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Abstract—This paper proposes a hybrid higher order finite difference
time domain (FDTD) scheme that combines the classical FDTD
scheme and the higher order FDTD scheme with second order accuracy
in time and fourth order accuracy in space for analyzing the three-
dimensional electrically large scattering problems. The classical FDTD
stencils were used as buffers in the scattered field region to make the
higher order FDTD stencils not intrude inside the absorbing boundary
condition’s regions. The superior performance of the hybrid higher
order FDTD scheme has been compared with the classical FDTD
one. Numerical results demonstrate that the proposed scheme would
improve the accuracy and save the computer resources significantly
compared to the classical FDTD scheme involved in the radar cross
section (RCS) calculation. The obtained computational efficiency
allows this proposed scheme to model the RCS of electrically large
targets using the number of higher order FDTD cells which are much
less than that of the classical FDTD cells required by three-dimensional
FDTD scheme.

1. INTRODUCTION

RCS is the measurement of a target’s ability to reflect radar signals in
the direction of a target’s receiver. Generally, since the experimental
measurement for a real-life experiment costs too much time and
investment, and the application of Mie theory [1] was limited only to
sphere and cylinder, the RCS are usually evaluated through numerical
methods. The FDTD [2, 3] scheme has been widely used to solve
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Maxwell equations in several contemporary problem, such as scattering
from electrically large or multiple targets, antenna array modeling,
etc. Unfortunately, the performance of classical FDTD scheme,
when calculating RCS, is not good enough, especially for electrically
large target problems. In [4], the authors have validated classical
FDTD scheme to model RCS of electrically large metallic targets.
As mentioned in [5], errors in the RCS calculation can be mainly
attributed to the source that the numerical error in calculating the
near-field components used for near to far field transformation. In [5],
Li et al. used a simple method to overcome the inaccuracy of the FDTD
scheme calculating the backscattered RCS obtained with a monostatic
radar. However, this method is not adaptable to the bistatic RCS
when the target illuminated by a monochromatic electromagnetic wave,
due to one of the virtual integration surface [6] has been removed.
Therefore, an alternative way to improve the accuracy of the bistatic
RCS is to reduce the numerical error in calculating the near-field
components used for near to far field transformation.

The numerical dispersion is the dominant numerical error of
classical FDTD scheme and poses a serious problem for the classical
FDTD scheme when encountering electrically large targets. The
spatial resolution for classical FDTD scheme has to be extremely fine
to confine the total accumulated phase error within an acceptable
level. However, the extremely fine spatial resolution should yield large
computational domains and require significant computer resources,
such as memory and execution time. Consequently, spatial resolution
refinement is not an efficient solution and sometimes is not even
possible for electrically large problems. Numerous methods have
been developed to decrease the phase error, and the main developed
methods of interest for this field were detailed analyzed by Shlager
and Schneider in [7]. A correction for the phase error can be obtained
by perturbing the space derivative by a factor which is different
from unity in the classical second-order FDTD method so that the
phase errors at some angles are reduced to zero at specific resolution
and frequency [3]. Nehrbass et al. [8] optimize the phase error
by modifying the phase velocity to decrease the error result from
dispersion. Cole [9] improves the classical FDTD scheme using a
nonstandard finite difference operator in which a correction function
is used to minimize the errors between the analytic derivative and the
new operator. Kim et al. [10] use a isotropic dispersion(ID) FDTD
algorithm to improve the accuracy of classical FDTD scheme. Besides
these methods which involved in second-order technology mentioned
above, higher order FDTD schemes [5, 11–17] provide more appropriate
choices. Although larger spatial stencils and more floating point
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operations (FLOPS), such approaches overwhelm the second-order
technique, because they require coarser meshes for a specific error level.
Therefore, the higher order FDTD schemes could significantly decrease
the computer resources, especial for electrically large problems.

Unfortunately, it is not convenient to implement the higher order
FDTD schemes for the practical application which referring to the
scattering problem because of the larger stencils compared to the
classical FDTD schemes. These stencils could make the higher order
FDTD schemes powerless due to the material discontinues caused by
the absorbing boundary conditions, therefore, the stencils close to
absorbing boundary regions should be carefully treated. Traditionally,
this problem is dealt with by applying classical FDTD cells as special
stencils [17, 18] between the higher order FDTD cells and the absorbing
boundary regions, these special stencils could make the higher order
FDTD cells do not intrude inside the absorbing boundary condition’s
regions, and can be only one layer classical FDTD cells. These
hybrid scheme has been used to model electrically large waveguide
problem [17] which referring to PEC boundaries in three-dimensional
case. Unfortunate, the applications of this hybrid scheme have not been
related to investigating the RCS of three-dimensional electrically large
targets. In this paper, the Fang’s [19] higher order FDTD scheme that
is second order accuracy in time and fourth order accuracy in space
scheme has been opted to calculate the RCS of electrically large targets,
due to its simpler coefficient and less stencils compared to the several
modified higher-order FDTD schemes [14, 16, 20]. The special stencils
mentioned above have been introduced in the scattered field region to
avoid that the higher order FDTD cells do not locate inside the second
order perfect matched layers (PMLs) [21]. The RCS of electrically
large sphere has been modeled, which has been compared with the Mie
theory [1]. The numerical results demonstrate the proposed method
should significantly improve the accuracy compared to the classical
FDTD scheme using the same spatial resolution when involved in
electrically large scattering problem. In addition, the proposed method
could save a lot of computer resources compared to the classical FDTD
scheme while keeping the same accurate level.

2. REVIEW OF THE HIGHER ORDER FDTD SCHEME

Although there are several higher order FDTD schemes, the Fang’s [19]
second order accuracy in time and fourth order accuracy in space which
denoted as FDTD (2, 4) has been chosen as the basic scheme for the
electrically large scattering problem in this paper. This due to the three
factors: 1) the higher order scheme which is fourth order accuracy in
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time and fourth order accuracy in space [22] demand extra variables
to store the previous electric and magnetic fields in computational
domain, and this would lead to more memory costs, 2) the higher
order scheme which is second order accuracy in time and sixth or higher
order in space would result in too large spatial stencils to dealt with
in boundaries including absorbing boundaries and PEC boundaries,
3) the higher order schemes which are modified by introducing tuning
factors to reduce the dispersion errors [17, 20, 23] would induce large
spatial stencils which is similar to 2), however, the accurate level has
not been improved significantly which would been shown in the two-
dimensional experiment in Section 4.

For simplicity, we consider a source-free lossless homogeneous
isotropic and three-dimensional medium. Maxwell’s equations can be
written as

∇× ~H = ε0εr
∂ ~E

∂t
(1)

∇× ~E = −µ0µr
∂ ~H

∂t
(2)

where ε0 and µ0 are the permittivity and permeability in free space,
and the εr and µr are the relative permittivity and permeability of the
medium.

The above equations will be discretized on a staggered grid as in
the Yee’s FDTD scheme [2]. The scheme should be correctly centered
in both time and space, for deriving conservative difference formulas.
Appling a Taylor series expansion, the following could be obtained

Ex

∣∣∣n+1
i+0.5,i,k = Ex

∣∣n
i+0.5,i,k + ∆t

∂E

∂t

∣∣∣t=(n+0.5)∆t
i+0.5,j,k (3)

which is second order accuracy in time and time centered for the time
derivative. Substituting (1) into (3), we obtain

Ex

∣∣∣n+1
i+0.5,j,k = Ex

∣∣n
i+0.5,j,k +

∆t

ε0εr

(
∂Hz

∂y
− ∂Hy

∂z

) ∣∣∣t=(n+0.5)∆t
i+0.5,j,k (4)

Using a second order central difference approximation for both
of the spatial derivatives, the classical Yee’s FDTD scheme would be
obtained. For simplicity, the second order spatial centered difference
operators D2y in y direction and D2z in z direction has been defined
as

D2yF (i + 0.5, j, k) =
1

∆y
[F |i+0.5,j+0.5,k − F |i+0.5,j−0.5,k ] (5)

D2zF (i + 0.5, j, k) =
1

∆z
[F |i+0.5,j,k+0.5 − F |i+0.5,j,k−0.5 ] (6)
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then the classical Yee’s formula for Ex can be written as

Ex
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i+0.5,j,k = Ex

∣∣n
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n+0.5
y (i + 0.5, j, k) (7)

The fourth order central difference approximations for the spatial
derivatives could be derived by using a Taylor’s series approach. Let’s
consider the Taylor’s series expansions
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then, from (8) and (9), we can obtain
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Similar as (5) and (6), the fourth order spatial centered difference
operators D4y in y direction and D4z in z direction has been defined
as

D4yF (i + 0.5, j, k) =
9
8
D2yF (i + 0.5, j, k)

− 1
24∆y

[F |i+0.5,j+1.5,k − F |i+0.5,j−1.5,k ](11)

D4zF (i + 0.5, j, k) =
9
8
D2zF (i + 0.5, j, k)

− 1
24∆z

[F |i+0.5,j,k+1.5 − F |i+0.5,j,k−1.5 ](12)

Replacing the spatial derivatives in (4) with the fourth order difference
approximations (11) and (12), we can derive the fourth order difference
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formula based on the Yee space.

Ex

∣∣∣n+1
i+0.5,j,k = Ex

∣∣n
i+0.5,j,k +

∆t

ε0εr
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y (i + 0.5, j, k) (13)

the other electric and magnetic field components can be derived using
a similar manner.

Figure 1 shows the construction of the FDTD (2, 4) scheme that
used for calculating Ex component based on Yee’s lattice at the plane
indexed x + 0.5. However, the FDTD (2, 4) scheme is still second
order accuracy in time, but fourth order accuracy in space. Besides the
four magnetic field components at the adjacent grids used in the Yee’s
scheme, there are extra four once-removed grids used in the FDTD (2,
4) scheme, as shown in Figure 1. The ‘single arrow’ denotes the grids
used in the Yee’s scheme, and the ‘double arrow’ denotes the extra four
once-removed grids. It should be noted that, the spatial stencils of the
FDTD (2, 4) become larger compared to the Yee’s scheme, which would
lead to be troublesome to deal with the PEC and absorbing boundary
conditions. In addition, since the FDTD (2, 4) is based on Yee’s lattice
and the difference between the Yee’s (referred to FDTD (2, 2)) and the
FDTD (2, 4) scheme is just different spatial stencils, it is very easy to

Figure 1. Construction of the FDTD (2, 4) scheme used for
calculating Ex.
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introduce the FDTD (2, 4) scheme into Yee’s FDTD scheme computer
code.

Following the example of Talflove and Hagness [3] the dispersion
relation and stability criterion for the FDTD (2, 4) scheme are obtained

(
1

c∆t

)2

sin2

(
ω∆t

2

)
=

(
1

∆x

)2[9
8

sin
(

kx∆x

2

)
− 1

24
sin

(
3kx∆x

2

)]2

+
(

1
∆y

)2[9
8

sin
(

kx∆y

2

)
− 1

24
sin

(
3kx∆y

2

)]2

+
(

1
∆z

)2[9
8

sin
(

kz∆x

2

)
− 1

24
sin

(
3kz∆x

2

)]2

(14)

where c is the velocity of the light in free space, ω is the wave angular
frequency, kx = k sin θ cosϕ, ky = k sin θ sinϕ, kz = k cos θ, k is the
numerical wave number, θ and ϕ are the usual unit components in the
spherical coordinate, which denote the wave propagation direction. To
investigate the numerical dispersion characteristic of the FDTD (2, 2)
scheme and the FDTD (2, 4) scheme, the parameters are choose as:
ω = 2π × 3 × 108 rad/s, ∆x = ∆y = ∆z = 0.05 m, ∆t = 0.4949∆x/c.
Then, the numerical phase velocity vp could be obtained by vp = ω/k.

Figure 2 compares the numerical phase velocity with overall
propagation directions in both three-dimensional FDTD (2, 2) scheme
and FDTD (2, 4) scheme. It is obvious that the phase velocity of the
FDTD (2, 4) scheme is much closer to the velocity of the light in free

Figure 2. Numerical phase velocity with overall propagation
directions.



150 Ai et al.

space than the FDTD (2, 2) scheme in overall propagations, which
means the physical phase-velocity error [3] of the FDTD (2, 4) scheme
is much less than the FDTD (2, 2) scheme. In addition, the surface
of the FDTD (2, 4) scheme in Figure 2 is much smoother than the
FDTD (2, 2) scheme, which means the velocity-anisotropy error [3] of
the FDTD (2, 4) scheme is more less than the FDTD (2, 2) scheme.

The stability bound for the three-dimensional versions of the
scheme can be given [3]

∆t ≤ (6/7)

c
√

1
(∆x)2

+ 1
(∆y)2

+ 1
(∆z)2

(15)

Obviously, the maximum ∆t permitted for the stability of the FDTD
(2, 4) scheme is 6/7 of the corresponding limit for the Yee’s scheme.

3. HYBRID FDTD (2, 4) SCHEME

However, as mentioned in previous section, there is a serious obstacle
between the FDTD (2, 4) scheme and practical application referred
to analyzing the scattering problems due to its larger spatial stencils
compared to the FDTD (2, 2) scheme. These stencils would make
the scheme inability to model material discontinues such as PEC
boundary condition and absorbing boundary condition. The second
order subgirdding technology has been used to successfully deal with
the problem [18]. The second order subgirdding technology demand
extra memories to store the electric and magnetic fields components
obtained in the previous time steps, therefore, the technology is not
a efficient way to solve the problem result from the larger stencils
of the FDTD (2, 4) scheme. In [17, 24], an alternative but more
efficient hybrid FDTD (2, 4) scheme which has been applied to handle
the PEC boundary condition is to use a few FDTD (2, 2) scheme’s
stencils around the conducting objects and the FDTD (2, 4) scheme’s
stencils everywhere else in the modeled domain. More everthis method
is simpler to implement than the subgirdding technology, and could
reduce the memory and execution time cost.

In this paper, a similar method is used to handle the problem
rooted in the larger stencils of the FDTD (2, 4) scheme encroach into
the absorbing boundary condition’s regions. The FDTD (2, 2) scheme’s
stencils as buffers are introduced into the outer boundary of scattered
field regions. Figure 3 shows the construction of hybrid FDTD (2, 4)
lattice based on the Yee’s scheme. These buffers which made the FDTD
(2, 4) scheme’s stencils do not intrude inside the PML’ regions can be
only one FDTD (2, 2) scheme’s cell thick. It should be pointed out that
the negative influence of these buffers on the overall accuracy could be
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(a) (b)

Figure 3. The construction of hybrid FDTD lattice. (a) 3-D view.
(b) 2-D view at the top plane.

very little due to the numbers of these buffers are restricted to a few
cells. Furthermore, this hybrid FDTD (2, 4) scheme guarantee the
FDTD (2, 4) scheme more convenient to add in the existing computer
code compared to the subgirdding technology. Usually, it only need to
change a few codes to implement this scheme.

4. NUMERICAL RESULT

In this section, two experiments which refer to fundamental problems
in RCS calculation are given to demonstrate validation of the proposed
method in this work. The Mie series [1] are served as a benchmark date
in both experiments. The monochromatic plane wave excitation has
been used in both the example, which defined as follow

Einc =
{

0 t < 0
E0 sin(ωt) t ≥ 0 (16)

where, ω is the angular frequency of the incident wave.
Firstly, the performances of the modified FDTD (2, 4) [20, 23]

scheme and the FDTD (2, 4) scheme used in this work for calculating
the RCS in two-dimension case will be compared in order to illustrate
the discussions in Section 2. The angular frequency of the incident
wave is ω = 2π × 3 × 108 rad/s, which corresponding to wavelength
λ0 = 1 m in free space. The direction of the incident plane wave is
ϕ = 0, where ϕ is the angle between incident direction and the x-axis.
The infinite cylinder with radius a = 2λ0 located at the center of the



152 Ai et al.

Figure 4. Comparison of the modified FDTD (2, 4) and FDTD (2,
4) scheme.

plane. The parameters for both of the schemes have been chosen as:
CPW = 20, ∆x = ∆y = λ0/CPW, ∆t = 0.5∆x/c, where CPW is
the number of cells per wavelength. The thickness of PML is 10 cells.
The comparison of the two scheme has been shown in Figure 4. It can
been see that the modified FDTD (2, 4) scheme do not improve the
accuracy significantly referred to RCS calculation.

Then, we investigate the performance of the hybrid FDTD (2,
4) scheme for RCS calculation in three-dimensional case compared to
the FDTD (2, 2) scheme. All the calculations are carried at a HP
Workstation with 3.0 GHz CPU and 72 GB memory. The angular
frequency of the incident wave is ω = 2π × 3 × 108 rad/s, which is
corresponding to wavelength λ0 = 1 m in free space. The direction of
incident plane wave is θ = 0, ϕ = 0, where θ and ϕ are the usual unit
components in the spherical coordinate, which means the direction is
along z-axis in Cartesian coordinate. The radius of the dielectric sphere
is R = 10λ0, and the relative permittivity of the sphere is εr = 4.0.
For this simulation, CPW = 20, ∆x = ∆y = λ0/CPW for both of
the two schemes. ∆t = 0.5∆x/c and ∆t = 0.4949∆x/c for the FDTD
(2, 2) scheme and the hybrid FDTD (2, 4) scheme respectively. The
thickness of PML is 10 cells, which would minimize the errors caused
by the reflection from the outer boundaries.

The results have been shown in Figure 5. It is clear that the hybrid
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Figure 5. Copolarized RCS of dielectric sphere with radius R = 10λ0.
CPW = 20 for both of the two schemes.

FDTD (2, 4) scheme exhibits much better in tracing the curves of the
benchmark date than the FDTD (2, 2) scheme. The performance of the
FDTD (2, 2) scheme was poor involved in calculating RCS, especially
for the backscattered RCS. And the hybrid FDTD (2, 4) scheme
behaves much finer performance, it can been observed that the hybrid
FDTD (2, 4) could improve the accuracy significantly maintaining the
same CPW as the FDTD (2, 2) scheme. Figure 6 repeats the Figure 5
with the FDTD (2, 2) scheme run at CPW = 30 instead. However, the
performance of the FDTD (2, 2) shown in Figure 6 is not much better
than that shown in Figure 5. Furthermore, the computer resources
that the two schemes cost have been compared. When CPW is 20, The
memory cost of the two schemes are 16.7 GB. Although the memory
cost of the FDTD (2, 2) scheme is the same as the hybrid FDTD (2, 4)
scheme due to the same CPW, the accurate level is much worse than
the hybrid FDTD (2, 4) scheme. More ever, if ones want to improve the
accuracy of the FDTD (2, 2) scheme, the CPW must be large enough,
which will lead to much more memory cost than the hybrid FDTD (2,
4) scheme. Such as when CPW is up to 30 for FDTD (2, 2) scheme,
the memory cost is 48.4 GB, the performance of the scheme is still
not as fine as that of hybrid FDTD (2, 4) scheme shown in Figure 6.
The execution time of the two scheme are 14 hours and 33 minutes
and 23 hours and 22minutes when CPW is 20. Obviously, the hybrid
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Figure 6. Copolarized RCS of dielectric sphere with radius R = 10λ0.
CPW = 20 for hybrid FDTD (2, 4) scheme, CPW = 30 for FDTD (2,
2) scheme.

FDTD (2, 4) have taken more execution times because of the more
numbers of FLOPS than the FDTD (2, 2) scheme. Nevertheless, the
execution time of the FDTD (2, 2) scheme would become longer as the
increased CPW for better accurate level, which would result to more
execution times. Such as when CPW equals to 30 shown in Figure 6,
the execution time is nearly 58 hours. Unfortunately, the parallel
computation technology has not been implemented in our work, if the
technology would be applied in this work, the execution time would
been reduced considerably, and the computational efficiency would
become much higher.

5. CONCLUSION

In this paper, the hybrid FDTD (2, 4) scheme is proposed to analyzed
the far field scattering problems. The scheme consists of both the
classical FDTD (2, 2) scheme and the higher order FDTD (2, 4)
scheme, and a few special FDTD (2, 2) scheme’s cells in the scattered
field region have been used as buffers to avoid that the larger FDTD (2,
4) stencils intrude inside the PML regions. Although there is phase-
mismatching [25] at the interface between the FDTD (2, 2) and FDTD
(2, 4) domain, the numerical results illustrate the proposed scheme
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is more accuracy and more efficient referred to analyzing the RCS
of electrically large targets compared to the classical FDTD (2, 2)
scheme. It should been pointed that the proposed scheme is very easy
to implement, usually, ones only need to add a few codes into the
existing computer code for the classical Yee’s scheme. In our future
work, the parallel computation technology would been implement for
the hybrid FDTD (2, 4) scheme to make the computational efficiency of
the scheme much higher. However, the fit between the results obtained
by the proposed method and Mie theory is not perfect, which is mainly
due to the staircasing approximations of the surfaces of the dielectric
cylinder and spheres. This problem will be deal with in the future
work by implementing conformal technology into the proposed method
in this paper.
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