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Abstract—Optical filtering properties in a multichanneled transmis-
sion filter based on one-dimensional photonic crystal containing the
coupled defects are theoretically investigated. The resonant transmis-
sion peaks are designed to be located within the photonic band gap of
a defect-free photonic crystal. The number of peaks is directly equal
to the number of the coupled defects. The positions of resonant peaks
can be tuned by varying the refractive index of the defect layer. In ad-
dition, extremely resonant peaks can be produced by adding the Bragg
mirrors at the front and rear sides of the structure.

1. INTRODUCTION

With their unique ability to manipulate and control the light, photonic
crystals (PCs) have been of much interest to the communities of
photonics and condensed matter physics in the past two decades [1–4].
Due to the periodically arranged structures in PCs, there exist some
photonic band gaps (PBGs), which are analogous to the electronic band
gaps in solids. Electromagnetic waves with frequencies within PBGs
are thus prohibited to propagate. PCs are also referred to as the PBG
materials. Engineering PBG materials to realize the practical photonic
devices are now available, including filters, polarizers, resonators,
splitter, waveguides, and so on [5–20].
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In a simple one-dimensional photonic crystal (1D PC), the
structure is denoted as air/(AB)N/air in which A and B are the high-
and low-index layers, respectively, and N is the number of periods. By
adding the defect layer to break the structurally periodic feature, a
defect mode can be produced inside the PBG, and the defective PC is
air/(AB)MC(AB)M/air with a defect layer of C. This existing defect
mode leads to a high transmittance in the frequency (or wavelength)
domain, which can be used to design a narrowband transmission filter
(NBTF) or simply a multilayer Fabry-Perot resonator (FPR). A simple
and typical NBTF can be achieved by making use of the quarter-
wavelength stacks, i.e., the optical lengths of the two constituents
and defect satisfy nAdA = nBdB = nCdC = λ0/4, where λ0 is the
design wavelength. In this case, two consecutive layers of AA or BB
represent an absentee layer, and (AB)MC(AB)M can be effectively
reduced to a single layer of A or B, depending on C is taken to
be A or B, respectively [21–23]. Such an NBTF only has a single
resonant transmission peak at λ0, which locates in the PBG center. In
addition, the peak shape can become much sharper as M increases.
An extremely sharp peak, in turn, indicates a strongly localized
defect mode that is produced due to the enhancement of the photonic
confinement at a large M -number. In addition to Refs. [21–23] there
have been other related studies on the NBTF [24–27].

As far as the applicational viewpoint is concerned, the presence
of a single resonant peak within the PBG seems to be inefficient
because much of the PBG bandwidth is wasted. To improve the
spectral efficiency in utilizing the PBG, it is necessary to have a
multichanneled transmission filter (MTF) with multiple resonant peaks
inside the PBG. Indeed, Qiao et al., have first proposed a scheme to
realize an MTF [28]. Instead of using a single defect layer C like
in a defective PC like air/(AB)NC(AB)N/air, they use the photonic
quantum well (PQW) as a defect such that the structure of MTF
becomes air/(AB)N (CD)M (AB)N/air where the PQW is represented
by (CD)M with M < N . In addition, the PQW constituents C and D
are different from A and B.

In principle, the MTF, air/(AB)N (CD)M (AB)N/air is designed
to let the pass band of the PC, (CD)M , be located within one of the
PBGs of the host PC, (AB)N . With the photonic confinement between
two Bragg mirrors (AB)N , the confined continuous pass band is then
quantized and consequently nearly discrete modes are created with
number of quantized modes being equal to M , the number of periods
of the PQW. Thus, the refractive indices and the thicknesses of C and D
must be appropriately chosen to cause the pass band to be completely
located within the band gap of the host PC. This could be a strict



Progress In Electromagnetics Research, Vol. 117, 2011 381

condition and limits the flexibility of design. There have been many
reports on the MTFs based on the PQW [29–32].

To avoid the strict condition of using PQW in realizing an
MTF, another version of defective PC that can also work as an
MTF is proposed [33]. In this design, the original defect-free PC,
air/(AB)NA/air, is modified as air/(ABAC)NABA/air, in which some
of the low-index layers, B’s are replaced by C’s called the impurity
or defect layers. With the insertion of C’s, impurity bands can
be produced within the PBG of the original PC, air/(AB)NA/air.
The appearance of such impurity bands is analogous to that in the
doped semiconductor. Thus, the structure, air/(ABAC)NABA/air,
can function as an MTF with number of defect modes equal to N ,
the number of the coupled defect layers. Although the goal of MTF
can be reached in this design, the resonant peaks are not so sharp
as those in air/(AB)N (CD)M (AB)N/air. To make the peaks as sharp
as possible, the structure is sandwiched by two Bragg mirrors, i.e.,
air/(AB)M (ABAC)NABA(BA)M/air. This MTF can thus be used as a
frequency-selective device which is of technical use in communications.

In this paper, we give a more detailed analysis on the tunable
optical filtering properties in this type MTF based on the use of
impurity. We vary the refractive index of the impurity layer and see
how the resonant peaks move as a function of the defect index. We also
study modified version of this MTF, air/(ABCB)NABA/air, namely
some of the high-index layers A’s are replaced with the defect layers
C’s. A different tunable feature will be seen when A or B is replaced
by C. Additionally, the dependence of tunability on whether N is an
even or odd number will also be elucidated.

2. BASIC EQUATIONS

To investigate the tunable properties of the impurity-based MTF,
transfer matrix method (TMM) developed by Yeh will be used to
calculate the transmittance T , which is expressed as T = |t|2, where
t is the transmission coefficient [34]. According to TMM, in an N -
layer structure, air/1/2/3/. . ./N/air (The left “air” is called the start
medium whereas the right one is the stop medium) the total transfer
matrix is given by

M =
(

m11 m12

m21 m22

)
= D−1

0 (M1 M2 . . . MN )D0, (1)

where the transfer matrix Mi for layer i is written as

Mi = DiPiD−1
i , i = 1, 2, . . . , N. (2)
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Here, the dynamical matrix Di for medium i related to its refractive
index ni is

Di =
(

1 1
ni −ni

)
, i = 0, 1, 2, . . . , N, (3)

where i = 0 means the air with n0 = 1, and the translational matrix
Pi in each layer i is expressible as

Pi =
(

exp(jk0nidi) 0
0 exp(−jk0nidi)

)
, i = 1, 2, . . . , N, (4)

where di is the corresponding thickness and k0 = ω/c is the wave
number in free space, where c is the speed of light in vacuum. Here,
we are only interested in the case of normal incidence and have adopted
the convention exp(jωt) for the temporal part in all fields.

With the available matrix elements in Equation (1), the
transmission coefficient t is calculated to be

t =
1

m11
. (5)

As a result, the transmittance is

T =
∣∣∣∣

1
m11

∣∣∣∣
2

. (6)

If the start and stop media are different, say a substrate of index ns is
the stop medium, then the transmittance must be written as

T =
ns

n0

∣∣∣∣
1

m11

∣∣∣∣
2

. (7)

3. ANALYTICAL RESULTS AND DISCUSSION

Figure 1 shows the calculated transmittance for a defect-free host PC
of air/(AB)NA/air. Here, N = 4, 8, 16, and 32 are taken for the
purpose of comparison. It is seen that a standard U-shape PBG with
center at ω0 is generated for N = 32. In fact, based on the theory of
Bragg reflector, both the left and right band edges, ωL and ωR, can be
exactly determined as follows [21]:

ωL = 2c
cos−1(ρ)

nHdH + nLdL
, ωR = 2c

cos−1(−ρ)
nHdH + nLdL

, (8)

where ρ = (n1 − n2)/(n1 + n2) is the Fresenl reflection coefficient.
The calculated results are ωL/ω0 = 0.891 and ωR/ω0 = 1.109. Thus,
the PBG center ωc is exactly at the design frequency ω0 because
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Figure 1. Calculated frequency-dependent transmittance for defect-
free host photonic crystal of air/(AB)NA/air at different numbers of
periods of N = 4, 8, 16, and 32. The center wavelength is designed at
λ0 = 500 nm such that ω0 = 2πc/λ0.

ωc/ω0 = (ωL/ω0 + ωR/ω0)2 = 1. All these results agree with those
shown in Figure 1 for N = 32.

In what follows we shall present the analytical results for the
transmittance as a function of the frequency for the impurity-based
MTF. The first structure to be considered is air/(ABAC)NABA/air
(structure-I). Without loss of generality, we take the refractive indices
for layers A and B as n1 = 1.41 and n2 = 1, respectively [33]. In
addition, both A and B are taken to be quarter-wavelength layers, i.e.,
n1d1 = n2d2 = λ0/4, where the design wavelength is λ0 = 500 nm. The
design frequency is then given by ω0 = 2πc/λ0 = 2π × 6× 1014 rad/s.
The impurity layer C is taken to be a half-wavelength layer of n3d3 =
λ0/2, where n3 = n2 = 1 will be used.

With the PBG in Figure 1, we are now in a position to engineer it
to realizing an MTF by adding the defect or impurity bands. Figure 2
shows the first design of structure-I, air/(ABAC)NABA/air, where the
low-index layer B (quarter-wave layer) is replaced by a defect C (half-
wave layer). It can be from Figure 2 that the number of peaks is
equal to N , the number of coupled defects. The resonant peaks are
symmetrically distributed about gap center at ωc/ω0 = 1. For N =
odd, the center of PBG, ωc/ω0 = 1, is a resonant peak frequency,
while it is not a resonant peak frequency when N = even. Since C
is a half-wave layer with the same refractive index as B, i.e., C =
BB and since two consecutive AA or BB becomes an absentee layer,
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the whole structure, (ABAC)NABA, will reduce to an absentee layer
at ωc/ω0 = 1 for N = odd, leading to a complete transmission (total
transparency) because the impedance of the whole structure is matched
with that of air. However, it will reduce to ABA at ωc/ω0 = 1 for N =
even. As a result, at the center point, no transmission peak is found
and, in fact, it becomes a dip, as shown in Figure 2.

Figure 2. Calculated frequency-dependent transmittance for a
defective photonic crystal (structure-I), air/(ABAC)NABA/air, at
N = 1, 2, 3, and 4, respectively. For a fixed value of N , the number of
transmittance peaks is found to be equal toN for N coupled defects.
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Let us now vary the refractive index n3 of defect C in structure-
I of (ABAC)NABA and keep its optical length the same as λ0/2. In
Figure 3, the shifting properties in the resonant peaks at distinct values
of n3 = 1, 1.2, 1.4, 1.6, 1.8, and 2.0 are illustrated for N = 3 (left panel)
and N = 4 (right panel), respectively. It is seen that position of the
peak (for N = 3) or dip (for N = 4) at PBG center ωc/ω0 = 1 remains
unchanged as n3 changes. However, when n3 increases we find that
the peaks to the left of center are moved to the lower frequencies and
those at the right side of center are shifted to the higher frequencies.
At N = 4, the four peak frequencies are labeled as ω1, ω2, ω3, and ω4.
The shifting behavior is at ω1 and ω4 is more pronounced than ω2 and
ω3. The shift in these four peak frequencies versus the defect index
is plotted in Figure 4. The separation between two adjacent peaks is
appreciably increased as the defect index increases.

The shift in the resonant frequencies due to the variation of defect
index can be qualitatively argued as follows: At resonant transmission
each defect C can be regarded as a cavity resonator. When they are
coupled together to form a multichanneled filter, interactions between
these coupled defects will be created such that the resonant frequencies
are shifted at different values of refractive. In structure-I, the two
adjacent defects are separated by ABA, which is effectively like a
“potential barrier” with respect to the defects. This barrier causes

(a) (b)

Figure 3. Calculated frequency-dependent transmittance for a
defective photonic crystal (structure-I), air/(ABAC)NABA/air, at (a)
N = 3 (left panel), and (b) N = 4 (right panel), respectively, for
different refractive indices of defect C.
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Figure 4. Calculated peak frequencies as a function of the refractive
index of the defect C for the filter of structure-I, air/(ABAC)NABA/air
with N = 4.

a repulsive interaction between the defects. With the increase in the
defect index, the physical thickness of defect will be reduced because we
fixed its optical thickness at λ0/2. For N = odd (e.g., 3), the resultant
interaction in the center defect is canceled by the two adjacent defect,
leading to the independence of the different indices. For the left or right
defect, the net interaction becomes stronger at a reduced thickness.
As a result, the resonant frequency higher than center frequency will
become even higher, and the resonant frequency lower than center
frequency will become even lower, as illustrated in Figure 3. This is
similar to the “repulsive interaction” in quantum mechanics. Similar
argument can be valid for N = even. A possible detailed analysis can
be made by making use of the tight binding method [35], which is
obviously beyond the scope of the current study.

We continue to engineer the PBG of the host PC to obtaining
an MTF by replacing the high-index layer A by the defect C, i.e.,
air/(ABCB)NABA/air, which is now referred to as structure-II. In
this case, the number peaks is also equal to N . Figure 5 depicts the
frequency-dependent transmittance for N = 4 at different defect index
of n3 = 1.41, 1.61, 1.81, 2.01, 2.21, and 2.41. It is of interest to see
that the shifting trend in the peak frequencies is opposite to that in
right panel of Figure 3, except at the center frequency, ωc/ω0 = 1. The
peak frequencies as a function of n3 are plotted in Figure 6.

The shifting behavior in the resonant frequencies can be similarly
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Figure 5. Calculated frequency-dependent transmittance for the
filter of structure-II, air/(ABCB)NABA/air, at N = 4 and different
refractive indices of defect C.

Figure 6. Calculated peak frequencies as a function of the
refractive index of the defect C for the filter of structure-II,
air/(ABCB)NABA/air with N = 4.

argued as in Figures 3 and 4. However, in structure-II, the interaction
between the defects will be the “attractive interaction” because the
defects are separated by BAB, which effectively acts as “potential
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Figure 7. Calculated frequency-dependent transmittance for
the structure-I with mirrors, air/(AB)8(ABAC)4ABA(BA)8/air, at
different refractive indices of defect C.

well” with respect to the defects. With such interaction, the resonant
frequency higher than center frequency will be decreased, and the
resonant frequency lower than center frequency will be increased, as
illustrated in Figure 4. Thus, the shifting trend in structure-II is
opposite to that in structure-I.

In Figure 7, we plot the transmittance spectra for the structure-
I confined by two Bragg mirrors, i.e., we have a defective PC like
air/(AB)M (ABAC)NABA(BA)M/air with M = 8, N = 4 being used.
With the addition of two mirrors, the photonic confinement is greatly
enhanced, which, in turn, causes the resonant peaks shown in right
panel of Figure 3 to be strongly located, as shown in Figure 7. In
addition, the confinement effect also enhances the bands outside the
PBG. The transmittance of the side bands is significantly increased at
a larger index of the defect layer. The dependence of shifting behavior
on the defect index is similar to the right panel of Figure 3.

Before entering into the conclusion, let us make some brief
comments on the above results. First, the above resonant frequency
tuning feature is made based on the variation of the refractive index of
the defect layer. From a practical point of view, it would be difficult
to vary the refractive index so widely with impurity doping. Other
methods, such as changing the defect layer thickness, may be more
suitable for the resonant frequency tuning. This is because the tuning
is closely related to the optical thickness in the defect layer. Thus,
either changing in refractive index or thickness can achieve the goal.
Second, both structure-I and structure-II can be used to fulfill the
multichanneled filtering property, only the different tuning trend as
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a function of the refractive index. Thus, the advantages of these
two structures are expected to be equally taken. In addition, similar
spectrum as in Figure 7 (the structure-I with Bragg mirrors) can be
obtained for the structure-II by adding the Bragg mirrors.

4. SUMMARY

By engineering the impurity or defect band in the PBG with
coupled impurities in a quarter-wavelength stack, a multichanneled
transmission filter can be achievable. The optically filtering properties
in such a filter have been investigated. The number of defect modes
is equal to the number of coupled impurity (or defect) layers. At the
PBG center, there is a resonant peak in transmittance when N is odd,
but it is not as N is even. It is shown that positions of the resonant
peaks can be tuned by varying the index of the impurity layer. The
shifting trend has been illustrated for both cases where the impurity
layer is in place of the high- or low-index layer. The effect of strong
confinement coming from the Bragg mirrors is also demonstrated.
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