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Abstract—Simple normalized dispersion relations for transverse
magnetic (TM) and transverse electric (TE) propagating modes in
parallel-plate waveguides filled with DPS/DPS or DNG/DNG, and
DNG/DPS bilayers are presented. The evanescent TE0 mode of the
waveguide filled with a DNG/DPS bilayer is characterized also by a
simple normalized dispersion relation. Since an important behavior
of the modes in the waveguide filled with a DNG/DPS bilayer is
the existence of a turning point (TP) at which the power carried
by the respective mode on the propagation direction equals zero and
changes the sign, we present also implicit relations for determining
the normalized parameters of the TM and TE modes at that TP. We
show that the TP begins to exist at certain values of the normalized
parameter v2 characterizing the DPS layer. For both the TM and TE
modes, the higher is the mode order, the greater is the v2 parameter at
which the TP begins to exist, but the behavior of the TP is different
for the TM and TE modes.

1. INTRODUCTION

The double-negative (DNG) materials having both negative permittiv-
ity and negative permeability, enjoy an increased interest, especially
because of their physical properties which are different from those of
the conventional double-positive (DPS) materials. Veselago [1] was the
first to study theoretically the DNG materials. Various aspects of this
class of metamaterials have been studied for example in [2–22].

Interesting characteristics of the guided modes in the parallel-
plate waveguides filled with bilayers of DPS and DNG materials have
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been revealed previously in [9, 13] but in terms of different physical
parameters. In this paper we present simple normalized dispersion
relations for the guided or evanescent modes in the parallel-plate
waveguides filled with DPS/DPS, or DNG/DNG, and DNG/DPS
bilayers. Numerical examples are given showing dispersion curves
of the lower order modes and the total normalized power carried
on the propagation direction by the respective modes. Examples of
electromagnetic fields inside the waveguide are also given.

It has been shown in [9, 15] that an important behavior of the
modes in a grounded DNG slab and in the parallel-plate waveguide
filled with a DNG/DPS bilayer is the existence of a turning point
(TP) at which the power carried by each mode of order m > 0 equals
zero and changes the sign. In this paper we present implicit relations
for determining the normalized parameters at that TP for the guided
modes in the parallel-plate waveguide filled with a DNG/DPS bilayer.
Behaviors of the TPs are outlined by numerical examples.

2. GENERAL RELATIONS

We consider a parallel-plate waveguide, made of two infinitely extent
perfectly electric conducting plates separated by the distance d =
d1 + d2, as shown in Fig. 1. The waveguide is filled with a pair
of parallel layers made of DNG and DPS materials. The two layers
are characterized by their thicknesses d1 and d2, and the relative
constitutive parameters (ε1, µ1) and (ε2, µ2), which are assumed
real, nondispersive, and nondimensional, with ε1µ1 > ε2µ2. A
monochromatic time-harmonic variation exp(iωt) is assumed. The z
axis is chosen as direction of propagation of the guided modes whose
electromagnetic field varies as exp[i(ωt − βz)], where β is the modal
phase constant. For transversal magnetic (TM) modes, the magnetic
field is along the y direction, whereas it is the electric field along the
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Figure 1. Geometry of the parallel-plate waveguide filled with a
bilayer of relative material constants (ε1, µ1) and (ε2, µ2).
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y direction in the case of transversal electric (TE) modes. Thus, the
magnetic field Hy for the TM modes takes the form

Hy =
{

cos(kt1x) for 0 < x < d1

A cos[kt2(x−d1)]+B sin[kt2(x−d1)] for d1 <x<d1+d2
(1)

where the factor exp(−iβz) is skipped, and

A = cos(kt1d1), B = −kt1ε2
kt2ε1

sin(kt1d1) (2)

Similarly, the electric field Ey for the TE modes takes the form

Ey =
{

sin(kt1x) for 0 < x < d1

A sin[kt2(x−d1)]+B cos[kt2(x−d1)] for d1 <x<d1+d2
(3)

where the factor exp(−iβz) is skipped, and

A =
kt1µ2

kt2µ1
cos(kt1d1), B = sin(kt1d1) (4)

where ktj , with j = 1, 2, is defined by relation

ktj =

{√
k2

0εjµj − β2 when β̄2 < εjµj

−i
√

β2 − k2
0εjµj when β̄2 > εjµj

(5)

β̄ = β/k0 is the relative phase constant, k0 = ω
√

ε0µ0 is the
wavenumber in vacuum. The total normalized power carried by each
mode on the z direction takes the form

P̄ = (P1 + P2)/(|P1|+ |P2|) (6)
where P1 and P2 are given up to a common factor by

P1 ∝ 1
ε1

∫ d1

0
|Hy|2dx, P2 ∝ 1

ε2

∫ d1+d2

d1

|Hy|2dx, (7)

for the TM modes, and similarly

P1 ∝ 1
µ1

∫ d1

0
|Ey|2dx, P2 ∝ 1

µ2

∫ d1+d2

d1

|Ey|2dx (8)

for the TE modes.

3. DISPERSION RELATIONS

Dispersion relations are determined either by applying the boundary
conditions of the tangential electromagnetic fields at interfaces or from
the poles of the complex amplitude reflection coefficients expressed in
terms of the transfer matrix elements [23], taking into account that the
perfectly electric conducting plates of the waveguide are characterized
by an infinite permittivity and zero permeability [24].
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3.1. The Case β̄2 < ε2µ2 < ε1µ1

The following dispersion relation results [9, 13]

kt1

ε1
tan(kt1d1) +

kt2

ε2
tan(kt2d2) = 0 (9)

for TM modes, and

µ1

kt1
tan(kt1d1) +

µ2

kt2
tan(kt2d2) = 0 (10)

for TE modes. Here we introduce the normalized parameters

vj = k0dj , uj =
√

εjµj − β̄2, j = 1, 2 (11)

Using relation (11) in (9) and (10) gives

ε1
ε2

tan(u2v2) +
u1

u2
tan(u1v1) = 0 (12)

for TM modes, and

µ1

µ2
tan(u1v1) +

u1

u2
tan(u2v2) = 0 (13)

for TE modes. The normalized dispersion relation of the guided modes
is

v1 = (1/u1)
{
tan−1 [γ tan(u2v2)] + mπ

}
, m = 0, 1, 2, . . . (14)

where

γ =
{−ε1u2/(ε2u1) for TM modes
−µ2u1/(µ1u2) for TE modes

(15)

Note that, for simplicity, we label the modes by m without any
reference to the standard mode labeling of DPS slabs. The cutoff
β̄ = 0 is determined from (14),

v1 = (1/
√

ε1µ1)
{
tan−1[γc tan(v2

√
ε2µ2)] + mπ

}
(16)

where

γc =
{−ε1

√
ε2µ2/(ε2

√
ε1µ1) for TM modes

−µ2
√

ε1µ1/(µ1
√

ε2µ2) for TE modes
(17)

From relations (12) and (13) one can see that the cutoff v1 = 0, when it
exists, is determined by u2v2 = lπ for the TM and TE modes, where
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l is an integer number. Thus, when the cutoff v1 = 0 exists, it is
determined by relation

β̄ =
√

ε2µ2 − l2π2/v2
2 (18)

for the TM and TE modes. From relations (12) and (13) one can see
also that when u1v1 = u2v2, a nondispersive mode [9, 13] exists in the
waveguide filled with a DNG/DPS bilayer, which satisfies the relation

ε1/ε2 + u1/u2 = 0 (19)

for the TM mode, and

µ1/µ2 + u1/u2 = 0 (20)

for the TE mode.

3.2. The Case ε2µ2 < β̄2 < ε1µ1

In this case, kt2 in (5) is imaginary, and

kt2d2 = −ik0d2

√
β̄2 − ε2µ2 = −iv2ũ2 (21)

where
ũ2 =

√
β̄2 − ε2µ2 (22)

The normalized dispersion relation of the guided modes is

v1 = (1/u1)
{
tan−1[γ̃ tanh(ũ2v2)] + mπ

}
(23)

where

γ̃ =
{

ε1ũ2/(ε2u1) for TM modes
−µ2u1/(µ1ũ2) for TE modes

(24)

3.3. The Case β̄2 > ε1µ1 > ε2µ2

In this case, kt1 and kt2 in (5) are imaginary, but in the parallel-plate
waveguide filled with a DNG/DPS bilayer there is a TE0 mode with
real values of β̄ [9, 13]. At β̄2 = ε1µ1, v1 is determined by relation

v1 = −(µ2/µ1) tanh(v2
√

ε1µ1 − ε2µ2)/
√

ε1µ1 − ε2µ2 (25)

The mode TE0 is evanescent and satisfies the normalized dispersion
relation

v1 = (1/ũ1) tanh−1 [−µ2ũ1/(µ1ũ2) tanh(ũ2v2)] (26)

where ũ2 is defined by (22) and ũ1 is defined similarly. Since µ1 has
negative values, v1 in (26) has real values, with v1 → 0 when β̄ →∞.
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4. NUMERICAL EXAMPLES

4.1. Parallel-plate Waveguide Filled with a DPS/DPS (or
DNG/DNG) Bilayer

Consider the parallel-plate waveguide filled with a DPS/DPS bilayer
of relative material constants (ε1, µ1) = (4, 2) and (ε2, µ2) = (2, 1.5).
Dispersion curves are shown in Figs. 2(a) and (b) for the TM and TE
modes, respectively. At greater values of v2 and β̄2 < ε2µ2, there are
composed modes [19]. As for example, in Fig. 2(a), at v2 = 1.5, the
second mode is a compound of m = 0 and m = 1 modes. Thus, it is
more easy to look after the modes starting from the upper region of
the dispersion curves, at β̄2 > ε2µ2. The cutoffs β̄ = 0 are given by
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Figure 2. The relative phase constant β̄ of (a) TM and (b) TE
modes in the parallel-plate waveguide filled with a DPS/DPS bilayer
of relative material constants (ε1, µ1) = (4, 2) and (ε2, µ2) = (2, 1.5),
versus the normalized parameter v1, when v2 is constant: v2 = 0.5
(dashed line), v2 = 1.5 (thin line, marker .), and v2 = 3 (thick line,
marker +). Only the lower order modes are represented: m = 0 (red),
m = 1 (blue), m = 2 (magenta), m = 3 (cyan), and m = 4 (green).
The fields Hy and Ey are represented in (c) and (d), at the points
shown in (a) and (b) by black markers, when v2 = 1.5. For the TM
modes in (c), v1 = 2, with β̄ = 1.44 (full line), and β̄ = 2.03 (dashed
line). For the TE modes in (d), v1 = 2, with β̄ = 1.47 (full line), and
β̄ = 2.5 (dashed line).
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Figure 3. Dispersion curves for (a) TM and (b) TE modes in the
parallel-plate waveguide filled with a DPS/DPS bilayer of relative
material constants like in Fig. 2, when v1 = v2.

relation (16) and they are the same for the TM and TE modes. For
TM and TE modes, β̄2 does not exceed the value ε1µ1. In Fig. 2(a),
the TM0 mode has a cutoff v1 = 0 at β̄ =

√
ε2µ2 =

√
3, which is the

same for different values of v2. At v2 = 3, there is one more cutoff
v1 = 0 at β̄ = 1.3796, which is determined from (18) with l = 1.
That cutoff is the same for the TM and TE polarizations. The fields
attain maximum values in the first layer. At β̄2 > ε2µ2, the fields are
evanescent in the second layer, as shown by the dashed line in Figs. 2(c)
and (d).

Note that, for the parallel-plate waveguide filled with a
DNG/DNG bilayer of relative material constants (ε1, µ1) = (−4,−2)
and (ε2, µ2) = (−2,−1.5), the dispersion curves are the same like
in Figs. 2(a) and (b), the single difference being in the sign of the
total normalized power P̄ carried by the modes on the propagation
direction: in the DPS/DPS bilayer P̄ = +1, the modes representing
forward waves, whereas in the DNG/DNG bilayer P̄ = −1, the modes
representing backward waves. Figs. 3(a) and (b) show dispersion curves
for the TM and TE modes in the parallel-plate waveguide filled with
a DPS/DPS bilayer of relative material constants like in Fig. 2, when
v1 = v2.

4.2. Parallel-plate Waveguide Filled with a DNG/DPS
Bilayer

4.2.1. The Case ε1µ1 > ε2µ2

Consider the parallel-plate waveguide filled with a DNG/DPS bilayer of
relative material constants (ε1, µ1) = (−4,−2) and (ε2, µ2) = (2, 1.5).
Dispersion curves are shown in Figs. 4(a) and (b) for the TM and TE
modes, respectively. Although the relative material constants differ
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Figure 4. Dispersion curves for (a) TM and (b) TE modes in the
parallel-plate waveguide filled with a DNG/DPS bilayer of relative
material constants (ε1, µ1) = (−4,−2) and (ε2, µ2) = (2, 1.5), when
v2 is constant: v2 = 0.5 (dashed line), v2 = 1.5 (thin line, marker .),
and v2 = 3 (thick line, marker +). The colors are kept the same
like in Fig. 2. The TPs are marked by small circles. The total
normalized power P̄ carried by each mode on the propagation direction
is represented in (c) and (d) for the TM and TE modes, respectively.

only by the sign of ε1 and µ1, the dispersion curves in Fig. 4 are much
different from those in Fig. 2. Like in the case of a DPS/DPS bilayer,
the dispersion curves overlap in the upper region, at β̄2 > ε2µ2, but in
the lower region, at β̄2 < ε2µ2, there are composed modes. Thus, it is
more easy to look after the modes starting from the upper region of the
dispersion curves, at β̄2 > ε2µ2. The cutoffs β̄ = 0 are given by relation
(16) and they are the same for the TM and TE modes. The cutoffs
v1 = 0 are the same like in the previous case of a DPS/DPS bilayer.
In Fig. 4(b), the TE0 mode allows real solutions at β̄2 ≥ ε1µ1, the
starting point being marked by an asterisk. At great values of v2, each
TM and TE mode with m 6= 0 has at least one TP at which the total
power carried on the z direction equals zero and changes the sign. Note
that the TPs are more distinctly seen on the P̄ against v1 curves in
Figs. 4(c) and (d) than on the dispersion curves. We denote the values
of β̄ and v1 at the TP by β̄TP and v1TP , respectively. In Fig. 4(a), the
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mode TM1 at v2 = 0.5 has two TPs which are more distinctly seen in
Fig. 4(c). Between the two TPs, P̄ has positive values. Beyond the
two TPs at m = 1 and at m = 2 and 3, P̄ has negative values for the
TM modes at v2 = 0.5. At v2 = 1.5, the TM mode with m = 1 has
one TP, whereas the modes with m = 2 and 3 in the upper region have
two TPs which are more distinctly seen in Fig. 4(c), P̄ having positive
values between the two TPs. In Fig. 4(b), at v2 = 3, there is one TP
for each TE mode with m 6= 0, the TPs at m = 2 and m = 3 being
almost overlapped, but at v2 < 3, there is a single TP for the TE mode
with m = 1 at v2 = 1.5. The fields Hy and Ey are shown in Figs. 5(a)
and (b) for the TM and TE modes, respectively. The behavior of the
fields at the DNG-DPS interface is different from that at the interface
between the DPS layers in Fig. 2. Fig. 6 shows the dispersion curves
of the TM and TE modes in the parallel-plate waveguide filled with
a DNG/DPS bilayer of relative material constants like in Fig. 4, when
v1 = v2. The dispersion curves in Figs. 6(a) and (b) are much different
from those in Fig. 3. On the same interval of v1 = v2 variation, in Fig. 6
there are only two modes for each TM or TE polarization, contrary
to Fig. 3 which shows a multitude of modes. Each mode of Figs. 6(a)
and (b) has a TP at which P̄ = 0, as shown in Figs. 6(c) and (d),
respectively.

4.2.2. The Case ε1µ1 = ε2µ2 with ε1 = −ε2 and µ1 = −µ2

Consider the parallel-plate waveguide filled with a DNG/DPS bilayer
of relative material constants (ε1, µ1) = (−4,−2) and (ε2, µ2) = (4, 2).
Since the dispersion curves are the same for the TM and TE modes,
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Figure 5. The field Hy in (a) and Ey in (b) for the TM and TE modes
in the parallel-plate waveguide filled with a DNG/DPS bilayer at the
points shown in Figs. 4(a) and (b) by black markers, when v2 = 3. For
the TM mode in (a), v1 = 2.25, with β̄ = 1.62 (full line), and β̄ = 2.72
(dashed line). For the TE mode in (b), v1 = 2.5, with β̄ = 1.4 (full
line), and β̄ = 2.4 (dashed line).
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Figure 6. Dispersion curves for (a) TM and (b) TE modes in the
parallel-plate waveguide filled with a DNG/DPS bilayer of relative
material constants like in Fig. 4, when v1 = v2. The total normalized
power P̄ carried by each mode on the propagation direction is
represented in (c) and (d) for the TM and TE modes, respectively.

Fig. 7 refers only to the TE modes. A nondispersive mode satisfying
relation (20) exists at v1 = v2, as shown in Figs. 7(a) and (b), which
allows any value of β̄ from 0 to ∞. At v1 > v2, the total normalized
power P̄ carried on the propagation direction has negative values (the
modes are backward waves), whereas at v1 < v2, P̄ has positive values
(the modes are forward waves), as shown in Figs. 7(c) and (d).

4.2.3. The Case ε1µ1 = ε2µ2 with ε1 = −µ2 and µ1 = −ε2

Consider the parallel-plate waveguide filled with a DNG/DPS bilayer
of relative material constants (ε1, µ1) = (−4,−2) and (ε2, µ2) = (2, 4).
Since the dispersion curves are the same for the TM and TE modes,
Fig. 8 refers only to the TE modes. An intricate mode exists at v1 ≈ v2,
as shown in Figs. 8(a) and (b), which has two TPs in (a) and four TPs
in (b). The total normalized power P̄ has positive values between the
two TPs of the same order m, as shown in Figs. 8(c) and (d). The
modes at v1 > v2 have P̄ < 0, whereas the modes at v1 < v2 have
P̄ > 0. In Fig. 8(c), the mode with m = 2 has P̄ ≈ 0 at v1 = 3, but P̄
does not change the sign, and so, there is not a TP at that value of v1.
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Figure 7. Dispersion curves for the TE modes in the parallel-plate
waveguide filled with a DNG/DPS bilayer of relative material constants
(ε1, µ1) = (−4,−2) and (ε2, µ2) = (4, 2), when (a) v2 = 1.5 and (b)
v2 = 2.5. The total normalized power P̄ carried by each mode of (a)
and (b), is represented in (c) and (d), respectively.

5. IMPLICIT RELATIONS AT THE TP

Since the TP is an important characteristic of the modes in the parallel-
plate waveguide filled with a DNG/DPS bilayer, here we present
implicit relations for determining β̄TP when v2 is constant.

5.1. The Case β̄2 < ε2µ2 < ε1µ1

At the TP, v1 is minimum, and dv1/dβ̄ = 0. Since du1/dβ̄ 6= 0, we use
relation dv1/du1 = 0 with the view to finding an implicit relation at
the TP. Thus, we obtain the following implicit relation for determining
β̄TP when v2 is constant,

γt2 = tan
{

γ

1 + γ2t22

[
σηt2 +

u2
1v2

u2

(
1 + t22

)]}
(27)
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Figure 8. Dispersion curves for the TE modes in the parallel-plate
waveguide filled with a DNG/DPS bilayer of relative material constants
(ε1, µ1) = (−4,−2) and (ε2, µ2) = (2, 4), when (a) v2 = 1.5 and (b)
v2 = 2.5. The total normalized power P̄ carried by each mode of (a)
and (b), is represented in (c) and (d), respectively.

where γ is defined by relation (15), t2 = tan(u2v2), η = 1−u2
1/u2

2, and

σ =
{−1 for TM modes

1 for TE modes
(28)

Once β̄TP is determined from (27), the respective value v1TP is obtained
from (14).

5.2. The Case ε2µ2 < β̄2 < ε1µ1

Using dv1/du1 = 0 gives the following implicit relation for determining
β̄TP when v2 is constant,

γ̃τ2 = tan
{

σγ̃

1 + γ̃2τ2
2

[
η̃τ2 − σ

u2
1v2

ũ2

(
1− τ2

2

)]}
(29)

where γ̃ is defined by relation (24), τ2 = tanh(ũ2v2), η̃ = 1 + u2
1/ũ2

2.
Once β̄TP is determined from (29), the respective value v1TP is obtained
from (23).
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5.3. The Case ε1µ1 = ε2µ2 with ε1 = −µ2 and µ1 = −ε2

Replacing u1 = u2 and η = 0 in (27) gives the following implicit relation
for determining β̄TP of the TM and TE modes, when v2 is constant,

γt2 = tan
[
γu1v2

(
1 + t22

)
/

(
1 + γ2t22

)]
(30)

where γ = ε1/µ1.

5.4. Numerical Examples

Using relations (27) and (29) gives at v2 = 1.5 in Fig. 4(a)
[β̄TP, v1TP ] = [2.0646, 1.1977] at m = 1, β̄TP = [1.8779, 1.2771]
with v1TP = [2.7343, 3.1907] at m = 2, and β̄TP = [1.7993, 1.4003]
with v1TP = [4.1942, 4.4539] at m = 3, the values of m referring
to the upper region of the dispersion curves. Using relation (30)
gives for the TPs in Fig. 8(a) β̄TP = [1.3882, 2.3246] with v1TP =

0 1 2 3 4 5
1

1.3

1.6

1.9

(b)

v
2

β
TP

_

0 1 2 3 4 5
0.8

1

1.2

(d)

v
2

β
TP

_

0 1 2 3 4 5
1.1

1.2

1.3

1.4

(c)

v
2

β
TP

_

0 1 2 3 4 5

1.8

2

2.2

(a)

v
2

β
TP

_

Figure 9. The relative phase constant β̄TP versus v2 for (a) TM and
(b) TE modes in the parallel-plate waveguide filled with a DNG/DPS
bilayer of relative material constants like in Fig. 4, that is, (ε1, µ1) =
(−4,−2) and (ε2, µ2) = (2, 1.5). The same in (c) and (d), but for the
relative material constants (ε1, µ1) = (−2,−1.5) and (ε2, µ2) = (1.5, 1).
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[1.6368, 1.2940], whereas in Fig. 8(b), for the intricate mode at
v1 ≈ v2, β̄TP = [2.6581, 2.4112, 1.7149, 0.6780] with v1TP =
[2.1566, 2.7280, 2.3495, 2.6235], and for the next mode on the side v1 >
v2 in that figure, β̄TP = [1.5376, 0.9988] with v1TP = [3.7055, 3.7899].
The dependence of β̄TP on v2 is illustrated in Fig. 9 for two sets of
relative material constants, with ε1µ1 > ε2µ2. When two TPs there
are for a given mode, the principal TP corresponding to the maximum
value of β̄TP is considered. The TP appears at certain values of v2,
the higher is the mode order, the greater is the v2 parameter at which
the TP begins to exist. One can see that the behavior of the TPs is
different for the TM and TE modes. In Fig. 9(d), the TPs at m = 2
and m = 3 are overlapped.

6. CONCLUSION

In this paper, we analyzed the TM and TE modes of the parallel-
plate waveguide filled with DPS/DPS (or DNG/DNG), and DNG/DPS
bilayers. Simple normalized dispersion relations for the guided and
evanescent modes were presented. Numerical examples were given
showing dispersion curves, the total normalized power carried by the
modes on the propagation direction, and the fields inside the parallel-
plate waveguide. Interesting results were obtained in the specific case
when ε1µ1 = ε2µ2, as for example, the nondispersive mode in Fig. 7,
at v1 = v2, and the intricate mode in Fig. 8, at v1 ≈ v2. Although
the TP has been evidenced by other authors [9, 15], there is no relation
(upon our knowledge) for the normalized parameters at the TP. In this
paper we presented implicit relations for determining the normalized
parameters at the TP for the TM and TE modes in the parallel-plate
waveguide filled with a DNG/DPS bilayer. We showed that the TP
appears at certain values of the DPS layer parameter v2, the higher
the mode order, the greater the v2 parameter at which the TP begins
to exist. The behavior of the TP is different for the TM and TE
modes, as shown in Fig. 9. We showed also that a given mode could
have several TPs, as for example, the intricate mode in Fig. 8(b) at
v1 ≈ v2 has four TPs, the plots of the total normalized power carried
by each mode on the propagation direction being very useful in the
designation of the TPs. For simplicity, we considered ε1µ1 ≥ ε2µ2

and several examples were given, but relations presented in terms of
normalized parameters in this paper could be applied also to other
combinations for the relative material constants of the DPS and DNG
materials [13].
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