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Abstract—This paper is a deep analysis of oscillator plane reference
design methods. It defines applicable conditions and the expected
accuracy that can be archived with these methods. Some examples
will be shown to illustrate wrong solutions that the use of linear
reference plane methods can produce. The wrong solutions will be
justified by necessary conditions for proper use of these methods. The
strengths and weaknesses of the, widely used, plane reference methods
are described in this paper. Several classic topologies of microwave
oscillators, as Grounded Collector Tuned Bases(GCTB) and Grounded
Bases Tuned Oscillator (GBTO), are used to illustrate these results and
the additional required conditions.

1. INTRODUCTION

The oscillators are fundamental elements for all RF and microwave
systems, as Radar systems [1]. They are one of the most problematic
circuits in design process. Nowadays, the linear simulation, as
first approximation, is widely used for RF and microwave oscillator
design [2–6]. Nonlinear simulation needs more computational
resources, and the non-linear models for active devices must be
available. These nonlinear models are not always available, and in some
cases they do not have enough accuracy [7]. However, it is necessary,
before starting a nonlinear simulation, to have a good approximation
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of the frequency and start-up conditions. To conclude, in nonlinear
simulation it is desirable to have a good background in nonlinear
simulation and nonlinear approximation of these circuits [8]. In some
cases, knowledge in nonlinear solution stability is necessary [9, 10],
specially if harmonic balance is used [11].

One of the most important reasons for using the linear simulation
in oscillator design is that it is quicker and simpler than the nonlinear
and that it is suitable for tuning the circuit [12, 13]. It is only necessary
for these linear simulations to have the S parameters or the lineal
model of the active device. These linear models are much easier to
get than the non linear ones. A simple linear oscillator model and
quick simulation give the chance of looking for new topologies. On
the other hand, the linear simulation can only predict the oscillation
frequency, gain margin and oscillator Q (quality factor), but not the
output power, phase noise and harmonic levels. Therefore, nowadays
oscillator design methodology consists in a first linear simulation step,
followed by harmonic balance and transient simulations.

Linear oscillator analysis design techniques can be divided
into two groups: Loop gain [3, 14] and reference plane [2, 15–17].
Negative resistance, negative conductance and reflection coefficient,
for microwave circuits, are members of the second group. Each group
has numerous advantages and disadvantages. This paper is focused on
the reference plane methods. The problems of this group of methods,
the possible solutions and the conditions of use will be described. At
the first stage, the methods of the plane reference will be described. At
the second stage, the use of these methods will be illustrated with the
classical topologies as Grounded Collector Tuned Oscillator (GCTB)
and Grounded Bases Tuned Oscillator (GBTC). Later, conclusions for
the accurate and proper use of these design methods will be exposed.

2. REFERENCE PLANE METHODS

This section describes the principles of the linear oscillator analysis and
the main strengths, weaknesses and limitations. Any oscillator may be
analyzed using Z, Y or Γ network functions. The network functions
include all system poles, but general transfer function does not include
them. The necessary condition for a circuit to be a proper oscillator is
that it must have a pair of complex conjugated poles on the right half
plane (RHP). Any pole factorized network function will have (1) time
response, for the p order pole with k multiplicity.

L−1

[
ak

(s− sp)
k

]
=

ak · tk−1 · esp·t

(k − 1)!
(1)



Progress In Electromagnetics Research, Vol. 118, 2011 91

Figure 1. Oscillator as two subsystems.

It is also possible to demonstrate that if there is more than a
pair of poles on the RHP the time solution will be a quasi-periodic
solution, which is not desirable for an oscillator. If the pair of poles
have a negative real part, the time solution will be a dumped sine.

The traditional drawing way is conditioned in order to find the
resonant structure as a dipole isolated from the negative Z/Y/Γ
generator. The reference plane can be any (Fig. 1), without a real
division between resonator and generator, as the denominator of any
network function has all the information about system poles. But
using one of the traditional divisions, Z/Y/Γ, simplifies the necessary
conditions to assure a correct linear analysis, so these analyses will be
used in the following sections. As we will see in the next sections, any
of these traditional methods are really the application of the method
of Nyquist for the detection of poles on the RHP of the used network
functions.

2.1. Admittance Method (Impedance Network Function)

The negative conductance method divides the oscillator into two
sub-circuits: negative conductance generator and resonator [15, 18].
There is a left sub-circuit that is the resonator and a right sub-
circuit that is the active device (with the required passive elements
for its proper operation) in Fig. 2. This active device will work as
negative conductance generator. With the first harmonic Kurokawa
approximation [15], the parallel resonator fixes the oscillator frequency,
and the negative generator offsets the resonator looses. This is the
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Figure 2. Negative conductance method conceptual diagram.

classic view of negative Z/Y/Γ oscillators. This interpretation is
intuitive and easy to understand, and it is widely used in literature. A
more formal and powerful, but less intuitive, is the network function.
The network function can be obtained by injecting current into the
network with an ideal generator at the plane that divides the circuit.
The obtained poles result from the addition of the two sub-circuits.

With Fig. 2 as reference, the impedance network function is
defined by (2), where Ig is the external current; V is the circuit
response; and Z is the inverse of the admittances of Fig. 2. The
circuit is a proper oscillator if the network function has only a pair
of conjugated complex poles on the RHP.

V = Z · Ig

Z =
1

Yres + Yosc

(2)

The poles of the network function are defined by the zeros of (3),
and it is the characteristic function of the circuit.

YT = Yres + Yosc = 0 (3)

The classical oscillator start-up condition, = (YT ) = = (Yres + Yosc)
= 0 and < (YT ) = < (Yres + Yosc) < 0, is a first harmonic approxima-
tion of the descriptive function as defined by Kurokawa [15], and this
will be shown in the next paragraphs. It is not sufficient condition to
guarantee the start-up. Once the start-up condition is satisfied, the
oscillation stability condition and the minimum noise are defined in
Table 1. The variable V is the voltage at the plane that separates
the active from the passive sub-circuit. This approximation considers
that the voltage is only from the fundamental frequency and that ω
is the frequency, then V0 and ω0 are the voltage and frequency at the
oscillation condition. But this formal representation is only an ap-
proximation that is more accurate when V has less harmonic tones,
and it is more a pure tone signal. The definition of the division plane
between the active sub-circuit and the resonator is not arbitrary. The
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Table 1. Admittance oscillation conditions.

Parameter Definition

Characteristic Equation YT (V, ω) = Yosc (V ) + Yres (ω) = 0

Oscillation Condition YT (V0, ω0) = Yosc (V0) + Yres (ω0) = 0

Stability
−Yosc (V ) with Yres (ω)

cross into a clockwise angle from 0 to π

Minimum noise
−Yosc (V ) with Yres (ω)

cross into a π
2

clockwise angle

Figure 3. Negative impedance method conceptual diagram.

proper point makes the real spectrum of V to be near the predicted by
linear analysis. The equations in Table 1 also consider that the varia-
tion of the negative impedance circuit is small with the frequency; this
variation is smaller if the resonant circuit on the left side of the divi-
sion plane has a high Q. The conditions of Table 1 are automatically
fulfilled if the resonator is a parallel resonator. The use of parallel res-
onators has been traditionally recommended for generator of negative
conductance.

2.2. Impedance Method (Admittance Network Function)

As in Section 2.1, the circuit is divided into two sub-circuits, a
resonator on the left and an active device (with the associated passive
devices) on the right (see Fig. 3). The active device works as a negative
resistance generator when the first harmonic premise is considered [15].

The network function for this configuration is (4).

I = Y · Vg

Y =
1

Zres + Zosc

(4)

In (4), Vg is the external voltage; I is the circuit response; and Y
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Table 2. Impedance oscillation conditions.

Parameter Definition

Characteristic Equation ZT (I, ω) = Zosc (I) + Zres (ω) = 0

Oscillation Condition ZT (I0, ω0) = Zosc (I0) + Zres (ω0) = 0

Stability
−Zosc (I) with Zres (ω)

cross into a clockwise angle from 0 to π

Minimum noise
−Zosc (I) with Zres (ω)

cross into a π
2

clockwise angle

is the inverse of the sum of the impedances of Fig. 3.
The poles of the network function are defined by the zeros of (5),

and it is the characteristic function of the circuit. The circuit is a
proper oscillator if the network function has only a pair of conjugated
complex poles on the RHP, and they are the zeros of the characteristic
function.

ZT = Zres + Zosc = 0 (5)

The widely used start-up condition = (ZT ) = = (Zres + Zosc) = 0
and < (ZT ) = < (Zres + Zosc) < 0 shall be complemented with the
equations in Table 2 for the first harmonic approximation (this is not
sufficient condition to guarantee the start-up). The extended operation
considerations are described in Table 2. The variable I is the current
between the two sub-circuits at the separation plane. Considering only
the first harmonic of the signal, ω is the frequency, and I0 and ω0

are the current and oscillation frequency at state oscillation condition.
The considerations for the division planes made in 2.1 for admittances
are now applicable to impedances, as the previous oscillator. The
conditions of Table 2 are automatically fulfilled if the resonator is a
serial resonator. The use of serial resonators has been traditionally
recommended for generators of negative impedance.

2.3. Reflection Coefficient Method (Reflection Coefficient
Network Function)

The last case of division plane is the reflection coefficients. A plane
is defined; the resonant circuit is placed on the left and the active
device (with its associated passive components) on the right. The
active device acts as a reflection generator with a Γ that varies with ag

as shown in Fig. 4. The approximation at the first harmonic defined
by Kurokawa [15] is necessary for the following considerations as in
previous cases.
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Figure 4. Reflection method conceptual diagram.

Table 3. Reflection coefficient oscillation conditions.

Parameter Definition

Characteristic Equation ΓT (A, ω) = − 1
Γosc(A)

+ Γres (ω) = 0

Oscillation Condition ΓT (A0, ω0) = − 1
Γosc(A0)

+ Γres (ω0) = 0

Stability
1

Γosc(A)
with Γres (ω)

cross into a clockwise angle from 0 to π

Minimum noise
1

Γosc(A)
with Γres (ω)

cross into a π
2

clockwise angle

The network function for reflection coefficient is (6).

bosc =
Γosc

1− Γosc · Γres
· ag = Γ · ag (6)

In (6), Γ is a function of the reflection coefficients of the two sub-
circuits [17]; ag is the incident wave of the generator; and bosc is the
reflected wave of the active device. The condition for an oscillation is
satisfied if Γ has a pair of conjugated complex poles on the RHP. The
poles of Γ are defined by the zeros of the characteristic Equation (7).

ΓT = 1− Γosc · Γres = 0 (7)

It must be guaranteed that Γosc does not have any pole. The
extended operation considerations are described in Table 3. The
variable A is the incident wave at the reference plane. Considering
only the first harmonic of the signal, ω is the frequency, and A0 and
ω0 are the incident wave and oscillation frequency at state oscillation
condition. The considerations for the division planes proposed for
admittances and impedances, in the previous sections, are applicable
to this case.
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It is important to point out that it seems to be more appropriate
to use the Z or Y network methods than the reflection coefficient
network function, even though the reflection coefficient network
function provides the oscillator poles and zeros position. The use
of the reflection coefficient network function is less intuitive, and its
compression behavior is more complex than that for other cases. This
method has important practical issues; the reflection coefficient was
easily measured in the pass when good simulation tools were not
available.

3. CONDITIONS FOR PROPER USE OF REFERENCE
PLANE METHODS

The unconditional validity of the reference plane methods is widely
accepted [6, 19, 20]. But these methods cannot be unconditionally
used. Their formal validity to predict the presence of a pair of poles
on the RHP must be defined. The presence of these two poles is the
condition for the proper start-up of an oscillator. This section covers
the additional conditions for guaranteeing that it is appropriate to use
the linear approximation.

The classical admittance, impedance and reflection coefficient
oscillator start-up analysis conditions previously described are
summarized in Table 4.

Table 4. Start-up conditions for reference plane oscillator analysis
method.

Impedance Admittance Reflection Coefficent

Rosc (ω) + Rres (ω) < 0 Gosc (ω) + Gres (ω) < 0 | Γosc (ω) | · | Γres (ω) |> 1

Xosc (ω) + Xres (ω) = 0 Bosc (ω) + Bres (ω) = 0 Φosc (ω) + Φres (ω) = 0

In a general analysis, Table 4 conditions are neither necessary nor
sufficient to guarantee the oscillation start-up. They have been defined
at oscillation frequency and are particularizations of the Nyquist
analysis. The necessary and sufficient condition for the oscillator start-
up is the existence of one unique pair of conjugated complex poles on
the RHP. As the access to the explicit S domain (Laplace’s domain)
functions is difficult and sometimes impossible for MW and RF circuits,
the analysis can be performed by means of Nyquist using the function
frequency response. This analysis principle has been taken as the base
for the extended practice of using a series resonant circuit in series
with a negative impedance generator, and a parallel resonant circuit
in parallel with a negative admittance generator.
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The previous considerations are valid if they are combined with
some additional conditions as the zero cross only occurs at one
frequency, and the imaginary part of the characteristic function
changes from negative to positive on its crossing. This is true for simple
circuits as the serial resonator in series with a negative resistance and
the parallel resonator in parallel with a negative admittance. This
belief has been fed with the use of simple examples to assure the validity
of Tables 1, 2 and 3.

Talking about these concepts, the work of Jackson [17] is very
interesting. Jackson concludes that the classical reflection coefficient
conditions for oscillation are not sufficient neither necessary for the
oscillator start-up. The sufficient and necessary condition for oscillator
start-up is the Nyquist criteria verification, assuring that the right sub-
circuit (active part) does not have any poles on the RHP. These can
be verified for (8) and (9).

| Γosc (ω) | · | Γres (ω) |> 1
Φosc (ω) + Φres (ω) = 0 (8)

| Γosc (ω) | · | Γres (ω) |< 1
Φosc (ω) + Φres (ω) = 0 (9)

It is also possible to expand the zeros of characteristic function
(reflection coefficient, impedance or admittance); all their zeros are
the same. In this way, it is demonstrated that all the methods are
equivalent and that the poles of the system are unique. The reflection
coefficient is (10).

F (s) = 1− Γosc (s) · Γres (s) (10)

If the impedances and admittances are defined as (11) and (12).

Zres (s) =
NL (s)
DL (s)

and Zosc (s) =
Nd (s)
Dd (s)

(11)

Yres (s) =
DL (s)
NL (s)

and Yosc (s) =
Dd (s)
Nd (s)

(12)

The expansion of admittances or impedances, as functions of
variable s, is (13).

F (s) = 1− Zres − Z0

Zres + Z0
· Zosc − Z0

Zosc + Z0

F (s) =

(NL + Z0 ·DL) · (Nd + Z0 ·Dd)
− (NL − Z0 ·DL) · (Nd − Z0 ·Dd)
(NL + Z0 ·DL) · (Nd − Z0 ·Dd)

(13)
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When Z0 is a high impedance then (13) is simplified to (14).

F (s) ≈ 2
Z0

· (Zres + Zosc) (14)

As 2
Z0

is a constant, it does not affect the position (semi-plane)
of the poles and zeros of the function F (s). As this function is
studied by means of Nyquist there is no any difference between
F (s) = 2

Z0
(Zres + Zosc) and F (s) = Zres+Zosc, and the F (s) function

is simplified as (15).

F (s) ≈ Nd ·DL + NL ·Dd

DL ·Ds
(15)

When Z0 is a small impedance then (13) is simplified to (16).

F (s) ≈ 2 · Z0 · Zres + Zosc

Zres · Zosc
(16)

By means of a similar process, with the exclusion of the constant
2 · Z0, (16) is expanded as (17).

F (s) ≈ Yres + Yosc

F (s) ≈ Nd ·DL + NL ·Dd

NL ·Ns

(17)

The equivalence of the presented plane reference methods, as in
Jackson papers [17], seems that the use of these methods is valid for
all oscillator circuits, but it is not enough to guarantee the start-up
and stability in some cases. The necessary and sufficient condition is
the presence of a pair of conjugated complex poles on the RHP. As the
analytical network functions in s domain are not practical to get, the
Nyquist analysis for the network functions is used. But the Nyquist
analysis only provides information of the difference between poles and
zeros, so it is necessary to define the conditions to assure the proper
use of Nyquist analysis in the network functions.

It is necessary to define the condition or conditions which assure
the proper use of these methods. Based on the Jackson [21],
Ohtomo [22] and Platzer [23] papers, it is possible to conclude the
additional conditions for each sub-circuit (divided by the reference
plane) to assure that the Nyquist analysis of the characteristic
equations (ZT , YT , ΓT ) provides, without error possibility, the
existence of one pair of conjugated complex poles on the RHP.

3.1. Negative Conductance Additional Conditions
(Impedance Network Function)

The response of negative conductance circuits, which is easily
simulated, is the frequency response of YT . The frequency response
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of YT is suitable for Nyquist criteria application. The Nyquist criteria
informs of the Nz −Np value. Np is the number of poles on the RHP,
and Nz is the number of zeros on the RHP. When Nz −Np is positive,
the turning circle around the origin is clockwise.

For the proper use of Nyquist criteria, it is necessary that YT does
not have any poles on the RHP. This additional condition must be
satisfied by Yosc, which must not have any poles on the RHP (visible
or hidden poles). It is important to remember that Yosc is a reduced
network function of a bigger and complex network, so it is possible
that some of the poles of the original network are not visible [23].
These non-visible poles are not detectable in Yosc but may produce a
bad oscillation operation. As Yres is a passive network, it cannot have
poles.

The only way to assure that Yosc does not have any pole (visible or
hidden) on the RHP is the use of the Normalized Determinant Function
(NDF) [23] for a network built with the active subnetwork terminated
with a short circuit, as described by Jackson based on Platzker and
Ohtomo papers [21–24, 26]. The possible existence of hidden poles
obliges to use the NDF to Yosc, for the proper use of Nyquist criteria
to YT and for the negative conductance oscillator analysis (Z network
function).

NDF is the quotient of the network determinant and normalized
network determinant (18). The normalized network determinant is
the result of the cancelation of all active devices of the network. The
Nyquist analysis of this function, described by Platzer [23], provides
the information about the number of poles on the RHP. Each clockwise
turning circle around the origin, for positive frequencies, confirms the
existence of a pair of conjugated poles. As NDF has an asymptotic
response with frequency to 1, the upper analysis frequency is easily
determined.

NDF =
4 (s)
40 (s)

(18)

The NDF is easily calculated by the return relation functions
(RR), defined by Bode [25], as Platzer exposed in [24]. The NDF as a
function of RR is given by equation (19). RRi is the return response
when the (i− 1) previous dependent generators have been disabled.

NDF =
n∏

i=0

(RRi + 1) (19)

It is important to remark that the Nyquist analysis for the YT

(NDF test to Yosc) does not predict the oscillator frequency. It
only provides the number of poles in Z. The cross over zero of
= (Yres + Yosc) is near to the poles frequency. This cross is nearest
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to the oscillation frequency with the highest poles Q. So, the cross
over zero is a function of the poles Q and the chosen Yres and Yosc

division plane.
For one active device oscillators, the gain compression (gm

compression) modifies the YT response until it crosses over zero. This
cross verifies = (Yres + Yosc) = 0 and < (Yres + Yosc) = 0. The crossing
point is the oscillation frequency as first harmonic approximation,
which is better for FET devices than for BJT devices.

3.2. Negative Resistance Additional Conditions
(Admittance Network Function)

The negative resistance oscillator is analyzed by means of the
admittance network function. Using the same procedure as in
Section 3.1, the ZT function can be analyzed. To assure the proper
start-up and oscillation stability at a unique frequency, the Y function
must have a pair of conjugated poles on the RHP. For a proper use of
the Nyquist criteria for ZT zeros analysis, it is necessary to assure that
Zosc does not have any pole, visible or hidden, on the RHP. As Zres is
a passive network, it cannot have any poles on the RHP.

The only way to assure that Zosc does not have any visible or
hidden poles on the RHP is to calculate the NDF of a network formed
by Zosc terminated with an open circuit. So it is necessary to analyze
the NDF of Zosc to assure that the ZT Nyquist analysis provides the
correct information about the Y , admittance network function, poles.

In the same way as in the previous case, the Nyquist analysis
of ZT (after assured by means of NDF that Zosc does not have any
poles on the RHP) provides the information about the Y poles on the
RHP, but not the oscillation frequency. The = (Zres + Zosc) cross over
zero will be closer to the oscillation frequency when the poles Q are
the highest. The oscillation frequency is also modified by the poles of
ZT . As in the previous cases, if the transistor gm is compressed the
frequency response of ZT = Zres + Zosc will cross over zero, then it
will be the oscillation frequency as first harmonic approximation. This
approximation is better for FET than for BJT, because FET input
capacity has a minor modification with compression.

3.3. Reflection Coefficient Additional Conditions (Reflection
Coefficient Network Function)

The last studied plane reference method, the reflection coefficient
method, is analyzed by means of simulation software solving the
frequency response of ΓT = 1 − Γosc · Γres, but it is more common
to analyze Γosc · Γres changing the encircling point from 0 to +1. The
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frequency analysis of Γosc·Γres is the application of the Nyquist criteria,
which provides information about the Nz −Np (zeros minus poles) on
the RHP.

As in Sections 3.1 and 3.2, the Nyquist criteria is used to determine
the existence of a pair of conjugated complex zeros on the RHP, and it
is the condition of a unique stable oscillation. To assure the correct use
of the Nyquist to analyze ΓT , it is necessary that ΓT = 1− Γosc · Γres

does not have any poles on the RHP. Then, it is necessary that Γosc

does not have any visible or hidden poles on the RHP. Γres does not
have any poles on the RHP because it is a passive network.

The way to assure that Γosc does not have any poles on the RHP
is by analyzing a network formed by Γosc and terminated with Z0 by
means of NDF. Then it is necessary to perform a NDF analysis of Γosc

to assure that it does not have any pole on the RHP before analyzing
ΓT with the Nyquist criteria. After verifying that Γosc does not have
any poles on the RHP, the Nyquist analysis of ΓT = 1 − Γosc · Γres

is suitable for determining the existence of the necessary conjugated
complex pair of poles for proper oscillation start-up.

As in the previous cases, the Nyquist cross over zeros of
= (Γres · Γosc) will be the nearest to the oscillation frequency if the poles
Q is higher. This cross is modified by the presence of the poles of ΓT .

Figure 5. Common collector oscillator.
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Figure 6. Common base oscillator.

The compression of the transistor gm makes the 1−Γosc·Γres cross occur
over the zero. In this situation, the cross frequency is the oscillation
frequency as Kurokawa defines the first harmonic approximation. In
the same way as in the previous cases, this approximation is better for
FET than for BJT.

4. PRACTICAL EXAMPLES. CANONICAL
TOPOLOGIES

In this section, the exposed analysis conditions are used with two
classical topologies, common base and common collector oscillator.
These two topologies are usually analyzed with negative resistance (see
Fig. 5) and negative admittance (see Fig. 6).

The values illustrated in Fig. 5 and Fig. 6 are not optimized
and just illustrative for the L band, used in these examples. The
used transistor is BFR380F with a polarization collector current of
40mA and a collector to emitter voltage of 5 V. The transistor package
parasite elements are considered in the used model. The simulation
software used for these examples is AWR Microwave Office.

4.1. Common Collector Oscillator

The common collector oscillators are usually analyzed by negative
resistance. Its first harmonic approximation response behaves as
a negative impedance generator. The Nyquist representations of
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impedance, admittance and reflection are: Fig. 7, Fig. 8 and Fig. 9(a).
The Nyquist analysis predicts an oscillation frequency of

1245MHz for the ZT analysis, but it predicts no oscillation for YT

and Γres ·Γosc (ΓT ) analysis. It can be explained as that Yosc and Γosc

have poles that hide the Nyquist analysis for YT and Γres · Γosc (ΓT ).
The Cartesian Bode representation for Zosc is shown in Fig. 10(a).

Zosc analysis with a short-circuit termination predicts an oscillation
frequency at 1234MHz.

At this point, the NDF analysis of Fig. 11 circuit, as Platzer
describes [24], is used using the RR. The circuit is analyzed for open-

Figure 7. Nyquist impedance
representation.

Figure 8. Nyquist admittance
representation.

(a) (b)

Figure 9. (a) Nyquist reflection coefficient representation, (b)
measurement model.
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(a) (b)

Figure 10. (a) Bode Zosc analysis, (b) active sub-circuit for stability
analysis.

Figure 11. Circuit model for NDF analysis.

circuit, short-circuit and RL = 50, that is for the necessary conditions
for ZT , YT and Γosc · Γres (ΓT ) analysis.

The NDF Nyquist analysis for open-circuit (see Fig. 12(a))
predicts stability, which means that Zosc is stable for open-circuit
condition, so ZT can be analyzed by Nyquist to predict the Y poles
that guarantee the proper oscillation operation.



Progress In Electromagnetics Research, Vol. 118, 2011 105

(a) (b)

Figure 12. NDF analysis for (a) open-circuit and (b) short-circuit.

Figure 13. NDF analysis for ZL = 50.

The NDF Nyquist analysis for short-circuit (see Fig. 12(b))
predicts instability. There are two poles on the RHP for Yosc. As
Yosc is unstable for short-circuit condition, YT cannot be analyzed by
Nyquist to predict the Z poles. As the existence of poles in Yosc masks
the zeros in an Nyquist analysis, the Nyquist analysis does not detect
the zeros, and the circuit seems to be stable (but it is unstable).

The NDF Nyquist analysis for ZL = 50 (see Fig. 13) predicts
unstability. There are two poles on the RHP for Γosc. As Γosc is
unstable for ZL = 50 condition, ΓT = 1−Γosc ·Γres cannot be analyzed
by Nyquist to predict the Γ poles. As the existence of poles in Γosc

masks the zeros in a Nyquist analysis, the Nyquist analysis does not
detect the zeros, and the circuit seems to be stable (but it is unstable).

As the circuit in Fig. 11 is not stable for short-circuit and ZL =
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50, it is redesigned to make it stable for the three conditions (see
Fig. 14(b)). In Fig. 14(a) the Bode response shows stability for this
circuit.

The NDF Nyquist analysis of the oscillator active sub-circuit (see
Fig. 14(b)) for the three load conditions (OC, SC and Z0), assures that
the analysis of ZT , YT and Γosc · Γres (ΓT ) provide correct solutions.

Figs. 15 and 16 show the NDF analysis of the active sub-circuit
for the three load conditions. The NDF analysis probes that the active
sub-circuit does not have any poles on the RHP, so the ZT , YT and
Γosc · Γres (ΓT ) Nyquist analysis can be performed without the risk of
wrong solution (see Fig. 17). Now the three Nyquist analyses predict

(a) (b)

Figure 14. (a) Bode Zosc analysis and (b) stabilized active sub-circuit.

(a) (b)

Figure 15. (a) NDF analysis for open-circuit and (b) short-circuit.
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Figure 16. NDF analysis for ZL = 50.

(a) (b)

Figure 17. Nyquist representation for (a) ZT and (b) YT .

Figure 18. Nyquist rep-
resentation for Γosc · Γres

(ΓT ).

Figure 19. Zosc real part evolution with
gm variation.
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a correct oscillator start-up.
As the analyzed oscillator is a negative resistance topology, the

more interesting Nyquist diagram is the ZT one (see Fig. 17(a)).
The active device must operate as a negative resistance generator.

The negative resistance generator is tested to verify that the real part
of Zosc is less negative as the gm decreases (see Fig. 19).

As the last step, the NDF of the complete oscillator, active sub-

(a) (b)

Figure 20. Oscillator NDF Nyquist plot: (a) without resistance, (b)
with stabilization resistance.

Figure 21. Harmonic balance solution for oscillator with emitter
resistance circuit.
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circuit and resonator, is calculated (see Fig. 20).
Fig. 20(a) represents the Oscillator Nyquist NDF without any

resistance in the emitter of the transistor. The NDF analysis without
emitter resistance (see Fig. 20(a)) predicts a pair of poles on the RHP.
The NDF analysis with an emitter resistance also predicts a pair of
poles on the RHP. So, with the NDF analysis it is possible to certify
the ZT analysis for the first case and the ZT , YT and Γosc · Γres (ΓT )
for the second case.

Figure 22. Spectrum of harmonic balance solution for oscillator with
emitter resistance.

Figure 23. Common base oscillator circuit for NDF analysis.
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(a) (b)

Figure 24. Common base oscillator NDF analysis for (a) short-circuit
and (b) open-circuit.

Figure 25. Common base oscillator NDF analysis for ZL = 50.

(a) (b)

Figure 26. Common base oscillator Nyquist representation for (a) ZT

and (b) YT .
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To finalize the verification of the oscillator, the harmonic balance
analysis is applied to the circuit with emitter resistance (see Fig. 21).
The solution predicts an oscillation at 1414MHz (see Fig. 22) which is
in accordance to the ZT and NDF predicted frequencies.

4.2. Common Base Oscillator.

This section shows the study of the Grounded Base Tuned Oscillator
(GBTO)(see Fig. 23). As a first step, the NDF of the active sub-circuit
is calculated for open-circuit, short-circuit and Z0 = 50. With these
NDF analyses the necessary conditions for ZT , Y T and Γosc ·Γres (ΓT )

Figure 27. Common base oscillator Nyquist representation for
Γosc · Γres (ΓT ).

(a) (b)

Figure 28. (a) Yosc bode diagram and (b) active sub-circuit for
stability analysis.
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are checked.
As in Figs. 24 and 25, none of the NDF analyses show any poles on

the RHP, and the oscillator can be analyzed by ZT , Y T and Γosc ·Γres

(ΓT ) Nyquist analysis; these analyses are shown in Figs. 26 and 27.
The three solutions in Figs. 26 and 27 predict an oscillation,

and the predicted frequencies are similar. It is possible to check the
Bode diagram of Y osc (see Fig. 28(a)). The Y osc of the active sub-
circuit Bode plot does not have any = (Y osc) cross over zero while
< (Y osc) < 0.

In Fig. 29, the negative conductance of the active sub-circuit is
verified. The < (Y osc) is increased with the gm compression. This
operation is the complementary of the negative resistance circuits. The
circuits with negative conductance operation (as this one) should be
analyzed by means of YT for the first harmonic approximation.

The NDF Nyquist analysis of the oscillator (see Fig. 30) detects

Figure 29. Yosc real part evolution with gm variation.

Figure 30. GBTO oscillator NDF Nyquist plot.
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Figure 31. Harmonic balance solution for GBTO oscillator circuit.

Figure 32. Spectrum of harmonic balance solution for GBTO
oscillator.

a pair of conjugated complex poles on the RHP.
To finalize the verification of the oscillator, as in Section 4.1,

the harmonic balance analysis is applied to the complete oscillator
circuit (see Fig. 31). The solution predicts an oscillation at 1687MHz
(see Fig. 32) which is in accordance with the YT and NDF predicted
frequencies.
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5. CONCLUSION

This paper has reviewed the classic reference plane linear methods:
admittance, impedance and reflection coefficient. It has been
demonstrated that the classic conditions are not “sufficient”, and in
fact they are a partial use of Nyquist’s criteria. The complete use
of Nyquist criteria with these methods has been analyzed, and an
additional condition has been defined to assure the correct use of
these classic methods for oscillation analysis. This condition is usually
avoided by the oscillator designers, and it causes some erroneous
predictions of oscillators start-up. These additional conditions are
necessary to assure that none of the sub-circuits, divided by the
reference plane, have any visible or hidden poles on the RHP. The
unique way to assure the non-existence of these poles is the use
of Nyquist analysis for the NDF of the sub-circuits. If the sub-
circuits fulfill the Nyquist NDF analysis, it is possible to properly
use impedance, admittance or reflection coefficient to analyze the
oscillator.
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