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Abstract—Super-resolution algorithms used in radar imaging, e.g.,
MUltiple SIgnal Classification (MUSIC), can help us to get much
higher resolution image beyond what is limited by the signal’s
bandwidth. We focus on MUSIC imaging algorithm in the paper and
investigate the uniqueness and effectiveness conditions of the MUSIC
algorithm when used in 1-D radar range imaging. Unlike conventional
radar resolution analysis, we introduced the concept of resolution
threshold from Direction of Arrival (DOA) into the MUSIC radar range
imaging, we derive an approximate expression of theoretical resolution
threshold for 1-D MUSIC imaging algorithm through the approach
of asymptotic and statistical analysis to the null spectrum based on
the perturbation theory of algebra and matrix theories. Monte Carlo
simulations are presented to verify the work.

1. INTRODUCTION

High-resolution radar range imaging has long been a highly focused
technique in radar community, which has been widely used in both
military and civil applications [1–3]. Usually, high-resolution means
large bandwidth is required; however large bandwidth usually leads
to high complexity of radar system, not only for hardware but also
for imaging processing. In this regard, super-resolution algorithms are
preferred choices for realizing high-resolution image without large or
ultra-large bandwidth. In deed, spectrum estimation methods, such
as MUltiple SIgnal Classification (MUSIC) [4–6] and Estimation of
Signal Parameters via Rotational Invariance Techniques (ESPRIT) [7–
9], have already been used in realizing super-resolution radar image.

In this paper, we only pay attention to MUSIC. Researches on
MUSIC can be traced back to 1979, which was proposed by Schmidt
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originally for Direction of Arrival (DOA) estimation with incoherent
waves [10, 11]. Ever since the MUSIC was proposed, continuous
researches have been conducted in the following thirty years [12–
23]. As research on the MUSIC goes deeper and deeper, its inherent
drawbacks, i.e., huge computation burden as well as weak stability,
become a major difficulty in its practical application. Fortunately,
a lot of efforts on improving the MUSIC have been made by many
researchers. Barabell [24], Rao [25], Krim [26], et al. proposed a Root-
MUSIC algorithm to save computation time. Shan [27], Haber [28] et
al. discussed the coherent signal in DOA estimation and proposed some
practical solutions, such as Spatial Smoothing Process (SSP) [29, 30].
Li [31], Ferreol [32] et al. studied the performance of the MUSIC
with the presence of model error or system error. Kaveh [33, 34],
Choi [35] et al. studied the statistical performance of the MUSIC
and the asymptotic distribution of the null spectrum. Messer [36],
Friedlander [37] and et al. extended the MUSIC to non-linear array,
such as circular array, or even arbitrary array geometry. Gardner [38],
Stoica [39], Yu [40] et al. compared the MUSIC with other algorithms.
Yeh [41], Mathews [42], Wang [43] and et al. extended the MUSIC to
2-D DOA. Wang [44] et al. used the high-order MUSIC to improve
estimation accuracy. Lei [45], Chiang [46] et al. applied the MUSIC in
the communication field.

Moreover, Odendaal et al. firstly reported their work on applying
the MUSIC algorithm in radar imaging in 1994 [4], much higher
resolution 2-D Inverse Synthetic Aperture Radar (ISAR) images were
obtained comparing to the results based on Fast Fourier Transform
(FFT). Since then, many researches on the MUSIC in radar imaging
have been carried out. Li et al. [47] applied the MUSIC to 3-D
target feature extraction via INterferometric SAR (INSAR). Kim et
al. [48, 49] applied the MUSIC to the radar target identification as well
as to 2-D ISAR with full-polarization technique. Miwa [50] studied
the super-resolution imaging for point reflectors near transmitting and
receiving array. Quinquis et al. [51] applied the MUSIC and ESPRIT
algorithm to the experimental data. In recent years, much more works
on the MUSIC in radar imaging have been conducted [5, 6, 52–60], but
few of them concern about the resolution issue, which is very important
for radar imaging. In this paper, we introduce the concept of resolution
threshold from DOA into the MUSIC radar range imaging, and then
derive an approximate expression of theoretical resolution threshold.
As far as we know, there is no similar study reported yet.

The aim of this paper is to investigate the resolution threshold
of the MUSIC algorithm when used in 1-D radar range imaging.
Different from the conventional radar resolution definition, we firstly
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introduce the concept of resolution threshold from DOA into radar
range imaging, and determine whether two adjacent targets could be
distinguished by analyzing the null spectrum [33]. We analyze the
uniqueness and effectiveness conditions of the MUSIC algorithm, which
means that when both of them are simultaneously met then one can get
the correct radar image. Based on the asymptotic statistical analyzing
approach to the null spectrum with the help of perturbation theory of
algebra and matrix theories, an approximate expression of theoretical
resolution threshold for 1-D MUSIC algorithm is derived. Monte Carlo
simulations are presented to verify the analysis.

The remainder of the paper is organized as follows. We set up
radar echo model in range in Section 2, and then we investigate the
uniqueness and effectiveness conditions for the MUSIC in Section 3.
In Section 4, we analyze the statistical characteristics of the null
spectrum, and then derive the expression describing the resolution
threshold, and in Section 5, we give some simulations. Finally, we
conclude the paper in Section 6.

2. MUSIC ALGORITHM FOR RADAR RANGE
IMAGING

We consider the 1-D radar range imaging. As shown in Fig. 1, the
number of the scattering centres is K, the sampled frequencies are
fm = f0 + m∆f (m = 0, . . . , M − 1), the distance from the radar
antenna to the centre of the imaging zone is R0, and the coordinates
of the scattering centres are dk (k = 1, 2, . . . , K), the radar echo can
be expressed as

xm =
K∑

k=1

sk · e−j 4πfm
c

dk + nm (1)

where sk (k = 1, 2, . . . ,K) denote the reflection coefficients of scatters,
which are assumed to be constants in frequency range f0 ∼ fM−1,
c is the speed of electromagnetic wave in free-space, and nm denote
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Figure 1. Geometry of radar range imaging.
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additive complex white Gaussian noise with zero mean and variance
σ2.

By using vector notation, (1) can be rewritten as follows,

X = AS + N (2)

X = [x0, x1, . . . , xM−1]
T (3)

S = [s1, s2, . . . , sK ]T (4)

N = [n0, n1, . . . , nM−1]
T (5)

A = [a (d1) ,a (d2) , . . . ,a (dK)] (6)

a (dk) =
[
e−j

4πf0
c

dk , e−j
4πf1

c
dk , . . . , e−j

4πfM−1
c

dk

]T

(7)

where T denotes transpose, and a (dK) is called the mode vector.
The autocorrelation matrix of the radar echo is defined as,

RX = XXH= ASSHAH+NNH (8)

where H denotes complex conjugate transpose.
Different from DOA case, only one set of observation data (“one

snapshot”) can be obtained in radar range imaging. In other words,
the scattered signals from various scattering centres are “coherent”,
and this “coherence” makes the rank of RX is less than K, and in fact
the rank of RX is equal to 1. The SSP has been demonstrated to be a
very effective de-correlating method used in DOA, and it is introduced
to the radar range processing. In the following, a brief introduction to
SSP is in order.

Let’s set up a p × 1 (p > K) vector, as illustrated in Fig. 2, the
radar echo of M samples can be segmented into L (L = M + 1− p)
vectors, if we use Xp(l) to represent the l-th vector, and then Xp(l)
can be written as

Xp (l) = [xl−1, xl, . . . , xl+p−2]
T (9)

where K ≤ p ≤ M and 1 ≤ l ≤ M + 1−K.

Vector 1

Vector L

.  .  ..  .  .0 1 2 p-1p-2 M -1M-2

      .  .  .

Figure 2. Diagram of Spatial Smoothing Process (SSP).
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Equation (9) can be expanded as

Xp (l)

=
1√
p




1 1 . . . 1
e−j 4π

c
∆fd1 e−j 4π

c
∆fd2 e−j 4π

c
∆fdK

...
. . .

...
e−j 4π

c
(p−1)∆fd1 e−j 4π

c
(p−1)∆fd2 . . . e−j 4π

c
(p−1)∆fdK




√
p




s1e
−j 4π

c
fl−1d1

...
sKe−j 4π

c
fl−1dK


 +




nl−1

nl
...

nl+p−2


 (10)

Using vector notation, (10) can be rewritten as

Xp (l) = ApSp (l) + Np (l) (11)

where

Sp(l) =
√

p
[

s1e
−j 4π

c
fl−1d1 , s2e

−j 4π
c

fl−1d2 , . . . , sKe−j 4π
c

fl−1dK

]T

Np (l) = [nl−1, nl, . . . , nl+p−2]
T

Ap = [ap (d1) ,ap (d2) , . . . ,ap (dK)]

ap (dk) =
1√
p

[
1, e−j 4π

c
∆fdk , . . . , e−j 4π

c
(p−1)∆fdk

]T

ap(dk) are called the mode vectors after SSP,
√

p and 1/
√

p are used
for normalization.

To apply the MUSIC algorithm to radar range imaging, we need
to follow below three assumptions:
Assumption (1): The mode vectors ap(dk) (k = 1, 2, . . . ,K) are
linear independent, and Ap is fully ranked in column.
Assumption (2): Each element of the addition noise vector N is
complex white Gaussian noise with zero mean and variance σ2, and
it means E[NpNH

p ] = σ2I, E[Np] = 0 and E[NpNT
p ] = O, where 0

and O represent zero vector and zero matrix, respectively, I represents
identity matrix, and E[·] denotes statistical expectation.
Assumption (3): The matrix E[SpSH

p ] is non-singular, and
rank{E[SpSH

p ]} = K.
If the above assumptions are all satisfied, it can be easily proved

that, the autocorrelation matrix RXp of Xp(l), which is defined as

RXp = E
[
XpXH

p

]
= ApE

[
SpSH

p

]
AH

p + σ2I (12)
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is a matrix with rank of p. The eigen-decomposition of RXp can be
conducted as

RXp = UΣUH (13)

where Σ = diag (λ1, λ2, . . . , λp) and λ1, λ2, . . . , λp are the eigenvalues
of RXp.

According to Assumption (1) and Assumption (3), we have

UH
{
ApE

[
SpSH

p

]
AH

p

}
U = diag

(
µ2

1, µ
2
2, . . . , µ

2
K , 0, . . . , 0

)
(14)

So the eigenvalues of RXp can be given by

λi =
{

µ2
i + σ2 i = 1, 2, . . . , K

σ2 i = K + 1,K + 2, . . . , p
(15)

Let’s define signal eigenvectors and noise eigenvectors as US and
UN, respectively, as shown in Equations (16)–(18),

US = [u1, u2, . . . , uK ] (16)
UN = [uK+1, uK+2, . . . , up] (17)

U =
[
US

... UN

]
(18)

In the next, we analyze the RXpUN as shown by (19) and (20)

RXpUN=[USUN]Σ
[

UH
S

UH
N

]
UN=[USUN]Σ

[
O
I

]
=σ2UN (19)

RXpUN=ApE
[
SpSH

p

]
AH

p UN + σ2UN (20)

Using (19) and (20)

AH
p UN = O (21)

Let’s define spatial spectrum as

P (d) =
1

ap (d)H UNUH
Nap (d)

(22)

where ap(d) is named as the searching vector.
According to [26], in Root-MUSIC algorithm, the roots satisfying

Equation (21) give peaks in the spatial spectrum given in (22).
The spatial spectrum can also be defined as

P (d) =
ap (d)H ap (d)

ap (d)H UNUH
Nap (d)

(23)

The distance of each scattering centre can be estimated by
searching the peak position of the spatial spectrum function. However
the amplitude of each peak contains no information with regard to
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the scattering intensities of the scattering centres. Therefore, having
estimated dk (k = 1, 2, . . . , K), we then construct matrix A and use
the Least Square Method (LSM) to estimate the reflection coefficient
of each scattering centre as following

S =
(
AHA

)−1
AHX (24)

3. UNIQUENESS AND EFFECTIVENESS CONDITIONS
FOR MUSIC

Among the three assumptions discussed in Section 2, Assumption (2)
is usually easy satisfied, but Assumption (1) and Assumption (3)
are not.

3.1. Uniqueness Condition Analysis

As we known, ap(d + kc/2∆f) = ap(d) (k = ±1,±2, . . .) exists in
mathematics, and it is described as “range ambiguity” in radar range
imaging. Here, the range ambiguity means that we can get peaks
not only in position d, but also in d + kc/2∆f (k = ±1,±2, . . .),
so “artifacts” appears in range profile. In DOA case, the angle
of incidence is range from 0◦ to 360◦ (or −180◦ to 180◦), so
Assumption (1) is satisfied naturally.

In order to get a unique range profile of scattering centres, and
make the Assumption (1) satisfied, the following condition should
be met,

0 <
4π

c
∆f (dmax − dmin) ≤ 2π (25)

where dmax and dmin are the maximum and minimum coordinates of
the scattering centres.

Equation (25) also means that the frequency step ∆f should
satisfy

∆f ≤ c

2∆dmax
(26)

where ∆dmax = dmax − dmin is the maximum dimension of the target.
Equation (25) is called the uniqueness condition, because “range

ambiguity” and “artifacts” appears if Equation (25) is unsatisfied.

3.2. Effectiveness Condition Analysis

Let’s define

ψ = E
[
SpSH

p

]
=

1
L

L∑

l=1

Sp (l)SH
p (l) (27)
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Then, the element of ψ can be computed by

ψ (i, j) =





p|si|2 (i = j)
psis

∗
j e−j 4π

c f0 ∆dij

L

L∑
l=1

e−j 4π
c

(l−1)∆f ∆dij (i 6= j)
(28)

where ∆dij = di − dj and ∗ denotes complex conjugate.
Here, we discuss ψ(i, j) when i 6= j, and for convenience, let’s set

τij = 2π∆f∆dij/c,

ψ (i, j)=





psis
∗
je
−j 4π

c
f0∆dij τij =kπ (k=0,±1, . . .)

psis
∗
j e−j 4π

c f0∆dij e−j(L−1)τij

L
sin(Lτij)
sin(τij)

τij 6=kπ (k=0,±1, . . .)
(29)

Assuming L is infinite (usually L is very large), when τij =
kπ (k = 0,±1, . . .), we have

ψ (i, j) =

{
p |si|2 (i = j)
psis

∗
je
−j 4π

c
f0∆dij (i 6= j)

(30)

so the rank of ψ is equal to 1, and Assumption (3) is unsatisfied.
In this situation, the SSP does not work, and the “coherence” is not
de-correlated.

When τij 6= kπ (k = 0,±1, . . .),
psis

∗
j e−j 4π

c f0∆dij e−j(L−1t)τij

L
sin(Lτij)
sin(τij)

→
0 when L is infinite (usually L is very large), so we have

ψ (i, j) =
{

p|si|2 (i = j)
0 (i 6= j) (31)

so ψ is a full-rank diagonal matrix, and Assumption (3) is satisfied.
Here, the SSP works, and the “coherence” is effective de-correlated.

According to the above analysis, the effectiveness condition of the
MUSIC, which makes Assumption (3) satisfied, can be concluded as,

τij 6= kπ (k = 0,±1, . . .) (32)

Combining (25) and (32),

0 <
4π

c
∆f∆dmax < 2π (33)

So
0 < |τij | < π (34)

In summary, to effectively apply the MUSIC in radar range
imaging and obtain uniquely imaging result, we should guarantee the
uniqueness and effectiveness conditions stated as (33).
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Theoretically, when L is infinite, the ψ(i, j) (i 6= j) always
converge to 0. But in practical situation, L can not be infinite, so
the convergence performance of ψ(i, j) (i 6= j) should be considered
seriously, especially the convergence rate. Whether ψ(i, j)(i 6= j) is
converge to 0 determines the effectiveness of the de-correlating and
the convergence rate affects the choice of L, and slow convergence rate
requires more sub-vectors. Simulations about the convergence rate of
ψ(i, j) (i 6= j) and the choice of L are presented in Section 5.

4. RESOLUTION THRESHOLD FOR MUSIC

In Section 3 we have investigated the uniqueness and effectiveness
conditions of the MUSIC algorithm when used in 1-D radar range
imaging. In this section, we analyze the statistical performance of the
resolution threshold for MUSIC algorithm.

In this section, we firstly derive the statistical expression of the
null spectrum, and then analyse the performance of the null spectrum,
moreover, we derive an approximate expression for the resolution
threshold of the MUSIC. In the following analysis, we assume L is
large enough and ψ(i, j) (i 6= j) converges to 0.

4.1. Performance of Null Spectrum

In practice, RXp is computed as follows,

R̃Xp =
1
L

L∑

l=1

Xp (l)XH
p (l) = Ap

[
1
L

L∑

l=1

Sp (l)SH
p (l)

]
AH

p +σ2I (35)

where L is finite, and R̃Xp is a biased estimation of RXp.
Let’s set the K principal eigenvalues and their eigenvectors of R̃Xp

as follows

λ̃i = λi + βi (36)
ũi = ui + ηi (37)

where λi and ui(i = 1, 2, . . . ,K) are the K principal eigenvalues and
eigenvectors of RXp, respectively.

According to literature [61, 62], ηi have the following statistical
properties

E
[
ηiη

H
j

] ' λi

L

p∑

k=1
k 6=i

λk

(λi − λk)
2ukuH

k δij (38)
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E [ηi] ' − λi

2L

p∑

k=1
k 6=i

λk

(λi − λk)
2ui (39)

Let’s define the “null spectrum” as

D̃ (d) = ap (d)H ŨXpŨH
Xpap (d) = 1− ap (d)H ṼXpṼH

Xpap (d) (40)

where ŨXp is a p× (p−K) matrix, whose columns are the p−K noise
eigenvectors of R̃Xp, and ṼXp is a p ×K matrix, whose columns are
the K signal eigenvectors.

By taking the expectation of (40) as following

E
[
D̃ (d)

]
= 1− ap (d)H

K∑

i=1

uiuH
i ap (d)− ap (d)H E

[
K∑

i=1

ηiη
H
i

]
ap (d)

−2Re

[
ap (d)H

(
K∑

i=1

uiE
[
ηH

i

]
)

ap (d)

]
(41)

The ideal null spectrum is

D (d) = 1− ap (d)H
K∑

i=1

uiuH
i ap (d) (42)

where D(d) = 0 when d = dk, and D(d) > 0 when d 6= dk. Then (41)
can be rewritten as

E
[
D̃ (d)

]

' D (d)−ap (d)H




K∑

i=1

p∑

j=1
j 6=i

λiλj

L (λi − λj)
2

(
ujuH

j − uiuH
i

)

ap (d) (43)

To investigate the resolution threshold, we consider K = 2, then

E
[
D̃(d)

]

' D(d)+σ2ap (d)H
[

(p−2)λ1

L (λ1−σ2)2
u1uH

1 +
(p−2)λ2

L(λ2−σ2)2
u2uH

2

]
ap(d) (44)

Let’s set R̄Xp = RXp − σ2I,

R̄Xp = ApE
[
SpSH

p

]
AH

p

= [ap (d1) ,ap (d2)]
[

ψ (1, 1) ψ (1, 2)
ψ (2, 1) ψ (2, 2)

]
[ap (d1) ,ap (d2)]

H (45)
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where ∆d12 = d1 − d2.
According to literature [33, 61], the two principal eigenvalues of

R̄Xp are given as following

λ̄1(2) = p
P1 + P2 + 2

√
P1P2 · Re (ρφ)
2

1±

√√√√√1−
4P1P2

(
1− |φ|2

)(
1− |ρ|2

)

[
P1 + P2 + 2

√
P1P2 · Re (ρφ)

]2


 (46)

where P1 = |s1|2, P2 = |s2|2, ρ = ψ(1, 2)/
√

P1P2, and φ =
ap(d1)Hap(d2) is defined as the cosine of the angle between mode vector
ap(d1) and ap(d2) in literature [61].

φ can be expressed as

φ =
ej(p−1)τ12

p

sin (pτ12)
sin (τ12)

(0 < |τ12| < π) (47)

where τ12 = 2π∆f∆d12/c and ∆d12 = d1 − d2.
And, according to the uniqueness and effectiveness conditions,

and assuming L is large (this is usually true), we can get ρ =
ψ(1, 2)/

√
P1P2 → 0.

Next, we investigate the null spectrum in case of φ = 0 and φ 6= 0,
respectively.
A. φ = 0 case
According to (47),

τ12 =
kπ

p
(k = ±1,±2, . . . ,±p− 1) (48)

The two principal eigenvalues and eigenvectors of RXp are given in (49)
and (50),

λ1(2) = λ̄1(2) + σ2 = pP1(2) + σ2 (49)

u1(2) =
c1(2)∣∣c1(2)

∣∣ap

(
d1(2)

)
(50)

where c1(2) are constants, and P1 = |s1|2, P2 = |s2|2.
By using D(d1(2)) ≡ 0, (44) can be expressed as

E
[
D̃

(
d1(2)

)]
=

(p− 2)
pL

[
σ2

P1(2)
+

1
p

(
σ2

P1(2)

)2
]

(51)
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Equation (51) states that σ2/P1(2), L and p are the factors
influencing the performance of the null spectrum. Signal to Noise Ratio
(SNR) can be given

SNR = 10 · log10

[
(p1 + p2)/σ2

]
(52)

B. φ 6= 0 case
According to (47), we have

τ12 6= kπ

p
(k = ±1, . . . ,±p− 1) and 0 < |τ12| < π (53)

For convenience, assume s1 = s2 and P1 = P2 = P , and the
two principal eigenvalues and eigenvectors of RXp are expressed as
following,

λ1(2) = λ̄1(2)+σ2 = pP (1± |φ|) + σ2 (54)

u1(2) =
c1(2)∣∣c1(2)

∣∣
ap (d1)± |φ|

φ ap (d2)√
2 (1± |φ|) (55)

where c1(2) are constants.
∣∣∣ap

(
d1(2)

)H u1

∣∣∣
2

=
λ̄1

2pP
(56)

∣∣∣ap

(
d1(2)

)H u2

∣∣∣
2

=
λ̄2

2pP
(57)

Then

E
[
D̃

(
d1(2)

)]
=

(p− 2)σ2

pLP


1 +

σ2

pP
(
1− |φ|2

)

 (58)

Without loss of generality, we study whether two very close targets
can be distinguished and investigate the resolution threshold issue, so
the assumption pτ12 < 1 does make sense.

According to the series expansion of trigonometric function, |φ|2
can be formulated,

|φ|2 =
[

sin (pτ12)
p sin (τ12)

]2

' 1− 1
3

(pτ12)
2 +

2
45

(pτ12)
4 (59)

By substituting (59) into (58),

E
[
D̃

(
d1(2)

)]'(p− 2)σ2

pLP



1+

σ2

pP
[
(pτ12)

2 /3− 2/45 · (pτ12)
4
]


 (60)
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Let’s define Bs = p∆f as “sub-bandwidth”, so

E
[
D̃

(
d1(2)

)] ' (p− 2)
pL

{
σ2

P

+
1

p·
[
(2π/c)2 (Bs∆d12)

2 /3−2/45·(2π/c)4 (Bs∆d12)
4
]

(
σ2

P

)2}
(61)

Unlike φ = 0 case, the second parts in bracket of (61) are much
more complex than that in (51). From (61), it is clear that σ2/P , L, p,
Bs and ∆d12 are the influencing factors on the spatial null spectrum,
but Bs and ∆d12 have limited impact on E[D̃(d1(2))]. And the SNR
can be expressed,

SNR = 10 · log10

(
2P/σ2

)
(62)

4.2. Performance of Resolution Threshold

Quite different from the conventional radar resolution analysis, in this
paper, we introduce the concept of resolution threshold of DOA into
radar range imaging, and determine whether two adjacent targets could
be distinguished by analyzing the null spectrum, i.e., E[D̃(d1)] and
E[D̃(d2)] should be both smaller than E[D̃((d1 + d2)/2)] by assuming
the two scattering centres have same reflection coefficient [33].

Let’s set d12 = (d1 + d2)/2, then

E
[
D̃ (d12)

]

= 1− ap (d12)
H (

u1uH
1 + u2uH

2

)
ap (d12)

+σ2ap (d12)
H

[
(p−2)λ1

L (λ1−σ2)2
u1uH

1 +
(p−2)λ2

L (λ2−σ2)2
u2uH

2

]
ap (d12) (63)

Here, we define the resolution threshold

E
[
D̃ (d1)

]
+ E

[
D̃ (d2)

]

2
≤ E

[
D̃ (d12)

]
(64)

A. φ = 0 case
Using φ = ap(d1)Hap(d2) = 0 and u1(2) = c1(2)

|c1(2)|ap(d1(2))
∣∣∣ap (d12)

H u1

∣∣∣ =
∣∣∣ap (d12)

H u2

∣∣∣ (65)

Let’s define ∇2 = |a(d12)Hu1|2 = |a(d12)Hu2|2, E[D̃(d12)] and
E[D̃(d1(2))] can be calculated,

E
[
D̃ (d12)

]
' 1− 2∇2 + σ2 2 (p− 2)λ

L (λ− σ2)2
∇2 (66)
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E
[
D̃

(
d1(2)

)] ' σ2 (p− 2)λ

L (λ− σ2)2
(67)

where λ = λ1 = λ2.
From (66) and (67), if the following equation is satisfied, the two

scattering centres can be distinguished.
[

(p− 2)λσ2

L (λ− σ2)2
− 1

]
· (2∇2 − 1

) ≥ 0 (68)

In (68), (p− 2)λσ2/2L(λ− σ2)2 − 1 < 0 is always guaranteed, so
if 2∇2 − 1 < 0, the two scattering centres can be distinguished.

Consider

∇2 =
1
p2

[
sin

(
kπ

2

)/
sin

(
kπ

2p

)]2

k = ±1,±2, . . .± (p− 1) (69)

(a) when k is an even number, ∇2 = 0, and 2∇2 − 1 < 0, the two
scattering centres can be distinguished.

(b) when k is an odd number

2∇2 − 1 = 2

/[
p sin

(
kπ

2p

)]2

− 1 (70)

As we known, p > K = 2, so 2∇2 − 1 < 0 is satisfied, and the two
scattering centres can be distinguished.

In summary, the two scattering centres are always distinguishable
when φ = 0 is satisfied.
B. φ 6= 0 case
According to [33], we have

∣∣∣ap (d12)
H u1

∣∣∣
2

=
1

2 (1 + |φ|)

∣∣∣∣ap (d12)
H

[
ap (d1) +

|φ|
φ

ap (d2)
]∣∣∣∣

2

=
2

(1 + |φ|)
[

sin (pτ12/2)
p sin (τ12/2)

]2

(71)

∣∣∣ap (d12)
H u2

∣∣∣
2

=
1

2 (1− |φ|)

∣∣∣∣ap (d12)
H

[
ap (d1)− |φ|

φ
ap (d2)

]∣∣∣∣
2

' 0 (72)

Let’s set ∇2 = |ap(d12)Hu1|2,

E
[
D̃ (d12)

]
' 1−∇2 + σ2 (p− 2)λ1

L (λ1 − σ2)2
∇2 (73)
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By substituting λ1 = pP (1 + |φ|) + σ2 into (73),

E
[
D̃ (d12)

]
' 1−∇2 + σ2 (p− 2)

[
pP (1 + |φ|) + σ2

]

L [pP (1 + |φ|)]2 ∇2 (74)

According to the series expansion of trigonometric function,

E
[
D̃ (d12)

]

' (pτ12)
4

720
+

(p− 2) σ2

pLP
·
{[

1
2

+
1
24

(pτ12)
2 +

1
1440

(pτ12)
4

]

+
σ2

pP

[
1
4

+
1
24

(pτ12)
2 +

1
360

(pτ12)
4

]}
(75)

By using the fact of pτ12 < 1, (60) and (75) can be simplified
as (76) and (77),

E
[
D̃

(
d1(2)

)] ' (p− 2)σ2

pLP

[
1 +

3
p (pτ12)

2

σ2

P

]
(76)

E
[
D̃ (d12)

]
' (pτ12)

4

720
+

(p− 2)σ2

pLP

{ [
1
2

+
1
24

(pτ12)
2

]

+
1
p

[
1
4

+
1
24

(pτ12)
2

]
σ2

P

}
(77)

Simulations about the null spectrum of E[D̃(d1)], E[D̃(d2) and
E[D̃((d1 + d2)/2)] are presented in Section 5, and the SNR can be
expressed as

SNR = 10 · log10

(
2P/σ2

)
(78)

According to the definition of resolution threshold as shown
in (64), the extreme resolution satisfied

E
[
D̃

(
d1(2)

)]
= E

[
D̃ (d12)

]
(79)

Using (76) and (77), and assuming σ2/P < 1 (the assumption is
usually true) and pτ12 < 1,

(pτ12)
4

720
− (p− 2)σ2

pLP

[
1
2

+
3

p (pτ12)
2

σ2

P

]
= 0 (80)

(a) when 3
p(pτ12)2

σ2

P À 1
2

∆d12 ≈ 1
π

[
p− 2

p

2160
pL

(
σ2

P

)2
]1/6

c

2Bs
(∆d12 > 0) (81)



312 Gu and Zhang

(b) when 3
p(pτ12)2

σ2

P ¿ 1
2

∆d12 ≈ 1
π

(
p− 2

p

360
L

σ2

P

)1/4
c

2Bs
(∆d12 > 0) (82)

(c) when 3
p(pτ12)2

σ2

P ≈ 1
2

∆d12 ≈ 1
π

(
p− 2

p

720
L

σ2

P

)1/4
c

2Bs
(∆d12 > 0) (83)

The above expression is the resolution threshold of the MUSIC
algorithm when used in radar range imaging. From (81) and (83), the
resolution threshold is closely relative to p, L, σ2/P and Bs. And
c/2Bs can be regard as the resolution of the sub-bandwidth.

5. SIMULATION RESULTS

In this section, simulations are presented to demonstrate the
uniqueness condition, convergence performance of ψ(i, j) (i 6= j),
performance of null spectrum and resolution threshold.

5.1. Uniqueness Condition Simulation

Simulations about the uniqueness condition are shown in Fig. 3. Two
targets are locating at −5.0m and 5.0 m, their reflection coefficients are
0.90 and 0.80, respectively, the centre frequency of the transmitting
signal is 10 GHz (X-band), the sample number in frequency is 50,
and the length of sub-vector in SSP is 8. 500 times of Monte Carlo
simulations are conducted. According to (26), the frequency step
should be less than 15 MHz. Figs. 3(a) and (b) show that range imaging
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Figure 3. Radar imagery results with frequency step of (a) 10 MHz,
(b) 15 MHz and (c) 20MHz. (In the abscissa, the range profile is just
relative, i.e., the distance from radar to the reference point is omitted).
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is correctly obtained when frequency step are 10 MHz and 15MHz,
respectively, however when the frequency step is as large as 20 MHz,
as shown in Fig. 3(c), “artifacts” appears in range imaging.

5.2. Convergence Performance of ψ(i, j) (i 6= j)

In Section 3, we discussed the convergence performance of
ψ(i, j) (i 6= j), especially the convergence rate. Fig. 4(a) shows that
the convergence rate is related to the value of |τij |. When |τij | is
close to π/2, the convergence rate become fast; when |τij | is close
to 0 or π, the convergence rate is slow. Fig. 4(b) shows how to
choose an appropriate value of L with different |τij | (0 < |τij | < π)
when ψ (i, j) (i 6= j) converge to 0.02. And it shows that we can
choose L < 100 as π/5 ≤ |τij | ≤ 4π/5, but L increases rapidly when
0 < |τij | < π/5 or 4π/5 < |τij | < π, i.e., we should choose L > 500
when |τij | is close to 0 or π.

5.3. Performance of Null Spectrum

Simulations of the null spectrum are given in Fig. 5 (φ = 0 case)
and Fig. 6 (φ 6= 0 case). In Fig. 5, positions of two targets are
−2.5m and 7.5m, and their reflection coefficients are 0.90 and 0.80,
respectively. The centre frequency of the transmitting signal is 10 GHz,
and frequency step is 7.5 MHz, and the number of Monte Carlo test is
500. In Fig. 6, two targets’ positions are 0.0 m and 1.0 m, and reflection
coefficients are both 0.90. The centre frequency of the transmitting
signal is 10GHz, and frequency step is 0.75 MHz, and the number of
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Figure 4. The performance of (a) convergence rate of ψ (i, j)(i 6= j)
and (b) choice of L with different |τ |.



314 Gu and Zhang

5 10 15 20

4

6

8

x 10
-14

 SNR  (dB)

 |
 ρ

 |

5 10 15 20
1

2

3

x 10
-16

| φ
 |

5 10 15

5

10

x 10
-3

N
u
ll

 S
p
ec

tr
u
m

 

Target 1 (Simulated)

Target 2 (Simulated)

Target 1 (Theoretical)

Target 2 (Theoretical)

100 150 200 250

0.005

0.01

0.015

0.02

 L 

 |
 ρ

 |

100 150 200 250
1

2

3

x 10
-16

 |
 φ 

|

100 150 200 250

1

2

x 10
-4

N
u

ll
 S

p
ec

tr
u

m

Target 1 (Simulated)

Target 2 (Simulated)

Target 1 (Theoretical)

Target 2 (Theoretical)

10 20 30 40

2

4

6

8
x 10

-14

 L 

 |
 ρ

 |

10 20 30 40

1

2

3
x 10

-15

 |
 φ 

|

20 30 40

0.5

2

x 10
-4

N
u

ll
 S

p
ec

tr
u

m

 

Target 1 (Simulated)

Target 2 (Simulated)

Target 1 (Theoretical)

Target 2 (Theoretical)

(a) (b) (c)

(f)(e)(d)
 L  L  p

SNR (dB) SNR (dB) L

Figure 5. The curves of the null spectrum relative to (a)(b)
SNR (p = 30, L = 150), (c)(d) L (p = 30, SNR = 30 dB) and (e)(f)
p (L = 150, SNR = 30 dB) when φ = 0.

Monte Carlo test is 500. In these simulations, L is large enough and
ρ → 0. In addition, pτ12 < 1 is used when φ 6= 0. The relationships
between the null spectrum and SNR, L and p are depicted in Fig. 5
(φ = 0 case) and Fig. 6 (φ 6= 0 case). It is observed that the simulation
results are consistent to the theoretical ones [see Formulation (51)
and (61)]. In Fig. 5, it shows that null spectrum obviously decreases
with the increasing of SNR and L, but has little relationship with
p when p À 2. The reason why target 1’s null spectrum is less
than target 2 is that its reflection coefficient is greater than that of
target 2. In Figs. 5(a) (b), the null spectrum is inverse to L. In
Figs. 5(c) (d), the relationship between the null spectrum and SNR is
more complex because of the presence of the quadratic term of σ2/P ;
and in Figs. 5(e) (f), when p À 2 and SNR is high, the change of p has
little impact on the null spectrum. Fig. 6 shows the similar relationship
between the null spectrum and SNR, L and p, the only difference is
that the quadratic term of σ2/P when φ 6= 0 is much more complex,
and its null spectrum is also relate to Bs and ∆d12.
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p (L = 1000, SNR = 30 dB) when φ 6= 0.

5.4. Resolution Threshold of MUSIC (φ 6= 0Case)

Simulations of the resolution threshold (φ 6= 0 case) are given in
Fig. 7. Two targets are locating at −0.05m and 0.05 m, their reflection
coefficients are both 0.90, and the centre frequency is 10 GHz, the
frequency step is 15MHz, and the number of Monte Carlo test is 500.
Fig. 7 shows the relationship between the resolution threshold and
SNR, L and p. In simulations, ρ → 0 and δdp < 1 are satisfied.

In Fig. 7, it shows that the simulation results are consistent
to the theoretical ones [see Formulation (76) and (77)]. And in
Figs. 7(a) (b), the null spectrum decreases with the increasing of SNR,
and the intersection point of the curves means that two targets can be
distinguished after this intersection (SNR = 15 dB). In Figs. 7(c) (d),
the null spectrum also decreases with the increasing of L, and two
targets can be distinguished when L > 500. In Figs. 7(e) (f), the
null spectrum of midpoint changes dramatically with the increasing
of p, but the null spectrum of targets are almost unchanged. The
intersection point is p = 15, it means targets can be distinguished
when p > 15.
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SNR (p = 15, L = 500), (c)(d) L (p = 15, SNR = 20 dB) and (e)(f)
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6. CONCLUSIONS

The application of the MUSIC algorithm in radar range imaging is
discussed in this paper, and the asymptotic statistical analysis of the
null spectrum and the resolution threshold is presented, which is closely
related to the performance of the MUSIC algorithm. Theoretical
expression of the null spectrum is derived firstly. By using its
statistic characteristics, we derived the uniqueness and effectiveness
conditions for MUSIC, and simulations illustrate that only when the
two conditions are met simultaneity can the unique image of targets
be obtained; otherwise “artifacts” appears. At last, the expression
of the resolution threshold of MUSIC used in radar range imaging is
presented based on the asymptotic statistical characteristics of the null
spectrum. Monte Carlo tests validate the derivations.

In this paper, we only focus on the performance of the MUSIC
algorithm used in radar range profiles, the follow-up work should be the
performance of the MUSIC algorithm used in two or three dimension
radar imaging.



Progress In Electromagnetics Research B, Vol. 31, 2011 317

REFERENCES

1. August, W. R., Principles of High-Resolution Radar, Artech
House Publishers, Boston, USA, 1996.

2. Son, J. S., G. Thomas, and B. C. Flores, Range-Doppler Radar
Imaging and Motion Compensation, Artech House Publishers,
London, UK, 2001.

3. Hamish, D. M., Modern Radar Systems, 2nd edition, Artech House
Publishers, Boston, USA, 2008.

4. Odendaal, J. W., E. Barnard, and C. W. I. Pistorius, “Two-
dimensional super-resolution radar imaging using the MUSIC
algorithm,” IEEE Trans. Antennas Propagat., Vol. 42, No. 10,
1386–1391, 1994.

5. Kim, K., D. Seo, and H. Kim, “Efficient radar target recognition
using the MUSIC algorithm and invariant features,” IEEE Trans.
Antennas Propagat., Vol. 50, No. 3, 325–337, 2002.

6. Yoon, Y. and M. G. Amin, “High-resolution through-the-wall
radar imaging using beamspace MUSIC,” IEEE Trans. Antennas
Propagat., Vol. 56, No. 6, 1763–1774, 2008.

7. Roy, R., A. Paulraj, and T. Kailath, “ESPRIT — A subspace
rotation approach to estimation of parameters of cisoids in noise,”
IEEE Trans. Acoust., Speech, Signal Processing, Vol. 34, No. 5,
1340–1342, 1986.

8. Roy, R. and T. Kailath, “ESPRIT — Estimation of signal
parameters via rotational invariance techniques,” IEEE Trans.
Acoust., Speech, Signal Processing, Vol. 37, No. 7, 984–995, 1989.

9. Rouquette, S. and M. Najim, “Estimation of frequencies and
damping factors by two-dimensional ESPRIT type methods,”
IEEE Trans. Signal Processing, Vol. 49, No. 1, 237–245, 2001.

10. Schmidt, R., “Multiple emitter location and signal parameter
estimation,” Proc. RADC Spectral Estimation Workshop, Rome
Air Development Center, New York, October 1979.

11. Schmidt, R., “Multiple emitter location and signal parameter
estimation,” IEEE Trans. Antennas Propagat., Vol. 34, No. 3,
276–280, 1986.

12. Lee, H. B. and M. S. Wengrovitz, “Resolution threshold of
beamspace MUSIC for two closely spaced emitters,” IEEE Trans.
Acoust., Speech, Signal Processing, Vol. 38, No. 9, 1545–1559,
1990.

13. Yamada, H., M. Ohmiya, Y. Ogawa, and K. Itoh, “Super-
resolution techniques for time-domain measurements with a



318 Gu and Zhang

network analyzer,” IEEE Trans. Antennas Propagat., Vol. 39,
No. 2, 177–183, 1991.

14. Li, F., H. Liu, and R. J. Vaccaro, “Performance analysis for
DOA estimation algorithms: Unification, simplification, and
observations,” IEEE Trans. Aerosp. Electron. Syst., Vol. 29, No. 4,
1170–1184, 1993.

15. Cheng, C. and Y. Hua, “Performance analysis of the MUSIC
and pencil-MUSIC algorithms for diversely polarized array,” IEEE
Trans. Signal Processing, Vol. 42, No. 11, 3150–3165, 1994.

16. Thompson, J. S., P. M. Grant, and B. Mulgrew, “Performance of
spatial smoothing algorithms for correlated sources,” IEEE Trans.
Signal Processing, Vol. 44, No. 4, 1040–1046, 1996.

17. Astely, D. and B. Ottersten, “The effects of local scattering on
direction of arrival estimation with MUSIC,” IEEE Trans. Signal
Processing, Vol. 47, No. 12, 3220–3234, 1999.

18. McCloud, M. L. and L. L. Scharf, “A new subspace identification
algorithm for high-resolution DOA estimation,” IEEE Trans.
Antennas Propagat., Vol. 50, No. 10, 1382–1390, 2002.

19. Charge, P., Y. Wang, and J. Saillard, “An extended cyclic MUSIC
algorithm,” IEEE Trans. Signal Processing, Vol. 51, No. 7, 1695–
1701, 2003.

20. Kim, J.-T., S.-H. Moon, D. Han, and M.-J. Cho, “Fast DOA
estimation algorithm using pseudocovariance matrix,” IEEE
Trans. Antennas Propagat., Vol. 53, No. 4, 1346–1351, 2005.

21. Abeida, H. and J.-P. Delmas, “MUSIC-like estimation of direction
of arrival for noncircular sources,” IEEE Trans. Signal Processing,
Vol. 54, No. 7, 2678–2690, 2006.

22. Ye, Z. and C. Liu, “2-D DOA estimation in the presence of mutual
coupling,” IEEE Trans. Antennas Propagat., Vol. 56, No. 10,
3150–3158, 2008.

23. Zhang, Y. and B. P. Ng, “MUSIC-like DOA estimation
without estimating the number of sources,” IEEE Trans. Signal
Processing, Vol. 58, No. 3, 1668–1676, 2010.

24. Barabell, A., “Improving the resolution performance of
eigenstructure-based direction-finding algorithms,” IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing,
ICASSP’83, 336–339, 1983.

25. Rao, B. D. and K. V. S. Hari, “Performance analysis of Root-
Music,” IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37,
No. 12, 1939–1949, 1989.

26. Krim, H., P. Forster, and J. G. Proakis, “Operator approach to



Progress In Electromagnetics Research B, Vol. 31, 2011 319

performance analysis of root-MUSIC and root-min-norm,” IEEE
Trans. Signal Processing, Vol. 40, No. 7, 1687–1696, 1992.

27. Shan, T., M. Wax, and T. Kailath, “On spatial smoothing for
direction-of-arrival estimation of coherent signals,” IEEE Trans.
Acoust., Speech, Signal Processing, Vol. 33, No. 4, 806–811, 1985.

28. Haber, F. and M. Zoltowski, “Spatial spectrum estimation in a
coherent signal environment using an array in motion,” IEEE
Trans. Antennas Propagat., Vol. 34, No. 3, 301–310, 1986.

29. Rao, B. D. and K. V. S. Hari, “Weighted subspace methods and
spatial smoothing: Analysis and comparison,” IEEE Trans. Signal
Processing, Vol. 41, No. 2, 788–803, 1993.

30. Wang, H. and K. J. R. Liu, “2-D spatial smoothing for multipath
coherent signal separation,” IEEE Trans. Aerosp. Electron. Syst.,
Vol. 34, No. 2, 391–405, 1998.

31. Li, F. and R. J. Vaccaro, “Sensitivity analysis of DOA estimation
algorithms to sensor errors,” IEEE Trans. Aerosp. Electron. Syst.,
Vol. 28, No. 3, 708–717, 1992.

32. Ferreol, A., P. Larzabal, and M. Viberg, “On the resolution
probability of MUSIC in presence of modeling errors,” IEEE
Trans. Signal Processing, Vol. 56, No. 5, 1945–1953, 2008.

33. Kaveh, M. and A. Barabell, “The statistical performance of the
MUSIC and the minimum-norm algorithms in resolving plane
waves in noise,” IEEE Trans. Acoust., Speech, Signal Processing,
Vol. 34, No. 2, 331–341, 1986.

34. Kaveh, M. and A. Barabell, “The statistical performance of the
MUSIC and the minimum-norm algorithms in resolving plane
waves in noise,” IEEE Trans. Acoust., Speech, Signal Processing,
Vol. 34, No. 3, 633–633, 1986.

35. Choi, J. and I. Song, “Asymptotic distribution of the MUSIC null
spectrum,” IEEE Trans. Signal Processing, Vol. 41, No. 2, 985–
988, 1993.

36. Messer, H. and Y. Rockah, “On the eigenstructure of the signal-
only tempo-spatial covariance matrix of broad-band sources using
a circular array,” IEEE Trans. Acoust., Speech, Signal Processing,
Vol. 38, No. 3, 557–559, 1990.

37. Friedlander, B. and A. J. Weiss, “Direction finding using
spatial smoothing with interpolated arrays,” IEEE Trans. Aerosp.
Electron. Syst., Vol. 28, No. 2, 574–587, 1992.

38. Gardner, W. A., “Simplification of MUSIC and ESPRIT by
exploitation of cyclostationarity,” Proceedings of the IEEE,
Vol. 76, No. 7, 845–847, 1988.



320 Gu and Zhang

39. Stoica, P. and A. Nehorai, “Performance comparison of subspace
rotation and MUSIC methods for direction estimation,” IEEE
Trans. Signal Processing, Vol. 39, No. 2, 446–453, 1991.

40. Yu, X. and K. M. Buckley, “Bias and variance of direction-of-
arrival estimates from MUSIC, MIN-NORM, and FINE,” IEEE
Trans. Signal Processing, Vol. 42, No. 7, 1812–1816, 1994.

41. Yeh, C.-C., J.-H. Lee, and Y.-M. Chen, “Estimating two-
dimensional angles of arrival in coherent source environment,”
IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, No. 1,
153–155, 1989.

42. Mathews, C. P. and M. D. Zoltowski, “Eigenstructure techniques
for 2-D angle estimation with uniform circular arrays,” IEEE
Trans. Signal Processing, Vol. 42, No. 9, 2395–2407, 1994.

43. Wang, Y.-Y., L.-C. Lee, S.-J. Yang, and J.-T. Chen, “A tree
structure one-dimensional based algorithm for estimating the two-
dimensional direction of arrivals and its performance analysis,”
IEEE Trans. Antennas Propagat., Vol. 56, No. 1, 178–188, 2008.

44. Wang, H. and K. J. R. Liu, “2-D spatial smoothing for multipath
coherent signal separation,” IEEE Trans. Aerosp. Electron. Syst.,
Vol. 34, No. 2, 391–405, 1998.

45. Lei, Z. and T. J. Lim, “Estimation of directions of arrival of
multipath signals in CDMA systems,” IEEE Trans. Commun.,
Vol. 48, No. 6, 1022–1028, 2000.

46. Chiang, C.-T. and A.-C. Chang, “DOA estimation in the
asynchronous DS-CDMA system,” IEEE Trans. Antennas
Propagat., Vol. 51, No. 1, 40–47, 2003.

47. Li, J., Z.-S. Liu, and P. Stoica, “3-D target feature extraction via
interferometric SAR,” Radar, Sonar & Navigation, IET, Vol. 144,
No. 2, 71–80, 1997.

48. Kim, K.-T., S.-W. Kim, and H.-T. Kim, “Two-dimensional ISAR
imaging using full polarisation and super-resolution processing
techniques,” Radar, Sonar & Navigation, IET, Vol. 145, No. 4,
240–246, 1998.

49. Kim, K.-T., D.-K. Seo, and H.-T. Kim, “Radar target
identification using one-dimensional scattering centres,” Radar,
Sonar & Navigation, IET, Vol. 148, No. 5, 285–296, 2001.

50. Miwa, T. and I. Arai, “Super-resolution imaging for point
reflectors near transmitting and receiving array,” IEEE Trans.
Antennas Propagat., Vol. 52, No. 1, 220–229, 2004.

51. Quinquis, A., E. Radoi, and F. C. Totir, “Some radar imagery
results using Super-resolution techniques,” IEEE Trans. Antennas



Progress In Electromagnetics Research B, Vol. 31, 2011 321

Propagat., Vol. 52, No. 5, 1230–1244, 2004.
52. Gini, F., F. Lombardini, and M. Montanari, “Layover solution

in multibaseline SAR interferometry,” IEEE Trans. Aerosp.
Electron. Syst., Vol. 38, No. 4, 1344–1356, 2002.

53. Urazghildiiev, I., R. Ragnarsson, and A. Rydberg, “High-
resolution estimation of ranges using multiple-frequency CW
radar,” IEEE Trans. Intell. Transport. Syst., Vol. 8, No. 2, 332–
339, 2007.

54. Secmen, M. and G. Turhan-Sayan, “Radar target classification
method with reduced aspect dependency and improved noise
performance using multiple signal classification algorithm,”
Radar, Sonar & Navigation, IET, Vol. 3, No. 6, 583–595, 2009.

55. Li, L., W. Zhang, and F. Li, “A novel autofocusing approach
for real-time through-wall imaging under unknown wall charac-
teristics,” IEEE Trans. Geosci. Remote Sensing, Vol. 48, No. 1,
423–431, 2010.

56. Zhang, W., A. Hoorfar, and L. Li, “Through-the-wall target
localization with time reversal music method,” Progress In
Electromagnetics Research, Vol. 106, 75–89, 2010.

57. Lazarov, A. D., “Iterative MMSE method and recurrent Kalman
procedure for ISAR imaging reconstruction,” IEEE Trans. Aerosp.
Electron. Syst., Vol. 37, 1432–1441, 2001.

58. Li, L., W. Zhang, and F. Li, “Tomographic reconstruction using
the distorted rytov iterative method with phaseless data,” IEEE
Geoscience and Remote Sensing Letters, Vol. 5, 479–483, 2008.

59. Zhang, W., A. Hoorfar, and C. Thajudeen, “Polarimetric
through-the-wall imaging,” 2010 URSI International Symposium
on Electromagnetic Theory (EMTS), 471–474, Berlin, Germany,
2010.

60. Zhang, W., L. Li, and F. Li, “Multifrequency imaging from
intensity-only data using the phaseless data distorted Rytov
iterative method,” IEEE Trans. Antennas Propagat., Vol. 53, 290–
294, 2009.

61. Hudson, J. E., Adaptive Array Principle, Peter Peregrinus Ltd.,
London, UK, 1981.

62. Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford
University Press, Inc., New York, USA, 1965.


