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Abstract—Monte Carlo scalar radiative transfer simulation of light
scattering in plane parallel slab is not a simple problem, especially in
the study of angular distribution of light intensity. Approximate phase
function such as Henyey-Greenstein is often used to simulate the Mie
phase function. But even for sphere particle this function is sometimes
a poor approximation of real phase function. For a spheroids particle,
the angular scattering characteristics cannot be approximated as H-
G phase function with sufficient accuracy. In this paper, we study
the transmission characteristics of light in parallel plane layer with
randomly oriented prolate spheroids aerosol particles. Instead of using
H-G phase function, we use sampling method to simulate real phase
function of spheroid directly. A database of phase function with various
scattering angle and azimuth angles for given spheroids aerosol particle
is developed. The transmission characteristics calculated by scattering
phase function sampling method and equivalent volume sphere H-G
phase function method are compared. The effect of prolate spheroids
particle size and form factor on optical transmission properties is
analyzed. It is found that although the construction database of
phase function takes a certain amount of computing time, for spheroid
particles the sample phase function method, compared with the H-G
phase function simulation method, can greatly improve the accuracy
of transmittance calculation.
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1. INTRODUCTION

The subject of wave propagation through discrete random media
has substantial scientific interest due to a number of potentially
applications in atmospheric optics, biomedicine, remote sensing and
communication etc. [1–27].

There are various methods often used to solve the properties in
random medium, such as Monte Carlo method, discrete ordinates
method and two or four-flux method etc. Many studies on Monte
Carlo simulation of photon propagation in various kinds of turbid
media have been carried out [1–6]. Berrocal et al. used Monte
Carlo method to calculate some typical aerosols with Mie scattering
in the intermediate single-to-multiple scattering regime. And they
developed a novel Monte Carlo code for modeling optical radiation
propagation in inhomogeneous polydisperse scattering media [15–
17]. The multiple scattering effect in Monte Carlo simulation was
also discussed by Meglinski et al. [18]. In these related studies,
particles are usually simplified as spheres. Volume-equivalent spherical
particles and surface-equivalent spherical particles are often used as an
approximation of non-spherical particle [1–3, 6, 9–19].

In the case of anisotropic random scattering media, both
particle morphology and global orientation play an important role
in transmittance properties. A few experiments have addressed light
scattering in anisotropic random scattering media, such as nematic
liquid crystals, or human tissues [5]. Moumini and Baravian discussed
the anisotropic incoherent transport of light in media where prolate
ellipsoids are oriented in the same direction [7]. Berdnik and Loiko [8]
studied light scattering in media composed of spheroidal particles
oriented along the same direction. Chang et al. [9] investigated the
behavior of polarized light as it propagates through a medium of
spheroidal scatters. They treated the multiple scattering effects by
using the exactly scattering phase function, but the particles are small
compared with incident wavelength. We have carried out some work on
the transmittance properties of polydisperse spherical aerosol in UV to
visible band and compared the H-G phase function simulation method
with the random sample phase function simulation method [10, 11], but
not including the case of a non-spherical case. In this paper, discussions
about the transmittance properties of the media in which all particles
are randomly oriented prolate ellipsoids aerosol are given. In the first
part, we present the Monte Carlo method usually used for sphere
particle, and in the second part, we discuss the interaction between a
plane electromagnetic wave and a prolate ellipsoidal particle. Then we
introduce the sample scattering phase function method instead of the
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H-G scattering phase function simulation method. Finally, the effects
of particle size and form factor on optical transmission properties with
these different phase function simulation methods are analyzed.

2. MONTE CARLO SIMULATION METHOD

In all applications of the Monte Carlo method, a stochastic model
should be constructed in which the expected value of a certain random
variable (or of a combination of several variables) is equivalent to the
value of a physical quantity to be determined [2]. In this paper, we
use physical quantity transmissivity which can be determined by the
statistical model.

2.1. Transport Theory of Wave Propagation in Random
Particles

In transport theory, if polarization effect is not included, the equation
of transfer without other emission source can be expressed as [12]

dI(~r, ŝ)
ds

= −ρσtI(~r, ŝ) +
ρσt

4π

∫

4π
p(ŝ, ŝ′)I(~r, ŝ′)dω′ (1)

where I(~r, ŝ) is the specific intensity at the point ~r with radiation
along the direction ŝ; ρ is the number density of the media; dω′ is the
solid angle; and σt = σa + σs, which is the extinction cross section. σa

and σs are the absorption and scattering section, respectively. p(ŝ, ŝ′)
is the scattering phase function.

It is often convenient to divide the total intensity into two parts,
reduced incident intensity Iri and diffuse intensity Id. They satisfy the
equation as following respectively

dIri(~r, ŝ)
ds

= −ρσtIri(~r, ŝ) (2)

dId(~r, ŝ)
ds

= −ρσtId(~r, ŝ) +
ρσt

4π

∫

4π
p(ŝ, ŝ′)Id(~r, ŝ′)dω′, (3)

where Iri + Id = I. It is convenient to measure the distance in terms
of a non-dimensional “optical thickness τ”, which is defined by

τ =
∫

ρσtds (4)

For plane-parallel atmosphere, using the conception of optical
thickness, Equation (3) becomes

Id(τ̄ , µ) =
∫ τ0

0
exp

[
− τ̄ − τ ′

µ

]
J(τ ′, µ)

dτ ′

|µ| + Iri(τ̄ , µ), (5)
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where

J(τ, µ) =
1
2

∫ 1

−1
p(µ, µ′)Id(τ, µ′)dµ′ (6)

τ̄ =
{

τ0

0
µ > 0
µ < 0

(7)

Iri(0, µ) = 0(µ < 0), (8)
µ = cos θ = ŝ · ŝ′ (9)

The boundary condition could be expressed as

Id(0, µ) = 0 0 ≤ µ ≤ 1
Id(τ0, µ) = 0 − 1 ≤ µ ≤ 0 (10)

Integral Equation (5) can be expressed as [28]

I(s) = Iri(s) +
∫

I(s′)K(s′ → s)ds′ (11)

And Iri satisfied∫
Iri(s)ds =

∫ ∞

0
e−τdτ

∫ ∫

4π
δ(µ− 1)δ(ϕ)dµdϕ = 1

Equation (11) has the series solution

I(s) =
∞∑

m=0

Im(s) (12)

where

I0(s) = Iri(s)

I1(s) =
∫

I0(s0)K(s0 → s)ds0

· · ·
Im(s) =

∫
Im−1(sm−1)K(sm−1 → s)dsm−1

=
∫

. . .

∫
I0(s0)K(s0→s1). . .K(sm−1→s)dsm−1. . .ds1ds0 (13)

Physically, Im(s) in Equation (13) means the emission density
from the source at point P , through the mth time transmission and
collision. Thus integral operator

∫
Kχ(sl−1 → sl)dsl−1 means that

the particle experiences transmission and collision in disperse random
medium once. We may rewrite Equation (13) in probability model,
integral operator

∫
Kχ(sl−1 → sl)dsl−1 corresponding to conditional
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probability P (sl|sl−1). Using statistical estimation method, we may
obtain

P (sl+1 |sl ) = exp [−σaρ |(zl+1 − zl)/ cos al|] · η(h− zl)η(zl), (14)

where al is the angle between the lth (l = 1, 2, . . . ,m) photon scattering
direction and z axis. Exponential part means the lth photon scattering
probability from point sl to sl+1 without absorption. Analogously,
integral operator

∫
Kχ(sm → s)dsm is corresponding to state transition

probability

P (s |sm ) = exp [−σtρ(h− zm)/ cos am] η(cos am), (15)

Use weight function

Wm+1 = Wm exp [−σaρ |(zm+1 − zm)/ cos am|] , (16)

then, the direct transmission probability P0 is

P0 = W0 exp [−σtρ(h− zm)/ cos a0] , (17)

Each photon is initially assigned a weight W0 = 1, and a0 is the
angle between initial incident direction and z axis. So the statistical
estimation of a photon transmissivity is

Pt =
∞∑

m=0

Pm =
∞∑

m=0

Wm exp [−σtρ(h−zm)/ cos am] · η(cos am)

·
m∏

l=1

η(h− zl)η(zl),

(18)

where

η(x) =
{

1 x > 0
0 x ≤ 0

When N photons are generated, we may obtain the transmissivity
T as

T =
1
N

N∑
Pt. (19)

2.2. Description of the Monte Carlo Simulation in
Traditional Case

Monte Carlo algorithm is usually used to simulate the propagation
properties of light in random media in traditional case (the particles in
the layer is sphere case). Many related references discussed the Monte
Carlo simulation method in this case. In [2, 3], Wang et al. pointed out
that there are several parameters, which could completely describe the
properties of the layer, namely the absorption coefficient Ca = ρσa,
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scattering coefficient Cs = ρσs, anisotropy factor, and the thickness of
the layer is h in z axis. If these parameters are determined, the total
interaction coefficient Ct = Ca+Cs is defined, so that its inverse C−1

t is
the mean free path between two consecutive interactions. The photon
interacts with the medium in every step. For example, the photon
is scattered and absorbed, and its left weight radio of the photon is
defined by albedo Cs/Ct.

Usually, there are some typical steps in the simulation including:

1. photon initialization.
2. photon meeting the scatter in the media.
3. changing the direction of the photon.
4. judge the position of the photon.
5. sample the free path-length of the photon.
6. update the position of the photon.
7. update the absorption and the weight of the photon.
8. summarize all the photon update the transmittance.

Special attention should be paid to step 3. If the particle in the
random media is sphere, usually used phase function is H-G phase
function [13, 14]

p(µ) =
1− g2

2[1 + g2 − 2gµ]3/2
(20)

where g is the asymmetry factor, and µ = cos θ = ŝ · ŝ′ is the cosine of
scattering angle.

The probability distribution for the cosine of the deflection angle,
cos θ, is described by the scattering function described above. The
choice for cos θ can be expressed as a function of the random number
ξ.

cos θ =





1
2g

[
1 + g2 −

(
1− g2

1− g + 2gξ

)2
]

g 6= 0

2ξ − 1 g = 0

(21)

The azimuth angle for sphere particle, ψ, which is uniformly
distributed over the interval 0 to 2π, is sampled as

ψ = 2πξ (22)

Once the deflection angle and azimuth angle are chosen, the new
direction of the photon packet can be determined.

This scattering phase function simulation method is the most used
one. But this function is often the poor approximations of real phase
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function. Toublanc used an exact calculation phase functions for mono-
disperse particle [14]. Bai et al. simulated real phase function for
some typical poly-disperse particles [10, 11]. These researches indicated
that even for sphere particles H-G phase function is not a good
approximation of real particles.

2.3. Description of the Propagation in Random Media with
Spheroid Particles

For spheroid particle, the dependence of phase function on different
scattering angles and azimuth angles is one defining feature of light
scattering by spheroids rather than by sphere. In this paper, we use
sample scattering phase function method to improve the simulation
accuracy of scattering phase function of spheroid.

The physical model described in this paper is illuminated in Fig. 1.
We suppose the transport of a plane wave perpendicularly incident
on a plane parallel slab and that the layer is infinitely wide. The
properties of the slab could be described by the following parameters:
the thickness of the layer, refractive index, form factor and size of the
spheroid particles in the layer.
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Figure 1. Scheme of photon propagation.

A succession of scattering events occurs when the photon hits
rotational symmetry ellipsoidal particles.

To describe the propagation properties of photons in the medium,
two coordinate systems are used in the simulation. We use a right-
handed Cartesian-coordinate system with the orientation fixed in space
as the laboratory coordinate system OXYZ.

In order to evaluate the scattering properties of the scattering
particle, the local coordinate system O′x′y′z′ is defined as a moving
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Figure 2. (a) Convention for the angle relationship. (b) Convention
for the axes and the angles in local reference frame.

coordinate system. The origin O′ is set as the center of the mth
particle, and z′ axis is set parallel to the axis of rotational symmetry.

The direction of z′ axis relative to the laboratory coordinate frame
OXYZ can be specified by two angles (α, β), where α(0 ≤ α ≤ π) is
the elevation angle measured from the Z axis, and β(0 ≤ β ≤ 2π) is
the angle between the X axis and the projection of the z′ axis in the
OXY plane, as illustrated in Fig. 2(a). The direction cosine of the
z′ axis in the laboratory coordinate OXYZ is (sinα cosβ, sinα sinβ,
cosα). These angles (α, β) for every scatter are randomly selected to
simulate the media with an ensemble of randomly oriented particles.
They could be obtained by random sample method.

To create a random orientation, we could set the angle α satisfied
sinα = ξ and obtain the angle α and using β = 2πξ to obtain the
angle β. This random sample for (α, β) is used only to simulate the
randomly oriented directions of the spheroid in space.

When the photon scattered from the mth particle to the m + 1th
particle, in the laboratory coordinate frame OXYZ, the position vector
and unit vector of the incident direction are denoted as ~rm, ~sm, ~rm+1,
~sm+1, respectively, as illustrated in Fig. 1. For convenience, the
selection criterion of the x′ axis is that: let the vector ~sm lie in the
plane O′x′z′. Then determine the y′ axis according to the right-handed
principle (see Fig. 2(b)).

Denote the angle of the direction of the incident unit vector ~sm

in the laboratory coordinate frame OXYZ system as (θm, φm). As
illustrated in Fig. 2(a), in the local coordinate frame O′x′y′z′ of the mth
particle, the angle of incident wave θi satisfies the following equation:

cos θi = sin θm cosφm sinα cosβ + sin θm sinφm sinα sinβ

+cos θm cosα (23)

and the azimuth angle of the incident wave vector ~sm in local
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coordinate frame O′x′y′z′ is φi = 0 (as illustrated in Fig. 2(b)).
For sphere scatter in H-G phase function simulation method, the

scattering angle could be selected according to Equation (21), and
the azimuth angle could be determined by Equation (22). But in
our simulation method the scattering angle θs and azimuth angle φs

should be determined by sample method. When the direction of the
incident wave in the O′x′y′z′ frame of the mth particle is determined,
the scattering properties can be calculated by T -matrix. We can pre-
calculate many scattering phase functions in different incident cases
and store it as a scattering phase function database. This database is
related with different incident angles, scattering angles, and azimuth
angles (θi, φi = 0; θs, φs) in O′x′y′z′.

We could create a cumulative probability table of the normalized
scattering phase function. If the random number ξ(ξ ∈ (0, 1] is given,
we could select a point along the range of probability sums, which
then corresponds to a particular scattering angle. Once a ξ has been
selected, the table is searched until [52]

ξ=

θs∑
θs=0

P (θi; θs, φs)∆Ωs

180∑
θs=0

P (θi; θs, φs)∆Ωs

(24)

where P (θi; θs, φs) is the phase function in the given angle of the
incidence θi. ∆Ωs is the solid angle interval. With this method, the
scattering angle θs is selected.

In a similar way as Equation (22), the azimuth angle φs could be
determined. The direction of scattering (θs, φs) in the O′x′y′z′ frame
of the mth particle is also the direction of incident of the m + 1th
particle ~sm+1.

In order to obtain the scattering direction of the mth particle in
the laboratory coordinate, we should use transformation matrix M−1

from the local reference frame to the laboratory reference frame. Note
that matrix M is from the laboratory reference frame to the local
reference frame. The matrix M is given by

M =




sinβ cosβ cosα cosβ sinα

− cosβ sinβ cosα sinβ sinα

0 − sinα cosα


 (25)

Then if the angle of (θs, φs) in the local reference frame is known,
the direction of it in the laboratory reference frame could be obtained
by angle rotation transform. More attention should be paid to that
the unit vector ~sm+1(θm+1, φm+1) in the OXYZ corresponds to the
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scattering direction (θs, φs) in O′x′y′z′. The scattering direction of
the mth particle ~sm+1(θm+1, φm+1) is also the incident direction of
the m + 1th particle in OXYZ.

Let the center of m + 1th particle be the new O′, and we can
construct the new local reference frame O′x′y′z′. The incident direction
of the m + 1th particle in OXYZ is then updated by (θm+1, φm+1).

Define the direction cosine of the unit vector ~sm+1 in the O′x′y′z′
coordinate system as µ1 = sin θ′ cosψ′, ν1 = sin θ′ sinψ′, w1 = cos θ′,
where θ′ is the angle between ~sm+1 and the z′ axis, and ψ′ is the
azimuth angle between the projection of ~sm+1 in the O′x′y′ plane
and the x′ axis (as showed in Fig. 2(a)). The transformation matrix
from the local reference frame to the laboratory reference frame can
be expressed as 


µ

ν

w


 = M




µ1

ν1

w1


 (26)

where µ, ν, and w are the direction cosine of unit vector ~sm+1 in the
OXYZ coordinate system. The photon position vector of the mth
particle and the m + 1th particle in the laboratory reference frame are
~rm and ~rm+1, respectively (as showed in Fig. 1). We could set the
coordinate of ~rm and ~rm+1 in the laboratory reference frame as (Xm,
Ym, Zm) and (Xm+1, Ym+1, Zm+1), then the relationship between them
is 


Xm+1

Ym+1

Zm+1


 =




Xm

Ym

Zm


 + L




µ

ν

w


 (27)

where L = |~rm+1 − ~rm| is the mean free path, which could be
determined by L = − ln ξ/Ct. All the random numbers ξ used above
are independent.

2.4. Scattering Properties of a Rotational Symmetry
Spheroids Particle

The electromagnetic radiation and scattering properties of a rotational
symmetry conducting/dielectric spheroid has been a hot area for many
years [29–38]. And nowadays it still attracts interests of many scientists
and engineers because of its wide applications.

Various calculation techniques have been proposed for the
interaction between a plane electromagnetic wave and a single
symmetry spheroid particle, such as the separation of variable
method [36–38], shape perturbation method [39], discrete dipole
approximation method [40] and T matrix method [33, 34, 41–51].
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In this paper, we use T matrix method to construct the scattering
phase function database of a spheroid. The T matrix method is a
surface based method for homogenous particles commonly based on the
extended boundary condition method (EBCM) that was introduced
by Waterman [41] and has recently been reviewed by Mishchenko
et al. [44, 45, 51]. Such an approach involves three parameters
when determining the scattering properties of a given spheroid: size
parameter x = 2πrv/λ, refractive index m, and aspect ratio of the
particle ε = a/b (a and b are minor and major axes, respectively).
It has been consistently observed that the accuracy and memory
requirements strongly depend on particle size parameter, refractive
indexes, and particle shape. As the size parameter and the refractive
index of typical aerosol particles are not high, the T matrix method
gives out reasonable results.

The T matrix code used in this study was developed by
Mishchenko and available online as a Fortran code at the following url:
www.giss.nasa.gov/∼ crmin. The scattering properties of a rotational
symmetry spheroid particle are calculated in particle local coordinate.

Figure 3 shows the graph of the variation of phase function
P (θi, φi = 0, θs, φs) of a spheroid particle with scattering angle θs in
different incident angles. The incident azimuth angles and scattering
azimuth angles in Fig. 3 are φi = 0◦ and φs = 0◦, respectively. The
values are normalized by the area of axial cross section πab. Note that
this phase function is only used to illustrate the relative scattering
intensities by a spheroid. It is not the phase function used in the
cumulative probability table.

Table 1. A comparison of the radiative transfer properties of different
incident wavelengths.

λ/µm rv/µm ε = a/b T1/s Tsample/s TH-G/s

0.4 0.2 0.5 208 283 29

0.55

0.1 0.5 23 66 5
0.2 0.5 205 172 19
0.3 0.5 206 314 39
0.2 0.6 22 176 23
0.2 0.7 165 17 23

0.694 0.2 0.5 217 108 11
*where T1 means the database calculate time, and Tsample and TH-G mean

the calculation time of transfer by using the sample and the H-G phase
function simulation method, respectively.
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Figure 3. Phase function of a spheroid particle normalized by the
area of axial cross section πab in different incident angles, with a
refractive index m = 1.385 + i9.9 × 10−9, the wavelength of incident
wave λ = 0.4µm, a volume-equivalent spherical radius rv = 0.2µm,
a = rv/

3
√

1/2 = 0.2/ 3
√

1/2 .= 0.15874 (µm), and a form factor
ε = a/b = 0.5.

3. RESULTS AND DISCUSSION

Table 1 shows a summary comparison result of computation time by
using different phase function simulation methods. Different incident
wavelengths, volume-equivalent spherical radius, and aspect ratio of
the particle are calculated in Table 1. The simulation was developed
in Fortran code, running on a standard computer (Intel core 2 duo
processor, 1.86 GHz,500G EMS memory). We chose 1000000 random
numbers in the following calculation.

The refractive indexes of oceanic aerosol spheroid particles used in
0.4µm, 0.5µm and 0.694µm incident wavelengths are 1.385 + i9.90×
10−9, 1.381 + i4.26× 10−9 and 1.376 + i5.04× 10−8, respectively [53].

Evaluation of the exact phase function requires slightly more
computation time. The database calculation time is closely concerned
with the radius and aspect ratio of the spheroid particle. If the aspect
ratio of the particle is the same, the larger size is the parameter, the
more time will be needed for the calculation. If the size parameter
of the particle is the same, the smaller is the aspect ratio, the more
calculation time will be needed too.

The total calculation time of the sample method is the summation
of database calculation time t1 and transmittance sample method
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Figure 4. A graph of the variation of transmittance with optic
thickness in different phase function simulation methods. (The volume
equivalent spherical particle radius is 0.3µm; the incident wavelength
is 0.55 µm; the form factor of the spheroid is 0.5).

calculation time tsample. It is almost 20 times longer than the
H-G phase function simulation method. That is why the H-G
phase function is the most used one. But for spheroid particle, the
transmittance calculation results show big difference by using sample
phase function method and H-G phase function method as illuminated
in Fig. 4.

In Fig. 4, the plot of the variation of transmittance of oceanic
prolate spheroid aerosol layer with optical thickness is presented.
The transmittance results are compared with H-G scattering phase
function simulation method and four-flux method. The incident
wavelength is 0.55µm. The volume equivalent spherical particle radius
of random oriented prolate spheroids is 0.3µm. And the form factor of
the spheroid is 0.5. As can be seen from Fig. 4, the simulation results
of sample method approach to that of four-flux method, but far away
from the H-G phase function simulation results.

Figure 5 compares the transmittance properties of oceanic prolate
spheroid aerosol layer by using H-G and sample phase function
simulation method in different equivalent volume spherical particle
radii. The incident wavelength is 0.55µm. The form factor of the
spheroid is ε = 0.5. With increased optic thickness, the transmittance
decreases. And the transmittance also decreases as the equivalent
volume spherical particle radius increases.

Figure 6 analyzes the effects of the incident wavelength on the
transmittance by using H-G or sample phase function simulation
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spherical particle radius is 0.2µm, the form factor is ε = 0.5, the
incident wavelength is 0.4µm, 0.5µm, and 0.694µm respectively).

method. The parameter used in Fig. 6 is equivalent volume spherical
particle radius 0.2µm, and the form factor is ε = 0.5. The incident
wavelengths are 0.4µm, 0.55µm and 0.694µm, respectively.

As can be seen from Figs. 4–6, using the H-G phase function
simulation method will underestimate the transmittance of the random
layer with spheroid.
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Figure 7. A comparison of transmittance of oceanic aerosol in
different form factors. (The incident wavelength is 0.55µm, the
equivalent volume spherical particle radius is 0.2µm and the form
factor of the spheroid is 0.5, 0.6 and 0.7 respectively.

The sample scattering phase function method will greatly improve
the accuracy of the transmittance.

Figure 7 calculates the transmittance of oceanic aerosol layer
with different form factors. The incident wavelength is 0.55µm; the
equivalent volume spherical particle radius is 0.2µm; the form factors
of the spheroid in the calculation are 0.5, 0.6 and 0.7, respectively.

As can be seen from Fig. 7, with increased form factor, the
transmittance of aerosol decreases because the average extinction
coefficients of the particle increase as the form factor increases. But
as the variation of the average extinction coefficients is very small, the
difference of transmittance of oceanic aerosol in different form factors
is not obvious. At the same time, the optic thickness of the plane
parallel atmosphere is usually very small. The commonly encountered
optic thickness of aerosol is in the range of 0.1–1. We can see from
Fig. 7 that when the optic thickness is 1.0, the relative error of the
transmittance with different spheroid particles form factors is obviously
increased.

We should pay more attention to the multiple scattering occurring
when the photon propagation in the random layer.

The multiple scattering that we defined in this paper is the times
photon collided with spheroid aerosol particle in the layer. If the
photon collided with the spheroid particle two times or more in the
layer, we sum them together as the multiple scattering times. The ratio
of multiple scattering times to the total scattering times is defined as
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the percentage of multiple scattering.
Figure 8 shows the percentage of multiple scattering with optic

thickness in different equivalent volume spherical particle radii. The
equivalent volume spherical particle radii are 0.1µm, 0.2 µm, and
0.3µm, respectively. The other parameters used in Fig. 8 are the same
as those in Fig. 5.

It can be found that the percentage of multiple scattering will
increase while the optic thickness is increased. And when the
equivalent volume spherical radius of spheroid is small compared with
the incident wavelength, as illuminated in Fig. 8, 0.1µm case, the
percentage of multiple scattering is almost not sensitive varying with
optic thickness. But when the equivalent volume spherical radius of
spheroid is 0.3µm, the percentage of multiple scattering rises fast.

Another example is illuminated in Fig. 9. In Fig. 9, the
percentage of multiple scattering with optic thickness in different
incident wavelengths is presented. The equivalent volume spherical
particle radius is 0.2µm, and the form factor is ε = 0.5. The incident
wavelengths are 0.4µm, 0.55µm, and 0.694µm, respectively. And
when the incident wavelength is 0.694µm, the volume spherical particle
radius 0.2µm is a relative small particles. We could obtain similar
results in Fig. 8.

We define the relative error of transmittance as (tx(τ) −
tHG(τ))/tHG(τ), where tx(τ) and tHG(τ) stand for transmittance
calculation results obtained from sample method and H-G phase
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Figure 8. The percentage of multiple scattering with optic thickness
in different equivalent volume spherical particle radii. (The incident
wavelength is 0.55µm, the equivalent volume spherical particle radius
is 0.1µm, 0.2µm and 0.3µm respectively. The form factor is ε = 0.5).
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Figure 9. The percentage of multiple scattering with optic thickness
in different wavelengths. (The equivalent volume spherical particle
radius is 0.2µm, the form factor is ε = 0.5. The incident wavelength
is 0.4 µm, 0.55µm and 0.694µm respectively.

function simulation method, respectively.
We can use this quantity to express the difference of transmittance

caused by different scattering phase function simulation methods.
Figure 10 represents relative error between transmittance of

oceanic aerosol and and the transmittance of equivalent spherical
particle in different equivalent spherical particle radii

Figure 10 leads us to a conclusion that the relative error of
transmittance increases with increasing optical thickness.

Comparing with Figs. 8 and 10, we can see that the relative error
is related to the percentage of multiple scattering. As the equivalent
volume spherical particle radius is 0.2µm for example, when the optic
thickness is 0.1, the percentage of multiple scattering as showed in
Fig. 8 is only about 5%. The relative error is only about 1%. But
when the optic thickness is increased to 1.0, the percentage of multiple
scattering is near 40%. The relative error approaches to about 8%.

It can be found that the relative error relates to the percentage of
multiple scattering. If the percentage of multiple scattering increases,
the relative error of transmittance increases too.

As it also can be seen from Fig. 10 that with increased equivalent
volume particle radius, the relative errors of transmittance increase.

Figure 11 presences the comparison results of the relative error of
transmittance with two types of phase functions simulation methods
in different form factors. The incident wavelength is 0.55µm; the
equivalent volume spherical particle radius is 0.2µm; and the form
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Figure 10. The relative error between transmittance of oceanic
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particle radii. (The incident wavelength is 0.55µm, the equivalent
volume spherical particle radius is 0.1µm, 0.2µm and 0.3µm
respectively. The form factor is ε = 0.5).
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Figure 11. The relative error with optical thickness of oceanic aerosol
in different form factors. (The incident wavelength is 0.55µm the
equivalent volume spherical particle radius is 0.2µm and the form
factor is 0.5, 0.6 and 0.7 respectively).

factors are 0.5, 0.6 and 0.7, respectively.
A form factor is defined as ε = a/b, where a is the minor axis of an

ellipsoidal particle and b is the major axis of the spheroid particle. So
the scattering characteristics of prolate spheroids aerosol would became
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closer to spherical particles as the form factor increased from 0.5 to 0.7.
And the transmittance properties of the layer with random oriented
spheroid would be near the transmittance properties of aerosol particles
composed by spherical particles.

4. CONCLUSION

In this paper, we discuss the transmittance characteristics of light
in media where prolate spheroids are oriented in random direction.
In these media, light transport is investigated by using Monte Carlo
simulations method where the effects of particle (such as the equivalent
volume spherical particle radius, the incident wave length and the
form factor etc.) on optical properties are explored. A database of
phase function of prolate spheroids aerosol particles is constructed.
Calculation times of phase function database sample method and H-G
phase function simulation method are presented.

It can be found that if the percentage of multiple scattering
increases, the phase function simulation method should be selected
more carefully. Commonly used H-G phase function approximation
method is time saving, but it only fits for single scattering dominating
case. If the percentage of multiple scattering increases or the optic
thickness is large, more precise phase function simulation method
would be needed. Otherwise, the transmittance would get more
relative error. The calculation time is related to the equivalent
volume spherical particle radius, extinction coefficients, form factor
and incident wavelength. In the same form factor, the larger is the
particle size parameter, the longer calculation time would be needed.
If the size parameter of the particle is the same, the smaller is the
form factor, the longer is the calculation time. And the relative error
between phase function database simulation method and H-G phase
function simulation method has close relationship with the percentage
of multiple scattering. When the multiple scattering is dominated, the
relative error would become larger.
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