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Abstract—This paper presents a novel time-harmonic electromag-
netic model for determining the current distribution on conductor grids
in horizontally stratified multilayer medium. This model could be seen
as a basis of the wider electromagnetic model for the frequency-domain
transient analysis of conductor grids in multilayer medium. The total
number of layers and the total number of conductors are completely
arbitrary. The model is based on applying the finite element technique
to an integral equation formulation. Each conductor is subdivided into
segments with satisfying the thin-wire approximation. Complete elec-
tromagnetic coupling between segments is taken into account. The
computation of Sommerfeld integrals is avoided through an effective
approximation of the attenuation and phase shift effects. Computation
procedure for the horizontally stratified multilayer medium is based on
the successful application of numerical approximations of two kernel
functions of the integral expression for the potential distribution within
a single layer, which is caused by a point source of time-harmonic cur-
rent. Extension from the point source to a segment of the earthing
grid conductors is accomplished through integrating the potential con-
tribution due to the line of time-harmonic current source along the
segments axis.

1. INTRODUCTION

Grounding grid analysis still attracts significant attention from
researchers around the world, which could be readily observed from the
truly voluminous work published on this subject. It could be asserted
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that significant attention is dedicated to the aspects associated with
transient grounding grid behavior, as well as on those various aspects
of electromagnetic compatibility, again associated with grounding
systems performance during both short circuits and lightning surge
transients [1].

Generally speaking, according to the treatment of the accompany-
ing electromagnetic field formulation, electromagnetic methods could
be classified into two large groups. The first group of methods are the
so-called quasi-static methods, which are based on the time-harmonic
current energization and ignore attenuation and phase shift effects [2–
4]. Applicability of these methods is limited to low frequency, which
is adequate for the nominal frequency applications, e.g., single-pole
short circuit grounding grid analysis. Second group of methods in-
volve a full electromagnetic field approach, by solving a set of Maxwell
equations [5–10]. Numerical methods based on the full electromagnetic
theory approach, which rigorously treat boundary layers and numer-
ically solve Sommerfeld integrals, are still mainly limited to homoge-
neous earth models [5–7] because of their complexity. Only recently,
they were expanded to include the two-layer earth models, e.g., [8, 9].
Here, accompanying time-harmonic current source involves attenua-
tion and phase shift effects, which could be rigorously incorporated [5]
or approximated in some way [11]. These methods could treat high-
frequency phenomena associated with various sophisticated grounding
grid analysis. In case of approximate incorporation of attenuation and
phase shift effects, upper frequency of applicability should be deter-
mined. It depends, in turn, on the quality of the approximation itself.
Methods involving attenuation and phase shift effects have wider ap-
plicability and higher accuracy, but, at the same time, they are more
computer-intensive from the point of view of CPU usage.

A good general presentation and mutual comparison of different
numerical methods available for the grounding grid analysis is
presented in [1]. Furthermore, some general considerations on
grounding systems modeling for high frequencies and transients could
be found in [12]. It needs to be stated that contrary to the vast number
of simulation oriented papers, there is a great deficiency of carefully
documented papers concerned with experimental works on transient
grounding grid behavior. Noteworthy exemptions to this rule are given
in, e.g., [13–15].

The first step in the process of grounding system electromagnetic
model development — regardless of the employed medium model —
can be seen in the determination of current distribution on that
system of conductors. With known current distribution one can
subsequently determine the potential distribution in any point on
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and around the conductor grid. Especially important is a potential
distribution on the ground surface from which dangerous voltages
directly follow. Furthermore, electric and magnetic field distributions
can be obtained once the current distribution on the conductor grid is
known. Especially important is the electromagnetic field distribution
in the air. Introduction of the Fourier transform would facilitate
scrutiny of the conductor grid transient behavior [1].

This paper presents a novel numerical method for the analysis
of current distribution on conductor grid in horizontally stratified
multilayer medium, which is consisted of air and arbitrary number
of soil layers. This mathematical representation has a fundamental
physical background regarding the behavior of current while passing
through earth (e.g., soil resistivity changes with depth as current passes
through different layers of soil, sediments and rock). This model could
be seen as a basis of the wider electromagnetic model for the frequency-
domain transient analysis of conductor grids in multilayer medium.

Electromagnetic model is based on the application of the finite
element technique (FET) on the integral problem formulation, which
is laid out in the frequency domain, following a full electromagnetic
theory approach. Well-known Galerkin - Bubnov method is employed
in the FET procedure, combined with a thin-wire approximation of
the grounding conductors. Grounding conductors could be arbitrarily
positioned in regard to the earth surface, within arbitrary soil
layer, even penetrating the earth surface and extending into the
air. Complete electromagnetic coupling between grounding grid
conductors has been taken into account. Electromagnetic model
additionally utilizes an original numerical algorithm for approximating
the potential distribution of a time-harmonic current point source in
horizontally stratified multilayer medium [11], in order to account for
the heterogeneous soil.

The efficiency of the computation procedure for a time-harmonic
current point source is based on the successful application of numerical
approximations of two kernel functions of the integral expression for
the potential distribution within a single layer of the medium model.
This is in fact congruous to the approximations of appropriate Green’s
functions, which are in fact kernel functions of the integral expression
for the potential distribution due to unit current point source in
multilayer medium. Numerical approximation of the kernel functions
of the integral expression for the potential distribution is carried out
according to the fixed image method [1, 11], which is numerically
efficient and stable.

This, in combination with the approximation of the attenuation
and phase shift effects, which avoids formation and subsequent
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numerical solution of Sommerfeld integrals, makes here proposed
procedures extremely numerically efficient. Sommerfeld integrals are
known to be numerically ill-behaved and very difficult to solve. Apart
from that, numerical solution of Sommerfeld integrals is very time
consuming, from the point of view of CPU time. This is the main
reason why many researchers tend to avoid them during the course of
the development of methods for grounding grid analysis.

Hence, due to the above mentioned procedures, here proposed
mathematical model assures high numerical efficiency, which makes
this method well suited for the subsequent transient solution, based on
the Fourier transform.

Determining the upper frequency of model applicability is a
necessary step in the development procedure. This is true for every
frequency-domain grounding grid model, especially those which use a
quasi-static approximation of the electromagnetic field theory. Due
to the fact that hereafter presented electromagnetic model introduces
approximations of the attenuation and phase shift effects, its upper
frequency of applicability needs to be established. This will be carried
out in this paper, by comparing results produced by here presented
model with those obtained with the so-called full-wave electromagnetic
model.

2. DISCONNECTED SEGMENTS IN MULTILAYER
MEDIUM

The first layer of the horizontally stratified multilayer medium is air,
while other layers represent multilayer earth model. The total number
of layers is completely arbitrary. Conductors could be positioned in
any layer of the horizontally stratified multilayer medium, including
the air. Using the FET, each conductor is subdivided into segments
by satisfying the thin-wire approximation at the same time [11].

Current of the ks-th segment consists of two separate parts:
a) longitudinal segment current, which, according to the thin-
wire approximation, flows along the segment axis; this current is
approximated by a constant, whose value is equal to its average value,
b) transversal (leakage) segment current, which leaks uniformly from
the segment surface into the surrounding medium; this current is
presented with a time-harmonic current line source, positioned along
the segment axis.

Let the total number of segments be denoted by Ns. In the first
step, all segments, which are electromagnetically coupled, must be
disconnected because longitudinal and transversal systems of equations
can be created only for disconnected segments. In the second step,
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using the FET assembling procedure, disconnected segments will
be mutually connected in global nodes. According to the FET
terminology, all disconnected segments form a single finite element
(local system), whereas connected segments form a global system.

Each disconnected segment has two local nodes. Because of
simplicity, the arbitrary ks-th segment has a starting local node
denoted by ks and ending local node denoted by Ns + ks (Figure 1).
Figure 1 graphically depicts the ks-th segment current separation,
along with adopted current notations, subsequently used throughout
this paper. The total nodal current entering the ks-th local node Īn

ks

is equal to the sum of the longitudinal Īn`
ks and transversal Īnt

ks nodal
currents entering the ks-th local node. The same applies for Ns + ks
local node.

In accordance with the afore-mentioned, in the numerical model,
the transversal nodal currents are equal to the half of the transversal
segment current. In other words, half of the segment transversal
(leakage) current is transferred into each of the two segment local nodes
(Figure 1). The longitudinal segment currents are denoted Ī`

ks, whereas
the transversal segment currents are denoted Īt

ks.
Graphical representation of the horizontally stratified multilayer

medium model is given in Figure 2. Let γ̄1 denote a complex wave
propagation constant of the air, while γ̄2, γ̄3, . . . , γ̄n represent
complex wave propagation constants of the earth layers (Figure 2).
Complex wave propagation constant of arbitrary p-th medium model
layer can be expressed as:

γ̄p = jωµ0 · κ̄p = jωµ0 · (σp + jωε0εrp) (1)

where j is the imaginary unit, ω = 2 · π · f is the circular frequency,
f is frequency, µ0 is the medium permeability which is equal to
permeability of the vacuum, σp is the electrical conductivity of the
p-th medium model layer, ε0 is the permittivity of the vacuum, εrp is

Figure 1. Separation of current into its longitudinal and transversal
components.
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Figure 2. Approximation of the attenuation and phase shift effects.

the relative permittivity of the p-th medium model layer and κ̄p is the
complex electrical conductivity of the p-th medium model layer.

3. APPROXIMATION OF THE ATTENUATION AND
PHASE SHIFT EFFECTS

Treatment of the segments in horizontally stratified multilayer medium
is derived from the theory of time-harmonic current point source
in horizontally stratified multilayer medium [11]. It needs to be
accentuated here that the efficiency of the solution to the problem
of grounding segments in horizontally stratified multilayer medium is
bounded by the efficiency of the underlying solution to the problem of
current point source in the same medium [1, 11].

Attenuation and phase shift effects in horizontally stratified
multilayer medium have been efficiently approximated by the
introduction of a complex attenuation–phase shift factor. In such
a way Sommerfeld integrals are completely avoided and majority of
integrals in the expressions for longitudinal and transversal self and
mutual impedances could be analytically solved [16, 17].

Values of the complex attenuation–phase shift factors are
computed in two different ways in respect to the expressions involving
self segment impedances and expressions involving mutual segment
impedances. Figure 2 graphically depicts two arbitrary segments in
horizontally stratified multilayer medium.
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For the expressions involving self segment impedances, complex
attenuation-phase shift factor is computed according to the following
equation:

f̄ks,ks = 1 +

∫
Γs

ks

∫
Γks

e−γ̄s·R−1
R · d`ks · d`s

ks

∫
Γs

ks

∫
Γks

1
R · d`ks · d`s

ks

(2)

where γ̄s is a complex wave propagation constants of the s-th medium
model layer in which ks-th segment is located, R is the distance
between the field point and a source point, Γks is the path of integration
along the segment axis and Γs

ks is the path of integration along the
curve on segment surface, which is parallel to the segment axis. Double
integral in the nominator of expression (2) can be solved by employing
the integration routine based on double numerical integration with a
seven point Gauss Legendre quadrature [16, 17]. Double integral in
the denominator of expression (2) has a rather well-known analytical
solution [16, 17].

For the expressions involving mutual segment impedances,
complex attenuation–phase shift factor between the is-th segment
located in the p-th medium model layer and the ks-th segment located
in the s-th medium model layer (according to Figure 2) is computed
according to the following expression:

f̄is,ks = e−S ; S =
el∑

k=bl

γ̄k · dk (3)

where bl = min {p, s} , el = max {p, s} . Each penetration of the
medium layer with a fictitious line connecting middle points of the
segments, augments the summation number in (3). Distances dk in
the above expression could be easily obtained from the analytical
geometry in three-dimensional (3D) space. Therefore, attenuation
and phase shift effects between two arbitrary segments in multilayer
medium are in fact approximated by the complex attenuation–phase
shift factor inherent between middle points of these two segments in
3D space. Hence, thus derived attenuation–phase shift factor (3) takes
into account all the physical properties of the medium model layers,
involved between segments under consideration [11].

4. SYSTEM OF LINEAR EQUATIONS FOR
LONGITUDINAL SEGMENT CURRENTS

In FET terminology, as previously mentioned, segment current has
been divided into two separate parts: longitudinal and transversal
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current (Figure 1). Hence, two separate sets of systems of linear
algebraic equations will be formed, and subsequently joined in a single
system of linear algebraic equations, by the standard FET assembly
process [18].

The systems of linear equations for longitudinal segment currents
are obtained using the well-known Galerkin-Bubnov method. Hence,
the system of linear equations for longitudinal segment currents, in a
matrix notation, can be written as:[

Z̄`
]
·
{

Ī`
}

=
[
A`

]
· {Φ̄

}
(4)

where:
[
Z̄`

]
is a symmetric longitudinal segment impedance matrix,{

Ī`
}

is a longitudinal segment current vector,
{
Φ̄

}
is a local nodal

potential vector and
[
A`

]
is a two-diagonal longitudinal incidence

matrix, with non-zero coefficients described by the following equation:

A`
is,is = −A`

is,Ns+is = 1; is = 1, 2, . . . , Ns (5)

Longitudinal self impedance of ks-th segment located in the s-th
medium model layer can be computed using the following expression:

Z̄`
ks,ks = Z̄1

ks · `ks + f̄ks,ks · j · ω · µ0

4 · π ·
∫

Γs
ks

∫

Γks

1
R
· d`ks`

s
ks (6)

where Z̄1
ks is the internal impedance per unit length of the ks-th

segment, `ks is a measure of length along the ks-th segment and f̄ks,ks is
the newly-introduced complex attenuation–phase shift factor, defined
by (2).

Internal impedance per unit length of the ks-th segment, from (6),
is given with the following well-known expression [19]:

Z̄1
is =

k̄

2 · r0 · π · σc
· J̄0

(
k̄ · r0

)

J̄1

(
k̄ · r0

) (7)

where r0 is the outer radius of the segment, σc is the electrical
conductivity of the segment material, J̄0 is the complex Bessel function
of the first kind and zero order, J̄1 is the complex Bessel function of the
first kind and first order, while k̄ is the complex wave number, defined
by the following expression:

k̄ =
√

ω · µc · σc · e−j·π
4 (8)

where µc is the permeability of the segment material. It can be pointed
out here that expression (7) needs to be numerically treated with
care, due to known inaccuracies which Bessel functions exert for large
magnitudes of the function argument (i.e., at high frequencies), [20].
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The longitudinal mutual impedance between is-th segment and ks-
th segment (is 6= ks) can be computed from the following expression:

Z̄`
is, ks = f̄is,ks ·


j · ω · µ0

4 · π ·
∫

Γis

∫

Γks

1
R
· d`ks · d`is


 ·

(
~̀
0is · ~̀0ks

)
(9)

where ~̀
0is and ~̀

0ks are the unit vectors of the segments (Figure 2),
while f̄is,ks is again newly-introduced complex attenuation-phase shift
factor, defined by Equation (3). The unit vector of the ks-th segment
is parallel to the segment axis and oriented from ks to Ns + ks local
node.

5. SYSTEM OF LINEAR EQUATIONS FOR
TRANSVERSAL SEGMENT CURRENTS

The system of linear equations for transversal segment currents is
obtained by again employing the Galerkin - Bubnov method. In matrix
notation it can be written as:[

Z̄t
] · {Īt

}
=

[
At

] · {Φ̄
}

(10)

where: [Z̄t] is a symmetric transversal segment impedance matrix;
{Īt} is a transversal segment current vector; {Φ̄} is a local nodal
potential vector as in Equation (4) and [At] is again a two-diagonal
transversal incidence matrix, with non-zero coefficients now described
by the following equation:

At
is,is = At

is,Ns+is =
1
2
; is = 1, 2, . . . , Ns (11)

In order to determine transversal self and mutual segment
impedances in horizontally stratified multilayer medium, two different
segment arrangements — in respect to the earth surface — need to be
examined, since they involve slightly different approaches.

Theory developed for the time-harmonic current point source in
horizontally stratified multilayer medium [11] can be directly applied
on horizontal segments, since every point on its axis is positioned at
the same depth.

In case of the non-horizontal segments, situation is more difficult.
In this case segment axis is not positioned at the same depth. In order
to apply the algorithm developed for the time-harmonic current point
source, line source along the segment axis has been approximated by
five point current sources, each at its own depth. In this case, numerical
computation of the integral expression for the time-harmonic current
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point source has been carried out with a fivepoint Gauss Legendre
quadrature [17]. However, non-horizontal segments are not treated in
this paper. Interested reader is advised to consult [16, 17] for more
information.

Transversal self impedance of the ks-th horizontal segment,
located in the s-th medium model layer, can be written as follows:

Z̄t
ks,ks = f̄ks,ks ·

(
qZ̄t

ks,ks +
33∑

k=2

C̄ks
k · qZ̄t

ks,kks

)
(12)

where: qZ̄t
ks,ks is a quasistatic transversal self impedance of the ks-

th segment in the homogeneous unbounded medium with κ̄ = κ̄s,
while qZ̄t

ks,kks
is a quasistatic transversal impedance between the ks-

th segment and the k-th image of the ks-th segment in homogeneous
unbounded medium, with κ̄ = κ̄s. Here f̄ks,ks again represents
the complex attenuation–phase shift factor given by expression (2).
Newly introduced value C̄ks

k is a coefficient which defines an intensity
of the transversal current for the k-th image of the ks-th segment.
These coefficients were originally derived for the current point source
positioned in horizontally stratified multilayer medium, by employing
the fixed image method, as described in [1, 11].

The quasistatic transversal self and mutual segment impedances in
homogeneous unbounded medium with κ̄ = κ̄s, cited in Equation (12),
can be respectively computed from the following expressions [16]:

qZ̄t
ks, ks =

1
4 · π · κ̄s

· 1
`2
ks

·
∫

Γs
ks

∫

Γks

1
R
· d`ks · d`s

ks (13)

qZ̄t
ks, kks

=
1

4 · π · κ̄s
· 1
`2
ks

·
∫

Γks

∫

Γkks

1
R
· d`kks

· d`ks (14)

Double integrals in Equations (13) and (14) could be analytically
solved, which significantly contributes to the numerical efficiency of
the electromagnetic model.

According to the model developed for the time-harmonic current
point source in horizontally stratified multilayer earth [11], coefficients
C̄ks

1 , C̄ks
2 and C̄ks

3 as well as z coordinates of middle point of
corresponding segment images (which are obtained by exact image
method), are defined according to the following expressions:

C̄ks
1 = Āp (15)

zks
M1

= zks
M (16)
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C̄ks
2 = −Āp · F̄p−1; p ≤ s; p 6= 1 (17)

zks
M2

= 2 ·Hp−1 − zks
M ; p ≤ s; p 6= 1 (18)

C̄ks
2 = −Āp · F̄s−1; p ≥ s; s 6= 1 (19)

zks
M2

= 2 ·Hs−1 − zks
M ; p ≥ s; s 6= 1 (20)

C̄ks
3 = Āp · F̄s; p ≤ s; s 6= n (21)

zks
M3

= 2 ·Hs − zks
M ; p ≤ s; s 6= n (22)

C̄ks
3 = Āp · F̄p; p ≥ s; p 6= n (23)

zks
M3

= 2 ·Hp − zks
M ; p ≥ s; p 6= n (24)

with substitutions p = s, Āp = 1 in the case of Equation (15).
The quantity Āp in Equations (17), (19), (21) and (23) represents
accumulated transmission factor between the s-th and the p-th medium
model layers, while quantities F̄p−1, F̄p, F̄s−1 and F̄s represent
associated reflection factors [11].

The coefficients C̄ks
k ; k = 4, 5, . . . , 33 and z coordinates of

middle point of corresponding segment images are again obtained by
fixed image method (applied to point source in horizontally stratified
multilayer medium), and could be defined as follows [11]:

C̄ks
k = ᾱk−3; zks

Mk
= Hp−1 − ϑ · ηk−3; k = 4, 5, . . . , 18; p 6= 1 (25)

C̄ks
k = β̄k−18; zks

Mk
= Hp + χ · ηk−18; k = 19, 20, . . . , 33; p 6= n (26)

The coefficients ᾱk and β̄k in (25) and (26) can be computed by
an algorithm developed for the time-harmonic current point source
located on the ks-th segment axis [11]. The parameters ϑ and χ
in Equations (25) and (26) are determined by a set of analytical
expressions, based on exact image method [11]. The parameters η
in expressions (25) and (26) are chosen on the basis of numerical
experiments [16, 17].

If the ks-th segment is horizontal (the is-th segment can be
horizontal or non-horizontal), then the transversal mutual impedance
between the is-th segment located in the p-th medium model layer
and the ks-th segment located in the s-th medium model layer can be
computed according to the following expression:

Z̄t
is,ks = f̄is,ks ·

33∑

k=1

C̄ks
k ·q Z̄t

is,kks
; is 6= ks (27)

where: qZ̄t
is,kks

is a quasistatic transversal impedance between the
is-th segment and the k-th image of the ks-th segment in the
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homogeneous unbounded medium, with κ̄ = κ̄p. All other variables
from Equation (27) have been previously defined.

The quasistatic transversal impedance between the is-th segment
and the k-th image of the ks-th segment in the homogeneous
unbounded medium, with κ̄ = κ̄p, can be computed from the following
expression [16]:

qZ̄t
is, kks

=
1

4 · π · κ̄p
· 1
`is · `ks

·
∫

Γis

∫

Γkks

1
R
· d`kks

· d`is (28)

The double integral in Equation (28) could be again analytically
solved. Furthermore, due to the fact that the majority of the
above introduced double integrals, involved in expressions for the
self and mutual longitudinal and transversal impedances, have known
analytical solution, here presented algorithm becomes very numerically
efficient. This is in turn due to the introduction of the attenuation-
phase shift factors, which circumvent the need for the time-consuming
numerical solution of Sommerfeld integrals.

6. GLOBAL SYSTEM OF LINEAR ALGEBRAIC
EQUATIONS

In the global system, segments are connected in global nodes, according
to the FET terminology [18]. For a set of connected segments in
multilayer medium, the global system of linear algebraic equations can
be written as follows [18]:

[
Ȳg

] · {Φ̄g

}
=

{
Īg

}
(29)

where:
[
Ȳg

]
is a global system admittance matrix (global nodal

admittance matrix);
{
Φ̄g

}
is an unknown global nodal potential vector

and
{
Īg

}
is a known global nodal current vector formed from the

currents applied on the conductors under consideration.
The assembly process on the local system admittance matrices

produces a global system admittance matrix. This is a standard
FET procedure [18]. The associated longitudinal and transversal local
system admittance matrices can be respectively written as follows:

[
Ȳ `

]
=

[
A`

]T
·
[
Z̄`

]−1
·
[
A`

]
(30)

[
Ȳ t

]
=

[
At

]T · [Z̄t
]−1 · [At

]
(31)

The global nodal potentials are obtained by solving the
system of linear algebraic Equation (29). Once the global nodal
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potentials become known, the local nodal potentials are obtained
straightforwardly, through the application of the incidence vector used
in the assembly process. Now, one can compute longitudinal and
transversal nodal currents, using the following matrix equations:

{
Īn`

}
=

[
Ȳ `

]
· {Φ̄

}
(32)

{
Īnt

}
=

[
Ȳ t

] · {Φ̄
}

(33)

These nodal currents are needed in computation of the
longitudinal and transversal segment currents. Connection between
longitudinal and transversal nodal currents and segment currents could
be expressed with the following matrix equations:

{
Ī`

}
=

([
A`

]T
)−1

·
{

Īn`
}

(34)

{
Īt

}
=

([
At

]T
)−1

· {Īnt
}

(35)

Once the current distribution on the segments (i.e., conductor
grid) has been obtained, one can proceed with the computation
of potential distribution, as well as distribution of the electric
and magnetic field intensities. Hence, a first step in the solution
procedure for the system of conductors in horizontally stratified
multilayer medium is the above presented computation of the current
distribution on those same conductors. A numerically efficient solution
is here obtained from the equally efficient solution of the potential
distribution, in the same multilayer medium, due to time-harmonic
current point source [11].

7. MODEL VALIDATION

Model validation will be carried out through the comparison of the
results obtained with here presented electromagnetic model with those
obtained by other state-of-the-art so-called full-wave electromagnetic
model. Hence, current distribution on the segments buried in two-layer
soil is computed and compared with results obtained with a full-wave
electromagnetic model, developed for the two-layer soil [8, 9]. Model
presented in [8, 9], constitutes an extension of the sophisticated model
presented in [5], and rigorously treats layer boundaries, by numerically
solving associated Sommerfeld integrals.

Here treated numerical example has been obtained from [8],
with the same geometry, conductor properties, soil properties and
disposition. This example firstly features a single 5 mm radius
horizontal copper conductor, buried at 0.75m depth in a two-layer
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soil, as depicted in Figure 3. Length of the conductor equals 10 m.
Characteristics of the soil layers are varied as explained in [8] and
presented in Table 1. It can be seen from Table 1 that two scenarios
have been treated (Case 1 and Case 2), each with two additional
variants (a and b).

Table 1 also illustrates the variation of the position of conductor
in the upper or bottom layers of the two-layer soil, which is achieved
by changing the depth of the first soil layer. It is hereafter assumed
that permittivity of both soil layers equals 10 in all treated examples,
as has been the case in [8].

Current of 1 + j0 A is injected into its one end, as depicted in
Figure 3. Distribution of the current along this 10m long conductor
for frequencies: 0.1MHz, 1 MHz and 10 MHz, for every combination of
conductor position (first or second soil layer) and every combination
of soil parameters form Table 1 is hereafter presented. This is in
accordance with the treatment carried out in [8].

Figure 4 presents a current magnitude distribution along the
10m long horizontal conductor at frequency of 0.1 MHz, for every
combination of conductor position and every combination of soil
parameters given in Table 1. Very little difference in current
distribution could be observed from Figure 4. This is in accordance
with conclusions derived in [8].

Figure 3. Single horizontal segment in two-layer soil.

Table 1. Parameters of both layers used in the analysis.

Upper layer
depth (m)

Upper layer
ρ (Ωm)

Bottom layer
ρ (Ωm)

Case 1 1.0 100
a) 1000
b) 10

Case 2 0.5
a) 1000

100
b) 10
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Figure 4. Current distribution along 10 m long conductor at 0.1MHz,
for every combination of soil parameters from Table 1.
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Figure 5. Current distribution along conductor at 1 MHz, for every
combination of soil parameters from Table 1.

Figures 5 and 6, at the same time, present current magnitude
distribution along this 10m long horizontal conductor at frequency
of 1MHz and 10 MHz, respectively. Current distributions are again
given for every combination of conductor position and soil parameters,
according to the data presented in Table 1.

By comparing Figures 4, 5 and 6 with those presented in [8], very
good agreement could be observed at every considered frequency up to
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Figure 6. Current distribution along 10 m conductor at 10 MHz, for
every combination of soil parameters from Table 1.

10MHz, in all treated soil parameter combinations.
Furthermore, impedance to ground of this 10 m long conductor

has been computed as well, for several different frequencies, ranging
up to 10 MHz. Obtained results are presented in Table 2. Again, good
agreement between results from Table 2 and those presented in [8]
could be established, for the entire considered frequency range.

It can be appreciated from the Table 2 that, in the low frequency
range, impedance to ground is almost frequency independent. It is
highly dependent on soil parameters of both soil layers. Influence of
neighboring layer parameters on impedance is especially strong in this
lower frequency range. On the other hand, in the high frequency range,
impedance becomes very frequency dependent. At the same time, its
dependence on both soil layer parameters weakens. This behavior is
in accordance with previously published work and conclusions derived
in [8].

Comparison of results presented in Table 2 with those published
in [8] reveals that the maximum error in the computed impedance
exists for the Case 1a). The estimated relative error for this case
amounts to 9% at the frequency of 1 MHz, and it grows to 15% at the
10MHz. For all other treated cases the relative errors are lower. As
far as the duration of the numerical computation is concerned, it is
extremely short for the treated cases. It amounts to under one second
for each of the treated cases. Hence, considering the errors inherent
in the interpretation of geoelectrical sounding data, compounded
by the errors in soil resistivity measurements (exacerbated by the
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Table 2. Impedance to ground of grounding conductor.

Impedance (Ω)
10 kHz 100 kHz 1MHz 10MHz

Case 1 a) 33.8 30.9 32.3 67.1
Case 1 b) 8.2 8.8 23.9 61.1
Case 2 a) 15.4 15.8 28.9 67.8
Case 2 b) 10.6 10.8 25.1 62.4

Figure 7. Disposition of energized and near-by passive conductor.

seasonal variations of soil parameters), this would seem satisfactory.
Moreover, the trade-of between the computation speed (obtained from
this approach) and its accuracy is well balanced.

Additionally, in order to demonstrate a complete electromagnetic
coupling between grounding grid conductors, a new passive near-by
copper conductor has been placed at 0.75 m depth and 0.5m apart from
the initially treated conductor. This new passive near-by conductor is
assumed to be 20m long [8]. Disposition (top view) of energized and
passive near-by conductor is graphically illustrated in Figure 7.

It can be seen from Figure 7 that conductors are parallel to each
other, buried at the same depth and in horizontal position, relative to
the earth surface. Near-by conductor has a 5mm radius as well. In
order to demonstrate the electromagnetic coupling between segments,
current distribution along this passive near-by conductor is computed,
for various frequencies and soil parameters.

Figure 8 presents a current magnitude distribution along the
passive near-by 20m long horizontal conductor at frequency of
0.1MHz, while Figure 9 at the same time presents the same distribution
but at frequency of 1 MHz. Current magnitude distributions from
Figures 8 and 9 are given for every combination of conductor positions
(both conductors in upper or lower soil layer) and every combination
of soil parameters, according to data presented in Table 1 [8].
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By comparing Figures 8 and 9 with those presented in [8], a
very good agreement could be again observed, for every considered
frequency and soil parameters combination from Table 1.

Hence, it can be stated that here developed electromagnetic model
for determining the current distribution on system of conductors (i.e.,
conductor grid) in horizontally stratified multilayer medium could be
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Figure 8. Current distribution along 20 m passive near-by conductor
at 0.1 MHz, for every combination of soil parameters from Table 1.
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Figure 9. Current distribution along 20 m passive near-by conductor
at 1 MHz, for every combination of soil parameters from Table 1.
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successfully applied in the mentioned frequency range. This frequency
range is in-turn often associated with the first negative lightning stroke
currents [21].

8. CONCLUSION

This paper presented a novel time-harmonic electromagnetic model for
determining the current distribution on conductor grid in horizontally
stratified multilayer medium. This model could be seen as a
cornerstone of the wider electromagnetic model for the frequency-
domain transient analysis of conductor grid in horizontally stratified
multilayer medium. Complete electromagnetic coupling between
conductor segments has been taken into account. Numerical solution
of Sommerfeld integrals has been avoided through an approximation
of the attenuation and phase shift effects. This fact, along with the
fact that majority of integrals involved in computation of the self and
mutual impedances could be analytically solved, has assured a high
numerical efficiency of the presented model.

It should be accentuated that here presented electromagnetic
model straightforwardly interconnects segments at their connection
points, which is due to the application of the assembly procedure
of the finite element technique. Hence, parallel and perpendicular
segments are equally treated, which is not the case in other methods
(i.e., there is no need for overlapping of segments in their connecting
points). Furthermore, extension from the single conductor case (or
a two-conductor system) to the full conductor grid, with arbitrary
number and position of conductors, is a straightforward task.

Validation of the here developed model is carried out with com-
parison of results with those obtained by a full-wave electromagnetic
model, developed for the two-layer soil. Very good agreement between
results presented here and those obtained with a full-wave model has
been found, in various examples of two-layer soil model parameters and
at various treated frequencies. This in fact acknowledges an important
part of the frequency range in which the here presented electromagnetic
model could be applied.

Future research on this electromagnetic model will pursue the
implementation of the Fourier transform for its extension into the
frequency-domain transient analysis. Furthermore, determination
of the potential distribution, as well as the electromagnetic field
distribution, due to energized system of conductors in horizontally
stratified multilayer medium will be pursued.
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