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Abstract—This paper presents a novel stochastic microwave method
for the detection, location and reconstruction of electric properties
of breast cancer in a simplified breast phantom. The method is
based on the inversion of time domain data. The problem is recast
as an optimization one by defining a suitable cost function which is
then minimized using an efficient evolutionary algorithm. Selected
numerical simulations of a simplified three dimensional breast model
and a realistic numerical phantom based on magnetic resonance images
(MRIs) are carried out to assess the capabilities of the method. The
results obtained show that the proposed method is able to reconstruct
the properties of a tumor-like inclusion to a reasonable degree of
accuracy.

1. INTRODUCTION

Breast cancer is one of the most common causes of death among
women. The early detection of tumors and other tissues anomalies
can potentially reduce mortality and increase the long term survival of
patients and effectiveness of clinical treatments. X-ray mammography
has an established role in breast cancer screening and diagnosis and
has been shown to contribute to a reduction in breast cancer specific
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mortality [1]. However, X-ray mammography performs badly in the
radio graphically dense breast, typical among pre menopausal women.
While other expensive diagnosis techniques such as contrast-enhanced
breast magnetic resonance and positron emission tomography exist,
cheaper methods for the screening of younger women, who are
at risk for breast cancer, are desirable. In the last decade the
use of medical microwave imaging has become a promising new
technique for breast-cancer screening. Microwave imaging could be
a valid supplement or alternative to X-ray mammography due the
non-ionizing nature of microwave radiation and superior electrical
contrast at microwave frequencies. A number of different research
groups have proposed microwave-based system prototypes for breast
cancer detection [2–6], and a number of different active microwave
imaging techniques are currently under development. In [7–11] ultra-
wideband (UWB) radar imaging systems, based on the reflected
UWB signals, have been proposed which determine the location of
scatterers within the breast. Other approaches are aimed at the
reconstruction of the complete dielectric properties of the breast
tissues using a forward and inverse scattering models, based on both
frequency [12–14] and time domain [15–18]. In general, the problems
associated with microwave tomography are low resolution, the required
a priori information, and the high computational resources required
especially when three dimensional scenarios are considered. To solve
the inverse problem, local searching techniques such as gradient
based methods are usually considered to reduce the computational
burden, but they can be trapped in local minima leading to false
solutions. Global optimization techniques such as Genetic Algorithm
(GA) [19, 20], Differential Evolution (DE) [21] and Particle Swarm
Optimizer (PSO) [22, 23] can avoid the problem of local minima, but
they can lead to a dramatic increase in the computational burden,
as all of these imaging approaches require realistic numerical breast
phantoms able to accurately model the geometrical properties of
the breast, the inhomogeneities of the structure and the dispersive
properties of the breast tissues. In this paper, we describe a
method for the detection, localization and reconstruction of unknown
electrical characteristics (permittivity, and conductivity) of a cancer-
like inclusion in a homogeneous breast phantom and in a realistic
numerical phantom. We use scattered time domain data and the
original inverse problem is recast as one of optimization by defining
a suitable cost function. The cost function is then minimized using
a stochastic evolutionary algorithm, known as the bee algorithm [24],
avoiding the possibility of being trapped by local minima. To reduce
the computational time a parallel implementation of the algorithm [25]
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is used. The method is assessed by considering a simple three
dimensional breast model and a realistic numerical phantom based on
MRIs. The positions of the transmitting /receiving probes are chosen
in order to accurately model the experimental prototype developed
in [10]. The paper is structured as follows: after a general formulation
of the time domain scattering problem reported (Section 2), the
procedural schema of the proposed evolutionary algorithm is presented
(Section 3). Section 4 reports some selected numerical simulations
concerning a simple three-dimensional breast model and the MRIs
based model. Finally in Section 5, conclusions are drawn, and areas
for future work are examined.

2. MATHEMATICAL FORMULATION

Let us consider the three dimensional model of human breast shown in
Figure 1. The breast is represented as a hemisphere of radius Rb, and
the chest of the patient with a tissue layer of thickness Tc. The breast is
surrounded by 31 probes which can act as transmitters or as receivers.
The breast is illuminated with a wide band pulse transmitted by one of
the probes, while the measured field is collected by the remaining 30.
The topology of the array mimics the experimental system developed
by [4]. We assume the breast is immersed in a coupling liquid which
completely fills the investigation scenario. The goal of the method

Figure 1. The three dimensional hemispherical breast model.
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is to reconstruct the characteristics of the malignant tissue namely
the position of the center. The diameter and electric characteristics
starting from the time domain scattered field are collected at the
receiving probes. A transmission line matrix TLM solver [26] is used
to produce synthetic measured and trial data. To apply the stochastic
optimization method and solve the above inverse scattering problem, a
cost function has to be formulated to estimate the errors between the
scattering data, obtained from the actual configuration and the trial
solution. The following relation represents the simplest expression for
the error functional equation:

Φ(x) =
∫ T

t=0

G∑

g=1

R∑

r=1

∣∣∣E(z)
g,r (x, t)− E

(z),act
g,r (t)

∣∣∣
2

∣∣∣E(z),act
g,r (t)

∣∣∣
2 dt (1)

where x = {xt, yt, zt, Dt, εt, σt} is a vector of unknowns which define
the characteristics of the malignant tissue, E

(z)
g,r (x, t) and E

(z)act
g,r (t) are

the time domain electric fields for the reference scenario and for a
trial solution, collected at the receiving probe r when transmitting
a pulse from probe g. The minimization of (1) is obtained by
constructing a sequence of trial solutions with k = 1, . . . , K, being
k the iteration number, which converges toward the optimal solution
xopt = arg{min[Φ(x)]}.

3. THE BEE ALGORITHM

This section gives a brief description of the artificial bee colony
optimizer and its customization to the problem at hand. A more
detailed description of the algorithm can be found in the following
references. Intelligent swarm-based optimization algorithms [27] such
as Genetic Algorithm (GA) [19], Differential Evolution (DE) [21], Ant
Colony Optimization (ACO) algorithm [28] and the Particle Swarm
Optimizer (PSO) [22] algorithm, mimic behaviors seen in nature to
drive a search towards the optimal solution in a multidimensional
solution space. Thanks to their capabilities to avoid local minima,
they have been efficiently used to solve complex practical problems,
including microwave imaging problems. Recently, a new intelligent
swarm search algorithm, called the Artificial Bee Colony Algorithm
(ABC), has been proposed for solving optimization problems [24].
The ABC algorithm is inspired by the food foraging behavior of
swarms of honey bees and it seems to outperform other optimization
techniques [29, 30]. In the ABC algorithm, the colony of artificial bees
is composed of three groups of bees: employed bees, onlookers and
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scouts. A bee waiting on the dance area to make a decision about
choosing a food source, is called an onlooker, the bee going to the
food source it visited previously is called an employed bee, and a bee
carrying out a new random search is called a scout. In the following
these three main processes, which govern the ABC algorithm, will be
discussed. In order to describe the ABC algorithm, let us consider a
colony Π of C bees

Π =
{

Bo; o = 1, . . . , O =
C

2

}
∪

{
Be; e = 1, . . . , E =

C

2

}
(2)

where O and E are the number of onlooker and employed bees
respectively. In this implementation we consider the first half of the
colony as employed artificial bees and the second half as onlookers.
For each employed bee a food source position, which represents a trial
solution of the optimization problem, is defined as follows:

xe
k =

{
xe,j

k ; j = 1, . . . , J
}

(3)

where J is the number of unknowns, and k the iteration number.
In the ABC algorithm, each cycle of the search consists of three
steps: sending the employed bees to the food sources; measuring the
amount of food; selecting the food sources investigated by the onlookers
after sharing the information found by employed bees. The iterative
procedure is summarized in the following:

- Initialization. A population of Xk = {xe
k; e = 1, . . . , C

2 } positions
is randomly generated. As stated above a food position represents
a trial solution of the optimization problem, and the amount
of food corresponds to the fitness of the associated solution.
The food positions are ranked according to their fitness value
computed by considering the cost function for the problem at
hand, φe

k = φ{xe
k}, e = 1, . . . , C

2 . The employed bees then
memorize the position of their specific food source, while the
onlooker bees memorize all the food sources. The following steps
will be iterated until the requirements are met.

- Onlookers food source selections. Onlookers select a food source
by using a probability based process. For each food source they
compute a probability value according the following relation:

pe =
φe {xe

k}∑ c
2
e=1 φ

{
xe

k

} (4)

where φe
k is the fitness of the e-th food source. each food source

the associate onlooker bee chooses a source food h, from all the
food sources, according the probability estimated with (4).
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- Employed bees food sources improvements. To produce new food
position from the old one, the employed bees use the following
update equation:

xe,j
(k+1) = xe,j

k +Re,j(xe,j
k −xh,j

k ) j = 1, . . . , J e = 1, . . . ,
C

2
(5)

where e is the food source index, h is the source position chosen by
the onlooker bee, and Re,j is a random number generator between
0 and 1.

- Scouts explorations. If a solution representing a food source is not
improved after a predetermined maximum number of iterations
(Lmax), then that food source is abandoned by its employed bee.
The bee is converted into a scout which, is placed at a randomly
generated new food source. Lmax is known as the food source limit
it is an important control parameter of the algorithm. A schematic
which summarizes the algorithm is reported in Figure 2.
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Table 1. Dielectric properties of the homogeneous breast tissue used
in the considered three dimensional numerical model.

Tissue ε σ (S/m)
Coupling Liquid 9.0 0.200

Chest wall 20.0 0.297
Tumour 50.0 0.794

Normal Breast 20.0 0.297

4. NUMERICAL RESULTS

In this section, the reconstruction methodology described in the
previous section is assessed by numerical simulations. Three
dimensional numerical breast models are considered. The investigation
domain is a rectangular domain of 150× 150× 100mm3. The chest of
the patient is simulated with a layer of thickness Tc = 20 mm and the
breast is modeled with a hemisphere of diameter 2 ∗ Rb = 150mm.
We assume the breast immersed in a coupling liquid (εback = 9,
σback = 0.2) which completely fills the investigation scenario. The
dielectric characteristics of the different components of the considered
breast model are summarized in Table 1 and it is assumed that
the dielectric characteristic of the tissues are constant in the whole
frequency range of the considered interrogating pulse [31, 32].

A TLM-based solver [26] is used to produce synthetic measured
and trial data. In order to avoid committing the inverse crime the
measured field data for the direct problem is synthetically generated
using a grid with cell size ∆x = ∆y = ∆z = 0.5mm, the inverse
problem is characterized with a grid size of ∆x = ∆y = ∆z = 0.7mm.
In particular the developed model consider 4.5 and 3.6 millions of
cells for the direct and inverse problem respectively. The direct and
inverse process considere 2000 time steps with a ∆t = 1.6 × 10−12 s.
To limit the computational burden in all experiments we use only
5 views. For each view one probe is used as transmitter while the
remaining 30 probes act as receivers, to collect the scattered data. In
order to simulate a realistic environment, noise has been added to the
numerical data, in particular an AWGN noise of SNR = 10 dB has
been used [15, 16]. We consider the transmitter to be a point source,
polarized along the z-axis, a single cycle sinusoid pulse with a 3 dB
bandwidth of 3 GHz and a center frequency of 2GHz has been used for
the excitation Figure 3.

The parameters of the ABC were chosen after a calibration
process, and the initial population chosen in a completely random
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way. An optimum population of C = 10 bees have been considered
(five onlookers and five employed chosen in a completely random
way), and Lmax was set to 5. Due to the high spatial resolution
required, the computational burden of the three dimensional geometry
being considered is quite high. For each view the time required to
estimate the time domain scattering data on a personal computer
equipped with an AMD Athlon (TM) 6000+ quad-core processor and
4GB RAM is about 35minutes. For the number of views and the
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chosen population dimension, each iteration the inversion algorithm
will take about 15 hours. In order to reduce the computational time
the inversion procedure has been implemented as a parallel process
following the guidelines reported in [25]. A cluster of five PC was
used, reducing the computational time for a single iteration to about
3.75 hours. In the first example, we consider a breast model with a
Dt = 10 mm diameter malignant inclusion of (εt = 50, σt = 0.794)
placed at xt = yt = 0 mm, zt = −51mm. The reconstruction
procedure described in the previous sections has been applied in order
to localize the coordinates of the tumor center, the dimensions, and
to reconstruct the dielectric parameters, which are important in order
to identify the nature of the tissue. The iterative procedure reaches a
stationary condition after about 20 iterations. The results are reported
in Figures 4 and 5. Figure 4 shows the reconstruction of the tumor
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center coordinates. The blue circle represents the actual coordinates
of the tumor, and the red line the trajectory of the tumor center
derived from the best solution of the colony during the minimization
process. In Figure 4 it can be seen that after few iterations the
tumor is located with a satisfactory degree of accuracy, although
the starting point (completely randomly chosen) is rather distant
from the exact position of the tumor. Figures 5(a) and (b) show
the reconstructed values of the electric permittivity and conductivity
versus the iteration number k. At the end of the minimization process
the relative error is less than 5% for the conductivity and less than
6% for the permittivity. Also the estimation of the tumor dimension
versus the iteration number, reported in Figure 5(c), is retrieved with
a satisfactory degree of accuracy; at the end of the iterative procedure
the relative error in the tumor size is less than 2mm. In the second
experiment, the diameter of the malignant inclusion is varied between
5mm and 20 mm. While all other parameters are the same as in the
previous experiment. Figure 6(a) shows the quantitative error in the
reconstructed permittivity values χeps and conductivity χs. It can be
seen that for inclusions above 10mm the error is never greater than
10% in χeps and 15% for χs. While for smaller inclusions the error
is no greater than 25%. Figure 6(b) shows the quantitative error in
the tumor size and center position. Concerning the estimation of the
tumor size we obtain an absolute error of about 3 mm for tumors with
diameters from 10 mm up to 20 mm while for a diameter of 0.5 mm the
absolute error fall down to 1 mm. The localization capabilities of the
method are quite good, the coordinate of the tumor center are retrieved
with an error less than 10% for all tumor dimensions. The estimation
of the tumor diameter is also satisfactory, the 20% error in the 5mm
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Table 2. Breast model with a single malignant inclusions.
comparisons of different stochastic optimizers.

GA PSO DE ABC
xb 20.21 5.31 2.21 0.30
yb −25.32 20.21 −1.67 0.42
zb −14.51 −22.12 −20.21 −24.22
Dt 25.32 12.43 12.31 8.12
ε 38.21 41.23 41.30 48.81
σ 0.455 0.531 0.554 0.623

Table 3. Breast model with two inclusions. Localization, dimension
estimation, and retrieved electric parameters of the malignant
inclusion. The dimensions are in mm.

Tissues xb yb zb Dt ε σ (S/m)

Actual Malignant 40.0 40.0 −30.0 10.0 50.0 0.794

Actual Fibro 20.0 20.0 −30.0 10.0 25.0 0.350

Retrieved Malignant 25.3 21.2 −24.3 23.1 40.1 0.604

reconstruction representing an absolute error of only 1 mm. For
the sake of comparisons Table 2 shows the reconstructed parameters
obtained by applying inversion procedure based on a standard genetic
algorithm (GA), on a particle swarm (PSO) based procedure, and on
the differential evolution (DE) based approach.

All the considered stochastic algorithms have been initialized with
the same population consisting of 10 individuals, and the maximum
number of considered iteration was fixed to K = 25. As far as the
GA, PSO and DE parameters the following parameters configuration
has been considered: Pc = 0.9 (crossover probability) and Pm = 0.01
(mutation probability) for the GA, Pc = 0.5 (crossover probability)
and Q = 0.8 for the DE, C1 = C2 = 2.0 (acceleration terms) and
w = 0.4 (constant inertial weight) for the PSO. The worst results
are obtained by the GA algorithm which reach a stationary condition
after about five iterations. The PSO and the DE obtain similar results,
however as can be observed from the results reported in Table 2 the
Bee algorithm outperforms the other considered stochastic algorithms.
As the third and last example, we consider a breast model with two
different inclusions, representing a malignant tumor and a benign
inclusion, consisting of fibro glandular tissue. The two inclusions
have the same diameter of 10 mm, and they are separated by 10mm.
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It is worth noticed that the proposed method is not able to detect
multiple targets, we decide to consider this multi targets geometry
for the sake of comparison and in order to show the limitation of
the current version of the inversion procedure. The malignant tissue
(εt = 50, σt = 0.794) and the fibro glandular inclusion (εfibro = 25,
σfibro = 0.25) are placed at xt = yt = 40 mm, zt = −30mm and
xfibro = yfibro = 20 mm, zfibro = −30mm respectively. Table 3
shows the qualitative and quantitative parameters reconstructed after
the minimization procedure. It can be seen that as expected the
method was not able to correctly identify the malignant tissues, in
fact the reconstructed object has an area two times larger than the
actual dimension of the malignant tissues and is located in the middle
of the two inclusions, despite the not so high accuracy the method
localized as malignant inclusion a spatial region very close to the
real malignant tissue. To assess the capabilities of the proposed
methodology in a realistic scenario, the last experiment deal with
a realistic numerical breast phantom based on magnetic resonance
images (MRI). In particular a numerical phantom characterized with
less than 25% of glandular tissue, a Class 1 model according to the
convention of the American College of Radiology, has been used. The
phantom comes from the online database of anatomically realistic
numerical breast phantoms provided by the University of Wisconsin
Madison. In particular the ID = 071904 phantom, fibro-connettive
tissues of class 1.2 and 1.3, and a cell size of ∆x = ∆y = ∆z = 0.5mm
have been considered. Figure 7 shows the realistic three dimensional
breast model, the blue dots represent the fibro-glandular tissue. To
take into account the normal heterogeneous nature of the breast the
electric characteristics of each cell representing the fibro-glandular
tissue has been randomly chosen in the range 25 < ε < 30 for the
dielectric permittivity and 0.350 < σ < 0.450 for the conductivity. As
in the first example a single Dt = 10mm diameter malignant inclusion
of (εt = 50, σt = 0.794) placed at xt = yt = 0, zt = −51mm
has been considered. The same algorithm parameters and the same
cluster of machine of the previous experiments have been considered.
At the end of the iterative procedure stopped after K = 30 iterations,
the method identify an area of dimension Dr = 20mm located at
xr = −10mm, yr = −15 mm, zr = −75 mm. As can be noticed the
malignant inclusion has been localized and shaped with a satisfactory
degree of accuracy. Also the retrieved electric characteristics (εr = 38,
σt = 520) of the malignant inclusion are retrieved with a satisfactory
degree of accuracy despite the heterogeneous structure of the breast.
Also in this example the method is able to identify with a reasonable
degree of accuracy the malignant tissue, however the sospicious area



Progress In Electromagnetics Research M, Vol. 18, 2011 191

Fibroglandular

Figure 7. The three dimensional realistic numerical breast model
based on real MRI data. The green and blue dots show the asimmetric
breast geometry and the fibroglandular/fibroconnective inclusions
respectively.

is very close to the actual position of the malignant inclusion. It is
hoped that by combining this approach with a clustering methods [33]
and a gradient based solver (in order to enhance the convergence ratio)
the inversion procedure will be able to resolve and correctly identify
the malignant tissue. However it is worth noticed that due to the no
free lunch theorem [34] one can customize an algorithm or a given
methodology in order to obtain superior results only for a class of
problems, a superior method able to works on the class of all possible
problems do not exist.

5. CONCLUSION

A microwave imaging method was used to successfully detect tumors
embedded in a simple breast model. The time domain inversion
problem has been solved by defining a suitable cost function minimized
by means of an efficient evolutionary algorithm, namely the artificial
bee colony optimizer. The results demonstrate the potential of
the proposed method in a simplified as well as realistic breast
imaging scenario. Future work will be devoted to extending the
method to imaging not only to the reconstruction of the malignant
tissue characteristics, but also to the reconstruction of the breast
characteristics in more realistic phantoms.
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