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PERFORMANCE OF THE ADAPTIVE NORMALIZED
MATCHED FILTER DETECTOR IN COMPOUND-
GAUSSIAN CLUTTER WITH INVERSE GAMMA
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Abstract—In the present paper, we deal with the performance
analysis of the Adaptive Normalized Matched Filter (ANMF) detector
in compound-Gaussian clutter with inverse gamma texture model and
unknown covariance matrix. First, the maximum likelihood estimate
(MLE) of the covariance matrix for this clutter model is derived. The
MLE is then plugged into the ANMF test and compared to the well
known normalized sample covariance matrix estimate (NSCM) and the
approximate maximum likelihood estimate (AML). The performance
in terms of CFAR behavior and detection probability is evaluated in
the presence of simulated clutter and real sea clutter data, which is
collected by the McMaster IPIX radar.

1. INTRODUCTION

In the area of adaptive radar detection, estimating the clutter
covariance matrix is a very important task since the detection
performance depends directly on the accuracy of this estimate.
Adaptive radar detection against Gaussian clutter using the Sample
Covariance Matrix estimate(SCM) has been extensively studied in the
past [1, 2]. While the SCM is the maximum likelihood estimate of the
covariance matrix for Gaussian clutter, its use in the non-Gaussian
case leads to a drastic degradation of the detection performance [3].
New advances in radar technology show that the clutter is a non-
Gaussian process. For example, the sea clutter observed with high
resolution radars (mall range cell size) and/or low grazing angle (less
than 10◦) exhibits a non-Gaussian behavior [4]. The resolution depends
on the radar parameters such as the pulse width and the beam width.
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Results from experimental statistical analysis conducted in [5], showed
that sea clutter amplitudes fit a K-distribution for all combinations
of frequencies (among X-, S- and L-bands), polarisation (V and H)
and waveform resolutions (15 m and 150m). In [5], investigations
of statistical fluctuations of the sea clutter have revealed that for
small illuminated patches (' 100m2) and grazing angles (' 1◦) the
distribution of the clutter deviates from the Gaussian law. Similar
results were obtained with an other analysis of X-band sea clutter
having a range resolution of 33 m and an average grazing angle of
1.56◦ see [6]. Furthermore, several data sets with different resolutions,
grazing angles and frequency bands were analyzed in [7] and well fitted
by Weibull distribution.

Radar systems operating in a maritime environment are seriously
affected by the presence of sea clutter that interferes with and often
completely obscures radar echoes from targets of interest. In addition
to its non-Gaussian behavior, the sea clutter exhibits a spiky nature [5],
these spikes appear target-like and without some prior knowledge
regarding the distribution of the clutter, the performance of standard
detection algorithms, such as Constant False Alarm Rate (CFAR), can
be seriously degraded [8].

Recently, the compound-Gaussian clutter model was proposed
for modeling sea clutter and was successfully tested on several real
data sets [9–12]. This model can be interpreted as a product of
a real positive random process, named texture, times a complex
Gaussian process, usually named speckle. The texture represents
the local clutter power whose fluctuations are induced by the spatial
and temporal variations in the radar backscattering. The overall
probability density function (pdf) of the clutter process depends on
that of the texture component. For example the well known K-
distribution is obtained when the texture follows a gamma pdf.

Considering this successful model, several estimators of the
covariance matrix from secondary data have been proposed in the
literature. Conte et al. [13], proposed the Normalized Sample
Covariance Matrix estimate (NSCM), which is independent on the
texture pdf but depends on the covariance matrix structure. The ML
estimator of a K-distributed clutter covariance matrix has already been
derived in [14], where Gini et al. have also proposed the Approximate
Maximum Likelihood (AML) estimate which is independent on both
the texture and the structure of the covariance matrix. This AML
estimator was also called the fixed point estimate (FP) in [15].

In this work, we model the clutter as a compound-Gaussian
process with inverse gamma texture pdf [16–18] and derive the
corresponding ML estimator of the covariance matrix. To compare
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this estimator to NSCM and AML, we use it in the ANMF test and
analyze its performance in terms of false alarm (Pfa) and detection
(Pd) probabilities as well as computational complexity. The study is
conducted with simulated data as well as with real sea clutter data
collected by the McMaster IPIX radar.

2. SIGNAL AND CLUTTER MODELS

The radar detection problem can be seen as a binary hypotheses test
{

H0 : z = d
H1 : z = d + s (1)

where z = [z(0), z(1), . . . , z(N − 1)]T is the complex valued vector of
N pulses collected by the radar during the time on target, d is the
clutter vector and s is the signal vector.

We model the useful signal as s = αp, where α is the complex
amplitude of the target return accounting for both channel and target
effects. The N dimensional vector p = ejϕ is commonly referred to as
the time steering vector and the components of the vector ϕ are given
by

ϕ[k] = 2πfdkTR, k = 0, . . . , N − 1 (2)

where fd is the target Doppler frequency and TR the radar pulse
repetition time. The classical Swerling-I model of target fluctuation
is obtained when α is modeled as a complex Gaussian random vector
with zero mean and variance E[α2] = σ2

α.
According to the compound-Gaussian model, the clutter d is

modeled as a product of two independent random variables:

d =
√

τx (3)

where x is an N dimensional zero-mean complex Gaussian vector
representing the speckle component and τ , the texture, is the variance
of the underlying conditional Gaussian vector, represents the local
clutter power. To each value of τ we associate the pdf fτ (τ), which
ultimately determines the non-Gaussian behavior of the clutter. In
shorthand notation, we write x ∼ CN(0,M) where M = E[xxH ] is
the normalized (i.e., [M]ii = 1 for i = 1, . . . , N) covariance matrix of
the speckle and (.)H indicates the conjugate transpose operator.

Depending on the texture pdf, several distributions have been
used to model real clutter data. The Weibull and the K-distribution
are widely used to model sea clutter under the assumption of high
resolution radar and/or low grazing angle. In some cases, these two
distributions do not fit correctly the real data. This holds in particular
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in the tail of the distribution which is of great importance in the design
of constant false alarm (CFAR) detectors. Here after we recall the pdfs
of the amplitude of these two models and that of the inverse gamma
texture model which we will use in this work since it fits well the real
data in our possession.

2.1. Gaussian Model

The Gaussian clutter is obtained when fτ (τ) = δ(1 − σ2
G), where δ(·)

is the Dirac delta function, and σ2
G is the variance of the clutter. In

other words, in Gaussian clutter, the texture τ , which represents the
local power, is no longer random but instead is given by τ = σ2

G with
probability one. Thus d ∼ CN(0, σ2

GM).

2.2. K-distributed Model

The K-distribution [19] is obtained when the texture is modeled as a
Gamma-distributed random variable with mean µ and order parameter
ν [10], i.e.,

fτ (τ) =
1

Γ(ν)

(
ν

µ

)ν

τν−1 exp
(
−ν

µ
τ

)
u(τ) (4)

where Γ(·) is the Gamma function [20]. The parameter µ is called the
scale parameter and represents the average clutter power, while ν is
called the shape parameter.

The amplitude R follows the K-distribution given by [21]

fR(r) =

√
2ν/µ

2ν−1Γ(ν)

(√
2ν

µ
r

)ν

Kν−1

(√
2ν

µ
r

)
u(r) (5)

where Kα(·) is the modified second-kind Bessel function of order α [20].
The moments are given by

E{Rn} =
(

2µ

ν

)n/2 Γ(ν + n/2)Γ(1 + n/2)
Γ(ν)

(6)

2.3. Weibull Model

In this model:

fR(r) =
c

b

(r

b

)c−1
exp(−(r/b)c)u(r) (7)

E{Rn} = bnΓ
(n

c
+ 1

)
(8)

where c is the shape parameter and b is the scale parameter.
There is no closed form for the texture pdf.
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2.4. Inverse Gamma Texture Model

This model is obtained when the quantity ρ = 1/τ follows a gamma
pdf given by

fρ(ρ) =
ρ(α−1)

Γ(α)βα
e−ρ/β (9)

where α is the shape parameter and β is the scale parameter. The pdf
of τ is then obtained from the formula [22]

fτ (τ) =
1
τ2

fρ

(
1
τ

)
(10)

which gives

fτ (τ) =
τ−(1+α)

Γ(α)βα
e−1/βτ (11)

The pdf of the amplitude R can be obtained from

fR(r) =
∫ +∞

0
fR|τ (r|τ)fτ (τ)dτ (12)

where fR|τ (r|τ) is a Rayleigh pdf given by

fR|τ (r|τ) =
2r

τ
e−r2/τ (13)

Inserting (13) and (11) in (12), we obtain after a suitable change-of-
variables

fR(r) =
2αβr

(βr2 + 1)α+1
(14)

The moments are given by:

E{Rn} =
(

1
β

)n/2 Γ(1 + n/2)Γ(α− n/2)
Γ(α)

, n = 1, 2, . . . (15)

3. STATISTICAL ANALYSIS OF REAL SEA CLUTTER
DATA

In this section, we perform a statistical analysis of real sea clutter data
collected by McMaster University, Canada, IPIX radar in February
1998. IPIX is an experimental X-band search radar, capable of dual
polarized and frequency agile operation. The radar site was located
east of “Place Polonaise” at Grimsbay, Ontario, looking at lake Ontario
from a height of 20m. The pulse repetition frequency (PRF) is
1000Hz, the polarization is Linear (H or V) switchable pulse-to-pulse,
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simultaneous dual polarization on receive and a cross-polarization
isolation of 30 dB. The antenna beam width is 0.9 degrees, the grazing
angle is 0.38 degrees, and there are 60000 pulses per cell. We carry out
our analysis on several files. Here we show the results corresponding to
the file 19980223−165836−ANTSTEP . The range resolution for this
file is 30m and the number of range cells is 34 [23].

To get the statistical properties of the real data, we compare the
empirical pdf of the amplitude of the data with the K-distribution,
the Weibull and the Compound-Gaussian with inverse gamma texture
models.

The parameters of the theoretical pdfs are estimated by the
method of moments (MoM), which consists of equating the first and
second moments with corresponding theoretical ones given in Section 2.
The accuracy of fit is evaluated via the root mean-square error (RMSE)
defined in [24] by

RMSE =
1

Np

Np∑

i=1

|fR(i)− h(i)|2 (16)

Here fR(.) is the generic pdf whose parameters are estimated from the
real data, h(.) is the real data histogram, and i is the generic point
of the amplitude axis at which both histogram and pdf are evaluated.
The pdf which gives the smallest RMSE value is considered to be the
best fit to the data.

The results of the statistical analysis show that the inverse gamma
texture model gives the smallest RMSE for all the range cells and all
the polarizations considered (see Table 1). In this table, a signals
polarization is designated by a two-letter combination TR, where T is
the transmitted polarization (H or V) and R is the received polarization
(H or V); thus we speak of four kinds of polarization: HH, HV, VH,
and VV.

Figure 1 shows the results relative to the 1st range cell for different
polarizations. Clearly, the compound-Gaussian model with inverse
gamma texture provides a better fit to the data than the Weibull and

Table 1. The RMSE values.

HH VV VH HV

K PDF 0.0627 0.0124 0.0224 0.0209

Weibull PDF 0.0359 0.0080 0.0269 0.0239

Inv. gam. tex. PDF 0.0071 0.0039 0.0041 0.0041
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Figure 1. Amplitude pdf analysis, HH, VV, HV and VH polarizations,
1st range cell.

the K-distributions and in particular at the distribution tail. This
model was also tested successfully with another real data set having a
resolution of 3m [18].

In addition to the above pdf fitting, we check the validity of the
inverse gamma pdf for modeling the texture component. To this end,
we estimate the texture from the real data and compare its empirical
pdf to both the theoretical inverse gamma and the gamma densities.

The entire sequence of the considered range cell data is divided
in NB bursts of N pulses. The texture value in the kth burst is then
estimated according to

τ̂k =
1
N

N−1∑

i=0

|zk(i)|2, k = 1, . . . , NB (17)

where zk(i) = z((k − 1)N + i).
Figure 2 shows the empirical texture histogram compared to the

inverse gamma and the gamma pdfs. The results show a good fit of the
inverse gamma pdf. This reinforces the validity of the assumed clutter
model.
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Figure 2. Texture pdf analysis, HH, VV, HV and VH polarizations,
1st range cell.

Previous analysis of real sea clutter data pointed out that
horizontally polarized data is spikier than vertically polarized data.
Recall that smaller is the shape parameter of a distribution, spikier is
the corresponding data. For the processed data, we have, like in [18],
estimated the shape parameter α of the inverse-gamma distribution
for the four type of polarizations. We found α = 1.419 for HH data,
α = 1.645 for VV data and α = 1.454 for both HV and VH data. The
spiky nature of the clutter is more evident with HH data and it seems
that the cross-polarization data HV and VH have the same properties
and are spikier than VV data.

4. THE ADAPTIVE DETECTION ALGORITHM

When the covariance matrix M of the clutter is assumed a priori
known, a statistic test, which is widely used for Gaussian as well
as compound-Gaussian clutter for the detection problem (1), is the
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Normalized Matched Filter (NMF) [13, 25, 26].

Λ(z) =

∣∣pHM−1 z
∣∣2

|pHM−1p| |zHM−1z|
H1

≷
H0

γ (18)

The scale invariance property of this test makes it CFAR to the texture
component of the clutter. In practice, the covariance matrix is seldom
known, The ANMF is obtained by replacing M in the NMF by an
appropriate estimate M̂ from secondary data. The estimate M̂ should
maintain the scale invariance characteristic of the statistic test and
at the same time provide a CFAR property to the structure of the
covariance matrix. In what follows, we recall the existing estimators for
the covariance matrix of a compound-Gaussian clutter and we derive
the maximum likelihood estimate for the special case of the inverse
gamma texture model.

4.1. Estimation of the Covariance Matrix

In a practical adaptive radar system, the covariance matrix of the
clutter is estimated from a set of secondary data, which must be
representative of the samples in the cell under test (CUT). The
secondary data is often taken from L cells that are just in the
neighborhood of the CUT, and due to this geographical proximity,
these cells share approximately the same covariance structure.

4.1.1. Maximum Likelihood Estimation of the Covariance Matrix

Let zi =
√

τixi; i = 1, . . . , L be the L samples from secondary cells to
be used to estimate the unknown covariance matrix. Starting from the
joint pdf of these L i.i.d training data vectors, it was shown in [14] that
the ML estimate of the covariance matrix is solution to the equation

M̂ML =
1
L

L∑

i=1

cN

(
zH

i M̂−1
MLzi

)
· zizH

i (19)

with
cN (x) = hN+1(x)/hN (x) (20)

and

hN (x) =
∫ +∞

0
τ−N exp(−x/τ)fτ (τ)dτ (21)

To find this solution, Gini et al. [14] proposed an iterative algorithm
given by

M̂ML[k + 1] =
1
L

L∑

i=1

cN

(
zH

i M̂−1
ML[k]zi

)
· zizH

i (22)
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where k is the kth iteration. In the same paper, the authors developed
a closed form expression for the coefficient cN (x) for the special case of
a K-distributed clutter. In the present paper, we derive a closed form
expression for this coefficient for a clutter with inverse gamma texture
pdf.

We substitute in (21) the expression of fτ (τ) from (11) to get

hN (x) =
∫ +∞

0
τ−N exp(−x/τ)

τ−(1+α)

Γ(α)βα
exp(−1/βτ)dτ (23)

By setting a = x + 1
β and b = N + α, we get

hN (x) =
1

Γ(α)βα

∫ +∞

0

1
τ b+1

exp(−a/τ)dτ (24)

Using the change of variable q = a/τ , we obtain

hN (x) =
1

Γ(α)βαab

∫ +∞

0
qb−1e−qdq

=
Γ(b)

Γ(α)βαab

=
Γ(N + α)

Γ(α)βα(x + 1
β )N+α

(25)

From (20) we have

cN (x) =
Γ(N + α + 1)

Γ(N + α)(x + 1/β)
(26)

and using the identity Γ(N + α + 1) = (N + α)Γ(N + α), we obtain
the closed form

cN (x) =
N + α

x + 1
β

(27)

4.1.2. The Approximate Maximum Likelihood Estimation of the
Covariance Matrix

The AML estimate of the covariance matrix [14] is obtained by
replacing the weighting coefficients cN (zH

i M̂−1
MLzi) in (22) by the

coefficient N
zH

i M̂−1
AMLzi

to get

M̂AML(k + 1) =
N

L

L∑

i=1

zizH
i

zH
i M̂−1

AML(k)zi

(28)
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4.1.3. Normalized Sample Covariance Matrix

The NSCM was proposed in [13] and is given by

M̂NSCM =
N

L

L∑

i=1

zizH
i

zH
i zi

(29)

While the NSCM is independent only of the texture component of
the clutter [3], the AML is independent of both the texture and the
covariance matrix structure [14, 15].

5. PERFORMANCE ANALYSIS AND CFAR
PROPERTIES

In this section, we evaluate the detection performance of the ANMF
with the ML, AML and NSCM estimators of covariance matrix. In the
first step, the analysis is conducted with simulated data according to
the compound-Gaussian model with inverse gamma texture pdf. In the
second step, we consider the real sea clutter data analyzed in Section 3.

5.1. Performance with Simulated Data

We simulate a compound-Gaussian clutter with inverse gamma texture
pdf where the covariance matrix of the speckle component (covariance
structure of the clutter) is given by

[M]i,j = ρ|i−j| (30)

where ρ is the one lag correlation coefficient.
Figures 3 and 4 display the ANMF Pfa versus threshold plot for

several values of ρ. We observe that the performance of the ANMF with
both AML and ML estimates of the covariance matrix does not depend
on ρ, while NSCM performance does. Fig. 5 depicts Pfa against
normalized Doppler frequency (fdTR) of the time steering vector. The
three estimators maintain a nearly constant false alarm. The AML and
ML estimators exhibit a very similar performance while NSCM exhibit
a peak near zero frequency. This peak can be explained by the fact
that the NSCM, as it was stated before, is sensitive to the covariance
matrix structure (30), in other terms to the correlation coefficient ρ.
One can notice that the power spectral density (PSD) of the simulated
clutter is located around zero frequency (it is an AR process of order
one) and if we set a threshold (for a specified Pfa) out of the PSD
band width, the Pfa will increase if the Doppler frequency of the time
steering vector approaches the center of this band. The AML and ML
estimators are independent on the covariance matrix structure so they
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Figure 3. Pfa against threshold with NSCM and AML estimators for
different values of ρ. N = 8, L = 24, fdTR = 0.5, α = 1.7 and β = 1.
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with ML estimator for different
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fdTR = 0.5, α = 1.7 and β = 1.
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Figure 5. Pfa against normal-
ized Doppler frequency. N = 8,
L = 24, α = 1.7, β = 1 ρ = 0.9
and Pfa = 10−3.

exhibit a constant Pfa. Other values of N , L and fd have been used
leading to the same comparison (results not shown here for lack of
space). Fig. 5 also displays the clairvoyant NMF plot, which assumes
M is known.

5.2. Performance with Real Data

We now consider the detection performance of the ANMF in the
presence of real sea clutter data. The procedure used to estimate Pfa

and Pd is shown in Fig. 6. Each data file is composed of Nt temporal
returns from Nc range cells and stored in an Nt ×Nc complex matrix.
We consider an N × (L + 1) data window, where N is the number
of pulses and L the number of secondary cells used to estimate the
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Figure 6. The experimental procedure used to evaluate Pfa and Pd.

covariance matrix. The CUT is set in the middle of the window. The
data window is slid in space from range bin to range bin and in time
with an overlap of N/2 samples until the end of the data set. To
evaluate the actual false alarm probability, we perform the ANMF test
for each data window, with the CUT containing only clutter. The
actual Pfa is then given by the ratio of the total number of times the
test exceeds the threshold and the total number of trials. Moreover,
for evaluating the the detector performances we assume N = 8, L = 16
(the case L = 24 or greater has not been considered due to the lack
of a sufficient number of trials for obtaining reliable estimates of P̂fa)
and set the threshold for a nominal false alarm of Pfa = 10−3. The
parameters α and β in (27) are estimated from real data using the
MoM (see [18]). The number of iterations K in the iterative algorithm
(22) and (28) is taken to be equal to 3 see [14] and [18].

Figure 7 displays P̂fa against normalized Doppler frequency for the
four data set polarimetric channels. We observe a mismatch between
P̂fa and the nominal Pfa, which is heavier when fd belongs to the
frequency range where the clutter PSD is significantly different from
the noise floor (see Fig. 8). The curves corresponding to the AMl and
Ml estimates almost coincide.

The main cause for the Pfa degradation is the spatial and temporal
non-stationarity of the sea clutter [24, 27]. Owing to this phenomenon,
the secondary range bins used in the estimation of the covariance
matrix do not share the same spectral properties. Hence, the estimated
matrix departs from the true matrix [27]. Other possible sources of
degradation can be attributed to the fact that the model is not perfectly
compound-Gaussian and may be the texture and the speckle are not
independent.
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Figure 7. Pfa against normalized Doppler frequency. HH, VV, HV
and VH data, with N = 8, L = 16 and nominal Pfa = 10−3.
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Now, we evaluate the probability of detection by injecting a
synthetic target in the CUT such that its content can be written as
z = s + d. We use the Swerling I model s = αp where α and p
were defined in Section 2. We choose the Doppler frequency fd of
the target such that the normalized Doppler frequency fdTR = 0.5
(TR = 1/PRF ). Fig. 9 shows Pd against signal to clutter ratio
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Figure 9. Pd against SCR, HH, VV, HV and VH data, fdTR = 0.5,
N = 8, L = 16, Pfa = 10−3.

(SCR)for the four polarimetric channels. Here also the AML and ML
estimates exhibit approximately the same performance outperforming
the NSCM.

Regarding the implementation, the ML estimator involves more
computational complexity than AML and NSCM estimators.

6. CONCLUSIONS

In the present paper, we have analyzed the performance of the ANMF
detector with different covariance matrix estimators in non-Gaussian
clutter modeled as a compound-Gaussian process with inverse gamma
texture model. This model was tested successfully on real data
sets with different polarizations. In addition to the existing NSCM
and AML estimators of the covariance matrix, we have derived the
maximum likelihood estimate of the covariance matrix for the special
case of inverse gamma texture model. In the case of simulated clutter,
the results showed that the three estimators maintain approximately
the CFAR property of the detector. The AML and the ML estimators
exhibit the same performance and they do not depend on the value of
the correlation coefficient ρ of the clutter while the NSCM does. In
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the presence of real data, the CFAR property is no longer maintained
for the three estimators. This mismatch was attributed to the spatial
and temporal non-stationarity of the clutter. Finally, among the three
estimators, the AML estimate represents a good tradeoff between
performance and computational complexity.
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