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Abstract—In this paper, synthesis of unequally spaced linear antenna
arrays based on an inheritance learning particle swarm optimization
(ILPSO) is presented. In order to improve the optimization efficiency
of the PSO algorithm, we propose an inheritance learning strategy
that can be applied to different topology of different PSO algorithms.
In ILPSO algorithm, each cycle contains several PSO optimization
processes, and uniform initial particle positions, part of which inherited
from the good results in pre-cycles, are adopted in post-cycles.
ILPSO enhances the exploration ability of PSO algorithm significantly,
and can escape from the trap of local optimum areas with greater
probability. The results demonstrate good performance of the ILPSO
in solving a set of eight 30-D benchmark functions when compared
to nine other variants of the PSO. The novel proposed algorithm
has been applied in 32-element position-only array synthesis with
three different constraints, simulation results show that ILPSO obtains
better synthesis results reliably and efficiently.
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1. INTRODUCTION

Synthesis of linear antenna arrays is a classic optimization problem in
electromagnetism [1], whose main objective is to find an appropriate
excitation vector and a layout of the elements to generate the desired
radiation pattern.

Various techniques have been developed to array synthesis. The
classic techniques have many practical difficulties in the array design
especially if there exist some restricted conditions [1, 2]. In recent
years, the evolutionary algorithms (EAs) for array synthesis have been
extensively studied [1, 3–17]. Several global optimization algorithms
such as differential evolution (DE) [3–5], genetic algorithm (GA) [6–8],
ant colony optimization (ACO) [9], and particle swarm optimization
(PSO) [10–15] are used in antenna array pattern. However, these
methods appear certain drawbacks to the possibility of premature
convergence to a local optimum when achieving the global optimum.

The synthesis of unequally spaced array has attracted increasing
attention [1, 4, 5, 13, 16, 17]. The main advantage of unequally spaced
antenna array is that the array can work with uniform amplitude
excitation. Compared to equally spaced array which uses non-uniform
amplitude or phased excitation, unequally spaced array can reduce
the system cost and difficulties in designing feeding network [4]. For
antenna engineers it is a big challenge, which mainly originates from the
nonlinear and non-convex dependency of the array factor to element
positions and excitation phases, to synthesize antenna array with
sidelobe level suppression and null control. For unequally spaced linear
array synthesize, especially for position-only (PO), the array synthesis
is much more difficult because only element positions can be adjusted.

In this paper, an inheritance learning particle swarm optimiza-
tion (ILPSO) is applied to position-only synthesis of unequally spaced
arrays. The simulation results show that ILPSO is able to get lower
peak sidelobe levels (PSLLs) than (at least the same as) those reported
in previous literatures [1, 4, 13].

The rest of this paper proceeds as follows. The PSO, ILPSO
are briefed in Section 2 and Section 3 respectively. And Section 4
formulates synthesis of a general linear antenna array. Numerical
results are illustrated in Section 5. Conclusion is drawn in Section 6.

2. PARTICLE SWARM OPTIMIZER

In this section, the classic PSOs are first introduced, followed by the
balance analysis of exploration and the exploitation of classic PSO.
Then the inefficiency reasons are discussed while the classic PSOs are



Progress In Electromagnetics Research, Vol. 118, 2011 207

used to optimize complex multimodal problems.

2.1. Classic PSO

PSO is an evolutionary algorithm proposed by Kennedy and
Eberhart [18] and has been successfully applied to many scientific and
engineering problems [19]. In original PSO, each individual possible
solution is modeled as a particle that moves through the real number
hyperspace of the optimization problem. The position of each particle
is determined by its old position and current velocity [20].

In LDWPSO algorithm, at t+1 iteration, the ith particle’s position
xi and velocity vi are updated as follows:

vij(t+1)=w(t)vij(t)+c1r1j(t)(pij−xij(t))+c2r2j(t)(pgj−xij(t))(1)
w(t)=wmin + (wmax − wmin) · t/max− gen (2)

xij(t + 1)=xij(t) + vij(t + 1) (3)

where i is the particle serial number, j is the dimension number, t is
the time step, max− gen is the total generation number, [wmax, wmin]
are range of inertia weight, w(t) is current inertia weight, pi is the
personal best position of particle i, pg is the global best position of
the particle swarm, c1, c2 are acceleration coefficients, r1j(t), r2j(t)
are random numbers usually uniformly distributed in [0, 1]. Usually,
wmax, wmin are set to 0.9 and 0.4 respectively.

The velocity updating equation has three major components
which refer to the old velocity, the distances between particles, its
best historic position and the global best particle position. The
original PSO algorithm has some deficiencies and cannot ensure the
algorithm convergence. Therefore, to guarantee the convergence and
to prevent the “explosion” of the swarm [20], several considerations
must be taken into account, including limiting the maximum velocity,
selecting acceleration constants, the constriction factor, or the inertia
constant [20, 21].

The introduction of inertia constant brings an important
improvement to PSO algorithm, and the constriction factor can
be considered as a variant of the inertia constant. Appropriate
inertia constant can prevent “swarm explosion” and ensure the swarm
convergence. The inertia constant controls the exploration of the
search space, and can be either implemented as a fixed value or
changing dynamically [22–25]. Commonly, larger inertia constant
makes swarm converge slower with stronger exploration ability, and
vice versa. PSO with a fixed inertia constant is usually used as
standard PSO (SPSO). A linearly decreasing inertia weight particle
swarm optimizer (LDWPSO) has produced good results in many
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applications [22]. The main disadvantage of this method is that once
the inertia weight is decreased, the swarm loses its exploration ability
to search new areas globally.

2.2. Balance of Searching Ability

For any swarm optimization algorithms, the balance between
exploration and exploitation must be taken into account. The
exploration ability of algorithm makes it possible to search the
optimum area in whole parameter multi-space, and the exploitation
ability is used to improve the precision of the solutions found in
optimum area. Poli [26] pointed out that the mean and standard
deviation of swarm in any converged PSO (with inertia constant)
algorithm must tend to a fix finite value. So in any converged PSO
with inertia constantthe swarm distributing space becomes smaller
and smaller while optimization process goes on. And in this process,
the ability of exploration decreases while the ability of exploitation
increases. If the searching time of exploration and exploitation is
better balanced, the performance of the algorithm will be satisfied.
For PSO and most of its variants, the swarm will congregate quickly
to the best position found by swarm when the optimization generation
is large. In this condition, most searching computation is consumed on
exploitation searching. Too much exploitation searching reduces the
optimization efficiency, especially on complex optimization problems.

2.3. Randomicity of Classic PSO

Randomicity is an essential character of evolution optimization
algorithm [26]. No matter how the PSO algorithm is improved,
the optimization results still stays random. The success probability
of optimization may be greater if the improved PSO algorithm has
better performance, and vice versa. In engineering optimization
application, the increment of problem complexity is much larger than
the improvement of optimization algorithm performance. Therefore,
for complex problems, if large optimization generation cannot ensure
algorithms to find the optima result, we can increase the executions to
improve the optimization efficiency.

3. INHERITANCE LEARNING PARTICLE SWARM
OPTIMIZER

From what have been discussed above, we can come to a conclusion
that the balance of searching ability and the optimization randomicity
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are both connected to algorithm performance. Exploration is more
important for a PSO algorithm while optimizing complicated problems.
Without enough exploration searches, exploitation can only improve
the precision in local optimal solution area. Many researches try to
improve the exploration ability of PSO in different ways [19], such
as changing parameter strategies, using different topology structures,
adopting more effective information share strategies, hybridizing
operation of other evolution algorithms (such as GA and DE), and
so on. Different strategies are adopted to make particles share
information more efficiently so that swarm gains better exploration
ability. Unfortunately, most variants of PSO still have no enough
exploration search time while optimizing complex problems with very
large optimization generations.

In order to get better balance searching ability and to take the
randomicity in count, the suitable maximal generation of LDWPSO
and Inheritance Learning (IL) strategy are both discussed. These
strategies are adopted to improve the LDWPSO performance without
any changes to algorithm.

3.1. Maximal Generation of Single PSO Process

Single PSO optimization is a whole optimizing process with the certain
PSO algorithm working on the certain optimization problem. It is
the basis of ILPSO and decides the balance searching ability of whole
algorithm.

When optimizing an appointed optimization problem with large
generations, most of generations in LDWPSO are consumed on
exploitation searching. Most of searching computation is wasted on
useless precision improvement of local optimum solution and have little
contribution to global result. If we set a suitable maximal generation

Table 1. Success optimization results of different maximal generations
and test times (Mg = maximal generation, Tt = test times).

Success

Condition

Success Result of Each Parameter Set (Mg/Tt)

100/

1000

200/

500

400/

250

600/

166

800/

125

1000/

100

< 600 71 75 64 59 57 49

< 500 36 38 36 38 29 30

< 400 15 17 14 18 12 15

< 300 6 7 6 5 4 6

< 200 1 3 2 1 1 1
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for LDWPSO on an appointed problem, the algorithm will end when
swarm congregates to a small area with enough solution precision.
Then, the computation can be used as much as possible on exploration
search.

For example, we use 10-D Schwefel function as the benchmark, the
w range of LDWPSO is [0.9, 0.4], the particle population is 10. When
search computation is set to 10 + E5, there are different combinations
with different maximal generations and test times. The optimization
results with different combinations are given in Table 1.

For 10-D Schwefel function, the global optimal is 0. Table 1 shows
that the algorithm has the best efficiency when maximal generation is
set to 200. So suitable maximal generation can make LDWPSO have

Figure 1. Algorithm frame of ILPSO. smg = single maximal
generation. st = PSO process in one cycle. ct = cycle times.
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a better balance of searching ability and can improve the algorithm
computation efficiency.

3.2. Inheritance Learning PSO

Though we can improve LDWPSO performance and success
probability by suitable use of LDWPSO, the precision problem still
exists. In Table 1, most results are higher than 500. The suitable
maximal generation strategy improves the balance searching ability
and the success probability of LDWPSO, but the solution precision is
still not satisfying. In order to keep a balance of searching ability and
improve the results precision, the inheritance learning PSO (ILPSO)
is presented. The ILPSO can serve as a frame or a container for single
PSO optimization processes, and its details are given in Figure 1.

ILPSO works with process cycles, each of which is consist of
a number of single PSO optimizing processes. Each single PSO
optimizing process uses the same parameter set, such as w, c1, c2,
population size and maximal generation. The maximal generation is
suitable for better balance searching ability.

In an ILPSO cycle, a number of single PSO process are executed
independently. This strategy helps ILPSO to escape from the trap
of local optimum area with greater probability. Processes in one
cycle (except the first cycle) using uniform initial particle position
which inherited from previous cycle. ILPSO works with tremendous
balance searching abilities and swarm diversities, which improves
algorithm performance greatly in a simple way, especially on complex
multidimensional problems with a very large maximal generation.

3.3. Simulation of ILPSO Algorithm

To verify its effectiveness, ILPSO has been applied to classical
benchmark functions. All simulations are conducted in a Windows 7
Professional OS environment using 12-core processors with Intel Xeon
(R), 3.33 GHz, 72 GB RAM and the codes are implemented in Matlab
7.10.

3.3.1. Benchmark Functions

In this section, eight benchmark functions are employed, including
unimodal and multimodal functions in [27, 28]. The test functions,
search ranges and optimal goals are listed in Table 2.
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Table 2. Benchmark functions.

Function

Index

Function

Name
f(x∗)

Initialization

Range

Search

Range
Dimension

f1 Sphere 0 [−100, 100]D
[−100,

100]D
30

f2 Rosenbrock 0 [−2.048, 2.048]D
[−2.048,

2.048]D
30

f3 Ackley 0 [−32.768, 32.768]D
[−32.768,

32.768]D
30

f4 Griewank 0 [−600, 600]D
[−600,

600]D
30

f5 Weierstrass 0 [−0.5, 0.5]D
[−0.5,

0.5]D
30

f6 Rastrigin 0 [−5.12, 5.12]D
[−5.12,

5.12]D
30

f7
Noncontinuous

Rastrigin
0 [−5.12, 5.12]D

[−5.12,

5.12]D
30

f8 Schwefel 0 [−500, 500]D
[−500,

500]D
30

3.3.2. Parameter Settings

Most PSO algorithms can get better results for simple problems or
lower dimensions problems, so we test ILPSO algorithm on the eight
benchmark functions with 30 dimensions. The global optima x∗, the
corresponding fitness value f(x∗), the search ranges [Xmin, Xmax],
and the initialization range of each benchmark function are listed in
Table 3.

When solving 30-D benchmark functions, LDWPSO is employed
as the single PSO process of ILPSO. The population size is set to 40
and the total generations is set to 200 000. The inertia weight range is
[0.4, 0.9], the single PSO maximal generation of ILPSO is set to 1000.
There are 10 single PSO processes in one cycle. Each experiment runs
30 times. The mean values and standard deviation of the results are
presented in Table 3 and compared with the results in [28].

3.3.3. Discussion

The ILPSO achieves the global optima on most complex multimodal
problems. By analyzing the results of the ILPSO on 30-D problems,
the conclusion is that the ILPSO does not perform the best for
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Table 3. Results for 30D Benchmark functions (40 particles, 200000
generation).

9.78e - 030 ± 2.50e - 029

Func
PSOs

Sphere (f1) Rosenbrock (f2) Ackley (f3) Griewank (f4)

PSO-w [28]

PSO-cf [28]

PSO-w-local [28]

PSO-cf-local [28]

UPSO [28]

FDR [28]

FIPS [28]

CPSO-H [28]

CLPSO [28]

ICLPSO

Func
PSOs

PSO-w [28]

PSO-cf [28]

PSO-w-local [28]

PSO-cf-local [28]

UPSO [28]

FDR [28]

FIPS [28]

CPSO-H [28]

CLPSO [28]

ICLPSO

2.933 + 001 ± 2.51e + 001 3.94e - 014 ± 1.12e + 000 8.13e - 003 ± 7.16e - 003

5.88e - 100 ± 5.40e - 100 1.11e + 001 ± 1.81e + 000 1.12e + 000 ± 8.65e - 001 2.06e - 002 ± 1.90e - 002

5.35e - 100 ± 4.41e - 013 2.39e + 001 ± 3.07e + 000 9.10e - 008 ± 8.11e - 008 5.91e - 003 ± 6.69e - 003

7.70e - 030 ± 2.50e - 029 1.71e + 001 ± 9.16e - 001 5.33e - 015 ± 1.87e - 015 5.91e - 003 ± 8.70e - 003

4.17e - 087 ± 3.15e - 087 1.51e + 001 ± 8.14e - 001 1.22e - 015 ± 3.16e - 015 1.66e - 003 ± 3.07e - 003

4.88e - 102 ± 1.53e - 101 5.39e + 000 ± 1.67e + 000 2.84e - 014 ± 4.10e - 015 1.01e - 002 ± 1.23e - 002

2.69e - 012 ± 6.84e - 013 2.45e + 001 ± 2.19e - 001 4.81e - 007 ± 9.17e - 008 1.16e - 006 ± 1.87e - 006

1.16e - 113 ± 2.92e - 113 7.08e + 000 ± 8.01e + 000 4.93e - 014 ± 1.10e - 014 3.63e - 002 ± 3.60e - 002

4.46e - 014± 1.73e - 014 2.10e + 001 ± 2.98e + 000 0 ± 0 3.14e - 010 ± 4.46e - 010

0 ± 01.33e - 001 ± 7.28e - 001 8.941e - 015 ± 2.46e - 0151.31e - 081± 2.15e - 081

Weierstrass (f5) Rastrigin (f6)
Noncontinuous
Rastrigin (f7)

Schwefel (f8)

1.30e - 004 ± 3.30e - 004 2.90e + 001 ± 7.70e + 000 2..97e + 001 ± 1.39e + 001 1.10e + 003 ± 2.56e + 002

4.10e + 000 ± 2.20e + 000 5.62e + 001 ± 9.76e + 000 2.85e + 001 ± 1.14e + 001 3.78e + 003 ± 6.02e + 002

4.94e - 003 ± 1.40e - 002 2.72e + 001 ± 7.58e + 000 2.08e + 001 ± 4.94e + 000 1.53e + 003 ± 3.00e + 002

1.16e - 001 ± 2.79e - 001 4.53e + 001 ± 1.17e + 001 1.54e + 001 ± 1.67e + 001 3.78e + 003 ± 5.37e + 002

9.60e+ 000 ± 3.78e + 000 6.59e + 001 ± 1.22e + 001 6.34e + 001 ± 1.24e + 001 4.84e + 003 ± 4.76e + 002

7.49e - 003 ± 1.14e - 002 2.84e + 001± 8.71e + 000 1.44e + 001 ± 6.28e + 000 3.61e + 003 ± 3.06e + 002

1.54e - 001 ± 1.48e - 001 7.30e + 001 ± 1.24e + 001 6.08e + 001 ± 8.35e + 000 2.05e + 003 ± 9.58e + 002

1.00e - 010 ± 3.16e - 001 1.08e + 003 ± 2.59e + 002

3.45e - 007 ± 1.94e - 007 4.85e - 010 ± 3.63e - 010 1.27e - 012 ± 8.79e - 013

0 ± 0

7.82e - 015 ± 8.50e - 015 0 ± 0

4.36e - 010 ± 2.44e - 010

0 ± 0 0 ± 0 1.12e + 003 ± 2.10e + 002

*

* The result precision of Ackley functions is limited by the computer platforms, when x* = [0, 0, ..., 0]   , the f(x*) = 8.88e - 016
30

sphere function. As mentioned above, the ILPSO uses an inheritance
learning strategy to get better exploration searching ability, and the
exploitation ability is decreased with same maximal generation. More
generation should be needed to improve the result precision of sphere
function. This is the cost for ILPSO to obtain better performance on
complex multimodal problems. Therefore, it is difficult for one PSO
variant to get the best performance on all classes of problems. The
simple unimodal problems can be easily optimized by many algorithms,
and the main improvements for PSO are focused on improving the
PSO’s performance on complex multimodal problems.

From the results above we can conclude that ILPSO improves
the optimization efficiency of LDWPSO greatly and ILPSO can get
better results than most mentioned PSOs in [28] on most benchmark
functions. This property is due to the ILPSO novel learning strategy.
Each PSO process learns from the best results of previous cycle, and
uses a suitable maximal generation to ensure the balance searching
ability, so the success probability is improved greatly. If the number
of single PSO process in one cycle becomes larger, the ILPSO can get
better performance on all benchmark functions.
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4. ARRAY FACTOR AND SYNTHESIS OBJECTIVE

4.1. Array Factor

The array factor of a linear antenna array at angle θ can be expressed
as (4):

AF(θ) =
N∑

i=−N

Iie
j( 2π

λ
xi sin(θ)+φi) (4)

where Ii, ϕi and λ are the excitation amplitude, phase of the element
located at xi and the wavelength respectively. For a position-only array
synthesis with 2N -element linear array symmetrically located along the
x-axis (with no element located at zero), (4) becomes:

AF(θ) = 2
N∑

i=1

ej( 2π
λ

xi sin θ) (5)

4.2. Synthesis Objective

The goal of pattern synthesis optimization is to find the optimum
element positions, so the sidelobe suppression, beamwidth and null
control can meet with the setting target.

Usually, the above constraints are combined with one cost function
by computing their proportion sum. Then the optimization problem
is defined by the minimization of the objective function.

In this paper, the peak sidelobe level (PSLL) of the antenna array
is defined as

PSLL(x) = max
∀θ∈S

AF(θ)
|AF(θ0)| (6)

where S is the space spanned by angle excluding the mainlobe with
the center at θ0. In this paper, without loss of generality, θ0 is set to
zero.

Thus, the objective function to be minimized can be written as:

f(x) = α1 · PSLL(x) + α2 ·max{0, (BW− BWd)
+α3 ·max{0,max{AFx

dB(θk)
∀θk∈Ψ

} − CdB}} (7)

where BW is the calculated beamwidth, BWd is the desired beamwidth,
CdB is the desired null level in dB, and Ψ is the aggregate of desired
null angles. α1, α2, α3 are proportion of each part, and are usually set
to 0.8, 0.1, 0.1 respectively.
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5. NUMERICAL RESULTS

In this section, ILPSO is applied to synthesize a 32-element symmetric
linear array with three different constraints. The synthesis of this array
has been studied before by other researchers [1, 4, 13]. For each test,
the independent run times is 20, the population size is set to 60 and
the total FE is set to 100 000. The inertia weight range is [0.4, 0.9],
the single PSO maxima generation of ILPSO is set to 200, the PSO
process number in one cycle is set to 50. Since the array synthesis is
symmetrical, only the 16 element positions in one origin side are given
in the all following simulation results.

5.1. Synthesis of Unequally Spaced Linear Array with PSLL
Constraint

The first example is desired to synthesize a 32-element array factor
with low PSLL by optimizing only elements positions. As the example
in [4], the adjacent elements’ distance is between 0.5λ and λ. Since
PSLL is the only optimize goal, proportions of (9) are set to 1.0, 0, 0
respectively.

The best PSLL is −22.65 dB, same as the result in [4]. But the
total FE in this paper is 100 000, much less than 500 000 in [4]. The
corresponding element positions and radiation pattern are shown in
Table 4 and Figure 2.

5.2. Synthesis of Unequally Spaced Linear Array with
PSLL, BW and NULL Constraints

The second example is that of a 32-element array with a desired null
at the direction of 9 [1, 13]. The desired null level is at −60 dB. The
desired beamwidth is set to 7.1◦ ± 14%.

Table 4. Element positions of the first example (normalized with
respect to λ/2).

Element Number 1 2 3 4

Position 0.5 1.5 2.5 3.5

Element Number 9 10 11 12

Position 9.1382 10.1929 11.275 12.9395

Element Number 5 6 7 8

Position 4.5 5.5 6.58 7.58

Element Number 13 14 15 16

Position 14.781 16.473 18.3671 20.2034
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Figure 2. Best radiation pattern of the first example.

Figure 3. Best radiation pattern of the second example.

Unlike most researches, the minimum of adjacent elements’
distance is smaller than 0.5λ in [1, 13], so the range of adjacent
elements’ distance may be set between 0.45λ and λ, which makes
synthesis easier. However, smaller adjacent elements’ distance may
cause mutual coupling and grating lobes. When adjacent elements’
distance is smaller than 0.5λ, formula (5) will not be appropriate
anymore. Just for comparison, we keep the same search range as [1, 13].

Here the weighting factors α1 = 0.8, α2 = 0.1, α3 = 0.1.
Figure 3 presents the array pattern optimized by ILPSO. The

array geometry for this case is given in Table 5.
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In Figure 3, the best pattern found by ILPSO has PSLL =
−23.5 dB, while the one in [1] was−23.17 dB and in [13] was−22.75 dB,
comparing to −63.16 dB in [1] and −60 dB in [13]. The null level at 9◦
found by ILPSO is −73 dB.

5.3. Synthesis of Unequally Spaced Linear Array with PSLL
and NULL Constraints

The final example is that of a 32-element array with nulls in three
specified directions, the desired null directions are at 30◦, 32.5◦, and 35◦
respectively, but the range of adjacent elements’ distance is set between
0.5λ and λ, same as the first example. This example is a complex multi-
object optimization, and is more difficult than the above two examples.

Table 5. Element positions of the second example (normalized with
respect to λ/2).

Element Number 1 2 3 4

Position 0.45 1.2695 2.1421 2.9724

Element Number 9 10 11 12

Position 7.6649 8.8106 9.9363 11.1742

Element Number 5 6 7 8

Position 3.8845 4.7906 5.6967 6.7281

Element Number 13 14 15 16

Position 12.6143 14.3151 16.2368 17.6184

Figure 4. Best radiation pattern of the third example.
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Table 6. Element positions of the third example (normalized with
respect to λ/2).

Element Number 1 2 3 4

Position 0.5 1.5 2.5 3.5

Element Number 9 10 11 12

Position 8.9174 10.1844 11.4062 12.9946

Element Number 5 6 7 8

Position 4.5 5.5 6.5213 7.5504

Element Number 13 14 15 16

Position 14.4273 16.4008 18.3917 19.8073

The desired null level is at −60 dB. The desired beamwidth is set to
8◦. The best result is shown in Figure 4, with a −22.1 dB PSLL,
7.6◦ beamwidth and −64 dB null level. The corresponding element
positions and radiation pattern are shown in Table 6.

6. CONCLUSION

This paper illustrated the use of PSO algorithm in the pattern synthesis
of antenna arrays. And a novel PSO algorithm named ILPSO is
proposed. ILPSO can provide better global searching ability and can
easily escape from the local optimum. In each cycle, for a better
balance of searching ability, single PSO process works with a suitable
maximal generation. The inheritance learning between cycles can
strengthen the swarm diversity and keep the exploration ability.

ILPSO finds the global optima in most of eight 30-D benchmark
functions. It works more effectively and adaptively on different
problems when compared to nine other PSO variants [28]. ILPSO
can significantly improve the PSO’s performance and find the global
optima on most benchmark functions whether they are rotated or not.

In addition, numerical examples of position-only synthesis of
unequally spaced linear array have been studied and presented. When
applying to the maximum sidelobe level suppression, ILPSO acquires
at least equivalent performance to [4], but with smaller optimization
generation. For the multi-objective synthesis with beamwidth,
null point and sidelobe level suppression, ILPSO obtains better
performance while compared to other proposals reported in [1, 13]. The
results of ILPSO indicate its potential ability in the antenna designs
for a wide class of electromagnetic applications.
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