preferable to the design of
a narrowband transmission filter based on the SNG bilayer.
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