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Abstract—This paper introduces an imaging algorithm with
application of fractional Fourier transform (FrFT) for ground moving
train imaging by Ku-band ground-based radar. In view of the fact
that the train speed is varying when acrossing the radar beam, the
multiple Doppler parameters are estimated corresponding to different
range positions, i.e., they are estimated from different sections of
data in FrFT domain, then the train is imaged section by section,
and finally these sectional images are combined to get the full image
of the train. Because traditional parameter estimation method by
two-dimensionally searching the peaks in FrFT domain is inefficient,
we transfer the parameter searching problem into an one-dimensional
optimization problem, which can be solved with high efficiency by using
the golden section searching method.

1. INTRODUCTION

The fractional Fourier transform (FrFT), as a generalization of the
classic Fourier transform (FT), has good energy concentration on linear
frequency modulation (LFM) signals [1, 2]. It has been widely used
in radar signal processing, such as beamforming [3], transient radar
returns analysis [4], a modified chirp scaling algorithm for synthetic
aperture radar (SAR) [5], inverse synthetic aperture radar (ISAR)
imaging [6], and moving target detection [7].
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Ground moving target imaged by ground-based radar is not
studied widely as the ground moving target imaged by airborne or
spaceborne SAR. In our experiment, moving train is imaged by a Ku-
band ground-based radar. Although it seems like the ISAR imaging
model should be adopted, it is not applicable in this case because the
train is too long that even part of it can cover the all 3 dB beamwidth
of the antenna due to small observation range. We know that the basic
idea of ISAR imaging is based on the rotational model, which assumes
that the targets should be totally exposed to the radar beam during
the imaging time. We also know that the common condition should be
met for both ISAR and SAR imaging is that there must exist relative
motion between the target and the radar. We must point out that even
we adopt the SAR imaging model, there are some differences, i.e., the
influence of the clutter in real SAR case is usually unavoidable, but in
our case, it plays almost no influence because their Doppler spectra are
almost around zero frequency, which can be easily/directly removed in
range-Doppler domain [8–10]. In [8], the detailed imaging process and
the explanation of the electromagnetic scattering mechanism of the
moving train were presented. In [9], Short Time Fourier transform
(STFT) method was applied to analyzing the velocity variation of the
train. It is well known that the variation of velocity will lead to the
variation of Doppler parameters, and if constant Doppler parameters
are used in imaging, the image results will be defocused definitely.

In this paper, the echo data are divided into several sections after
range compression and range cell migration correction (RCMC), and
the Doppler parameters corresponding to each section are estimated
based on FrFT analysis and then used for imaging processing. At the
end, the focused sections are combined together to form the final image.
To speed up the process in FrFT, we transfer the parameter searching
problem into an one-dimensional optimization (ODO) problem, which
can be solved with high efficiency by using the golden section searching
(GSS) method [11].

The rest of the paper is organized as follows. Section 2 briefly
introduces the basic principle of FrFT and parameter estimation
process in FrFT, discusses how to change the two-dimensional peak
searching (TDPS) problem into an ODO problem, shows how the
problem can be solved by the GSS method, and applies FrFT to SAR
imaging. Section 3 introduces the imaging experiment, and applies
FrFT to piecewise estimate the Doppler parameters aiming to obtain
a well-focused image for the moving train. Finally, Section 4 concludes
the paper.
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2. BRIEF INTRODUCTION TO FRFT AND ITS
APPLICATION IN SAR IMAGING

2.1. Definition

The FrFT of signal s(t) is defined as [1],

Sp(u) =
∫ ∞

−∞
Kp(t, u)s(t)dt, 0 < |p| < 2 (1)

where p is a real number and is called the order of the FrFT, α = pπ/2.
The transform kernel Kp(t, u) of the FrFT is given by,

Kp(t, u) =



√
1−j cot α

2π exp
(
j u2+t2

2 cotα− jtu cscα
)

α 6= nπ, (n = 0, 1, 2 . . .)
δ(t− u) α = 2nπ
δ(t + u) α = (2n + 1)π

(2)

2.2. Parameter Estimation

As we know, the FrFT has the property of very good energy
concentration on LFM signal (chirp). In the following, we shall
introduce how the chirp’s parameters can be estimated by using FrFT
technique.

A chirp signal can be expressed as,

x(t)=s(t) + w(t)=A exp
(
jϕ0+j2πf0t+jπkrt

2
)
+w(t), −∆t

2
≤ t≤∆t

2
(3)

where ϕ0 denotes the initial phase, f0 denotes the center frequency,
kr denotes the chirp rate, w(t) denotes additive white Gaussian noise.
The problem for estimating the center frequency and the chirp rate
can be described by [12],

{α∗, u∗} = arg max
α,u

|X(α, u)|2 (4)

{
k̂r = − cotα∗

f̂0 = u∗ cscα∗
(5)

where |X(α, u)| represents the FrFT of x(t). Equations (4) and (5)
indicate that in order to get the center frequency f0 and the chirp rate
kr, the best α∗ and u∗ are required first so as to get the energy of
|X(α, u)| maximized.

Figure 1 depicts the parameter estimation process in FrFT domain
according to the rotation of the time-frequency plane (t, f) [1]. If we
can get the best estimation of rotation angle α∗, i.e., the best transform
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Figure 1. The parameter estimation in FrFT domain.

order p∗ of FrFT because α∗ = p∗π/2, and its location u∗ in u domain,
then f0 and kr will be obtained according to (5). Fig. 1 also shows
that the FT just corresponds to the rotation angle α = π/2, which
indicates that the FrFT is the generalized form of the classic FT.

2.3. Determination of Transform Order

The regular method for determing the transform order of FrFT is by
carrying out a TDPS process, this is very time-consuming. However,
the TDPS problem in Equation (4) can be transformed into the
ODO problem, which can be solved by two steps. The first step
is to let α be fixed, and to calculate the Xα(u) by fast Fourier
transform (FFT), and then max

u
|Xα(u)|2 can be obtained by sorting

with fast algorithm [13]. The second step is to solve the maximization
problem of max

α
(max

u
|Xα(u)|2). If we define the objective function

f(α) = −(max
u
|Xα(u)|2), then the ODO problem can be expressed as,

min
α

f(α) (6)

There are many methods for solving the ODO problem, such as,
the GSS method, Fibonacci method, and Newton method. Because
the GSS method is very simple, efficient and stable [11], we will use it
in Section 3.2.

2.4. Azimuthal Parameters Estimation Based on FrFT for
SAR Imaging

In the conducted experiment [8], the big squint angle brings much
difficult for RCMC especially for wide beam case. However, we still can
perform RCMC by selecting appropriate viewing angle and the train
speed so as to make the resulted scatterers corresponding to different
range bins aligned as straight as possible. Due to the wide beam of
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antenna, the range cell migration cannot be very accurately corrected.
In fact, the azimuthal signal after RCMC can be well treated as a chirp
signal, so FrFT can be applied to estimating its parameters used for
azimuthal matched filtering.

In the range-Doppler imaging algorithm for SAR, the matched
filter in azimuth can be constructed by [14],

sa(tm) = Aa(tm) exp
(
j2πfdctm + jπKat

2
m

)
(7)

where tm, Aa(tm) are respectively the slow time and amplitude in
azimuth, and the Doppler centroid frequency fdc and Doppler rate Ka

can be approximated by [14],{
fdc ≈ 2v sin θ0

λ

Ka ≈ −2v2 cos2 θ0
λR0

(8)

where λ, v, θ0 and R0 are the wavelength, speed, view angle and squint
range from radar to the center of targets, respectively.

In real data collection, parameters v, θ0 and R0 may be slightly
changed during the imaging time, but if they are treated as constants
and used for calculating Doppler parameters through (8), then we can
not get a well-focused image. One efficient way to solve the problem
is to divide the data after RCMC into several sections, so the Doppler
parameters in each section can be treated as constants, which can
be obtained in FrFT domain. In the following, we shall process the
experimental data to show the effect of the algorithm.

3. EXPERIMENTAL RESULTS

3.1. Experiment Description

The experimental radar system includes three standard-gain horn
antennas (one used for transmitting, and two used for receiving), one
frequency synthesizer, one two-channel receiver, one transmitter, and
data recording devices [8]. The typical technical parameters are listed
in Table 1. The train’s optical picture and the radar imaging geometry
are shown in Fig. 2.

Table 1. Typical radar system parameters.

Central frequency 13.58GHz

Antenna gain 25 dB

3dB beamwidth 10◦

Bandwidth 100MHz

Pulse Width 20 µs
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Figure 2. The train’s optical picture and the radar imaging geometry.

3.2. Imaging Processing and Results

The imaging processing for the moving train mainly includes the
correction of system amplitude and phase errors, range compression,
motion compensation and clutter suppression [9]. In this section, we
just briefly introduce the range migration correction, but the detailed
azimuth compression based on FrFT with two different searching
methods for parameters estimation.

Let’s denote the echo signal after matched-filtering compression
in range direction s(t, tm), where t and tm respectively denote the fast
time and the slow time. The range migration correction can be done
after correction of system error as [8, 9]:

src(t, tm) = IFFTf

{
FFTt[spc(t, tm)] · exp

(
−j4π

vtm sin θ0

c
f

)}
(9)

where spc(t, tm) denotes the signal after preliminary correction of
system error, src(t, tm) denotes the time-domain signal after range
migration correction. v and θ0 are the velocity of the train and the
view angle of radar system, respectively, which are estimated from echo
data as illustrated by the formulae. The two-dimensional data after
range migration correction is shown in Fig. 3. Just as explained above
because only linear range migration is considered and the parameters
v and θ0 are estimated from echo data, there are still some errors.

The final image of the moving train can be obtained after azimuth
compression [8, 9]:

sim = IFFT {FFTtm [src (t, tm)] · FFTtm [s∗a (tm)]} (10)
where sa(tm) is the matched filter in azimuth. It can be expressed as,

sa(tm) = exp
(
j2πfdctm + jπKat

2
m

)
(11)

where fdc and Ka are Doppler centroid frequency and Doppler rate,
respectively.
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Figure 3. The 2D data in time
domain after range compression
and RCMC.
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Figure 4. The amplitude radar
image of the moving train.

Equation (11) with the amplitude term omitted is almost as same
as Equation (7), and its parameters can be calculated by (8) with
constant v, θ0 used. Fig. 4 shows the final amplitude image. It is
obvious that there are some scatterers not well-focused. The image
entropy of 9.4849 is listed in Table 3.

Since the train moves at varying speed when acrossing the radar
beam, this will lead to varying fdc and Ka. Because at an instant
time period only some part of the train is in the radar beam, different
part of the train may experience different velocities. As illustrated
in Section 2.4, FrFT can be used to piecewise estimate the Doppler
parameters in (11), assuming the variation of train speed in each small
section can be ignored.

Now, we partition the echo data src(t, tm) obtained after range
migration correction into three sections (of course, the more sections,
the finer the Doppler parameters estimated) according to range bins.
The first section ranges from bin 1 to bin 286, the second section ranges
from bin 287 to bin 327, and the third section ranges from bin 328 to
bin 800. For each section, fdc and Ka are estimated in FrFT domain.
In the following, two methods will be applied to estimating the best
transform order of FrFT, thus the fdc and Ka parameters.

First, the two-level searching method, as one of the usually used
two-dimensional searching methods is adopted. For the first range
section, the initial searching area of α is [0, 2π], and the step length of
the first level coarse searching is 0.01, and step length of the second
level refined searching is 0.0001. For the second range section, the
initial value of searching is set to be the final transform order of the first
section because of the correlation between the two adjacent sections,
so only the second level refined searching is implemented. In the same
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way, for the third section, the initial value of searching is the final
transform order of the second section, and only the second level refined
searching is implemented. All of the estimated parameters and the
corresponding consumed time are listed in Table 2.

Figures 5, 6 and 7 present the obtained SAR images using the
Doppler parameters estimated from the first section, the second section
and the third section, respectively. Just as expected that when using
the Doppler parameters estimated from the first section, only the
corresponding first section of the train is well focused, when using
the Doppler parameters estimated from the second section, only the
corresponding second section of the train is well focused, and when
using the Doppler parameters estimated from the third section, only
the corresponding third section of the train is well focused.

It is obvious that if we pick up the first section from Fig. 5, the
second section from Fig. 6, and the third section from Fig. 7, to form a
new SAR image, then we can get the final image with all of the sections
well focused. Fig. 8 shows the final imaging result.

Second, the GSS method introduced in Section 2 is adopted. The
initial searching area of α is also set to [0, 2π]. Repeat the above
imaging steps with different Doppler parameters estimated from the

Table 2. Doppler parameters and computing time.

The first section The second section The third section 

fdc (Hz) Ka (Hz/s) 
Computing 

 Time (s) 
fdc (Hz) Ka (Hz/s)

Computing

 time (s) 
fdc (Hz) Ka (Hz/s) 

Computing

 time (s) 

Two-level 

searching

method 

−195.4222 −30.8495 7.7343 −219.8546 −24.9329 5.4899 −247.6409 −19.7419 5.4943 

Golden

section 

searching

method 

−195.4244 −30.8612 0.4014 −219.8554 −24.9376 0.3651 −247.6416 −19.7462 0.3730 

Table 3. Image entropy in different cases.

Constant Doppler

parameters

Doppler parameters

estimation based on FrFT

The Two-level

searching method

The Golden section

searching method

Image entropy 9.4849 8.8170 8.8168
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Figure 5. The obtained image
by using the Doppler parameters
estimated from the first section.
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Figure 6. The obtained image by
using the Doppler parameters es-
timated from the second section.
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Figure 7. The obtained image
by using the Doppler parameters
estimated from the third section.
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Figure 8. The final image
obtained by using the two-level
searching method.

data in different sections, and combine the three well-focused sections
into a final image shown in Fig. 9. It is better than Fig. 4, and
its entropy is listed in Table 3. All the estimated parameters and
computing time are also listed in Table 2. Once again as we expected
that the obtained image is as good as that obtained by the first
approach but with much less time used.

As the optical picture in Fig. 1(a) shows that the train has 6
compartments, and each compartment has 4 same doors and 3 same
windows. The reason why the radar image of the train is slightly
curved and is not a straight line as we expect is because the train is on
a slightly curved bridge. From Fig. 4 to Fig. 9, the radar images include
the major electromagnetic scattering information of the moving train.
For detailed scattering analysis please refer to [8].
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Figure 9. The final image obtained by using the golden section
searching method.

4. CONCLUSION

In this paper, the FrFT is applied to the Ku-band ground-based radar
imaging of ground moving train. The imaging results show that the
method with sectional Doppler parameters estimation based on FrFT is
very suited for moving target imaging with varying velocities. In order
to reduce the computing time in parameter estimation in FrFT domain,
the two-dimensional parameter searching problem is transferred into an
ODO problem. The experimental results show that by using the GSS
method, the computing time can be significantly reduced compared
with that of the two-dimensional parameter searching method with
almost the same quality achieved.
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