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Abstract—A new method for tracking characteristic numbers and
vectors appearing in the Characteristic Mode Theory is presented in
this paper. The challenge here is that the spectral decomposition
of the moment impedance-matrix doesn’t always produce well
ordered eigenmodes. This issue is addressed particularly to finite
numerical accuracy and slight nonsymmetry of the frequency-
dependent matrix. At specific frequencies, the decomposition problem
might be ill-posed and non-uniquely defined as well. Hence an
advanced tracking procedure has been developed to deal with noisy
modes, non-continuous behavior of eigenvalues, mode swapping etc.
Proposed method has been successfully implemented into our in-house
Characteristic Mode software tool for the design of microstrip patch
antennas and tested for some interesting examples.

1. INTRODUCTION

Eigenmodes and eigenvalues are valuable characteristics of important
electromagnetic operators like Electric Field Integral Equation
EFIE [1]. After necessary numerical processing (as the analytical
solution is available for only few canonical cases, [2]), those functional
operators become discrete and are conventionally represented by
a matrix [3]. Diagonalization techniques like the spectral matrix
decomposition [4] or the Singular Value Decomposition (SVD) [5]
are capable to obtain an orthogonal set of eigenmodes which are of
great physical importance [6]. In the following text, spectral eigen-
decomposition of the EFIE complex impedance matrix is performed
in the frequency domain over a relatively broadband sweep (through
several resonances).
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Unfortunately, it is found that modes and eigenvalues are not
generally sorted properly with frequency. Mode order might be
switched, or an unphysical solution arises. Moreover, some modes
could turn up (or disappear) at any frequency step. We recognize
the proper manipulation and tracking of the modes as the main
problem when dealing with modal decomposition, namely the Theory
of Characteristic Modes (TCM) [7]. Straightforward method used so
far, based on simple eigenvector correlation, has been found insufficient
for complex structures.

2. MATHEMATICAL FORMULATION OF THEORY OF
CHARACTERISTIC MODES

The tangential electric field on a Perfect Electrical Conductor (PEC)
satisfies the equation

Es
tan + Ei

tan = 0, (1)

where index s represents the scattered field and index i the incident
field respectively. Since the radiated field Es

tan is a function of the
induced surface current density J, the following integral operator L is
introduced:

L(J) = Es
tan. (2)

Combining 1 and 2 we arrive at the so-called EFIE (Electric Field
Integral Equation) [8]:

[
L(J)−Ei

]
tan

= 0. (3)

The potential structure of the L(J) operator is well-known and may
be found e.g., in [9]. Since L relates field and current quantities, it has
a character of impedance:

Z(J) = [L(J)]tan (4)

and in discrete form the above is known as the Method of Moments
complex impedance matrix Z = R + jX. For TCM modal-
decomposition purposes, this matrix has to be symmetrical with its real
and imaginary Hermitian parts [10]. Thus, the Galerkin method [11]
is required for the construction of Z.

Let us consider the following functional relation:

F (J) =
〈J, XJ〉
〈J, RJ〉 =

power stored
power radiated

. (5)

There exists a set of modal currents (called the characteristic ones)
that minimize the above functional. These characteristic currents are
thus maximizing the power radiated by the structure. It is known
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that (5) could be minimized by solving the associated Euler’s equation
(weighted eigen-equation):

XJn = λnRJn, (6)

where Jn are real characteristic currents and λn their associated
eigenvalues [12]. Instead of eigenvalues, characteristic angles are being
used often thanks to their steeper change:

αn = 180− arctan(λn). (7)

Characteristic angles are (theoretically) continuous through the values
of 90–270, resonance of the nth mode occurs when αn = 180. An
illustration example of λn and αn for a simple strip dipole antenna is
shown at Fig. 1, the pink horizontal line marks the resonance. Half-
wave dipole has been simulated as 300mm long strip dipole of 5 mm
width.

f [GHz]

Figure 1. Eigenvalues and characteristic angles for simple strip dipole
300× 5 mm, 6 modes.

The TCM has been implemented into Matlab’s code. The EFIE
core is based on the RWG elements [13].

3. THE TRACKING PROBLEM

By the numerical solution of (6) in Matlab (particularly by the eig
function that make use of the LAPACK [14] package), eigenvalues
and eigenvectors are obtained. The sorting problem is schematically
depicted at Fig. 2 — during sequential frequency steps, mode
order swaps (red arrows) or modes arise or vanish. This quite
typical behavior is illustrated on an example of rectangular perfectly
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(a) (b)

Figure 2. The tracking problem. Original data from TCM (a) and
ideally sorted results (b).

Figure 3. Unsorted characteristic currents for rectangular plate
(modes 1. and 2. are swapping at 2nd and 3rd sample, mode 3 at
3rd position is corrupted).

conductive plate — see a few unsorted modes at Fig. 3. Clearly,
the eigenvalues are swapped, so there are physically different current
distributions along the frequency.

Let’s demonstrate our effort on three examples of different
structural and computational complexity. First is a 100 × 60mm
rectangle (further noted as Rec100 × 60, Fig. 4(a)), discretized with
244 triangular RWG elements. Eigenvalues have been calculated for
frequencies 1 GHz–4GHz with 50 MHz steps. For this simple case there
are no serious sorting problems. The second example is represented by
110 × 30mm U-slot patch antenna [15] (Fig. 4(b)) with 722 triangles
and 161 frequency steps between 0.5GHz and 4.5 GHz. The last (and
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(a) (b) (c)

Figure 4. Demonstration examples (rectangle plate, U slot patch
antenna and fractal antenna).

probably most interesting) example that will be discussed is the fractal
patch antenna of 2nd iteration. Fractal motif is based on the “X”
motif [16] (further noted as FRC B2, Fig. 4(c)). The FRC B2 fractal
is discretized into 518 elements and computed at frequencies 0.7 GHz–
2.8GHz with 20 MHz steps. For the U-slot antenna and fractal patch
antenna, infinite ground plane was considered (height of patches above
the ground plane is 12mm and 10 mm, respectively). It will be shown
that initial simple eigenvector correlation approach (described later in
Section 3.2) fails for such complex structures as this fractal one.

3.1. The Tracking Problem Definition

As already shown at Fig. 2 and Fig. 3, eigenvalues and eigenvectors are
more or less randomly swapped and they need to be properly sorted.
There are also other, accuracy-related, problems: matrix numerical
noise (rounding errors) and matrix symmetry.

3.1.1. Eigenvalues

These numerical issues lead to ±∞ or 0 valued eigenvalues at
certain frequencies. But fortunately, the frequency behaviour of
eigenvalues could be interpolated later. Occasionally, some eigenvalues
suddenly changes their sign (see later). Although the MoM code is
based on the Galerkin testing procedure, the Z-matrix is not purely
symmetrical [17]. As a result, some eigenvalues have unphysical
imaginary parts which should be cut off. Another complication
originates from the fact that the user may request more modes than
are available at a given frequency. Such empty positions are replaced
by the “NaN” values for further manipulation and user notification.
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3.1.2. Eigenvectors

Problems with eigenvectors are weaker because they are directly used
as the input data for tracking. Three main complications were
recognized in eigenvectors context: zero vectors, numerical noise
(chaotic modes) and degenerated modes.

All the above described numerical problems significantly compli-
cate the respective tracking. Fig. 5 and Fig. 6 shows raw unsorted
characteristic angles for Rec100 × 60, U-slot antenna and FRC B2.
It could be seen that there are frequent leaps as sketched at Fig. 2.
Abrupt jumps to values of 90 or 270 are due to the +/− sign changes
of characteristic numbers.
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Figure 5. Unsorted raw characteristic angles ((a) Rec100×60, (b) U-
slot).
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Figure 6. Unsorted raw characteristic angles ((a) FRC B2 and (b) the
detail at 2.1GHz–2.8 GHz), only the first three modes are shown for
clarity.
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3.2. Previous Tracking Method

Previous tracking method was based on the correlation of the
characteristic vectors (corrcoef in Matlab). Modes are sorted in
eigenvalue-ascending order from the lowest frequency. Initially, modes
from the first frequency are simply copied from the unsorted array
to the sorted one. For all the combinations of modes on the first
frequency and subsequent (yet unsorted) frequencies, the correlation
coefficients of eigenvectors are calculated. For each mode on the first
frequency, we find its next frequency pair with the highest respective
correlation coefficient. Modes are then copied into an array dedicated
for sorted modes and this procedure is repeated for all the frequencies
in ascending order (see Fig. 7).

The above method is very simple because there is no need for any
preprocessing — we work with eigenvectors directly obtained from the

Figure 7. The schematic procedure for sorting using the correlation
method and assigning the mode with the min. correlation coefficient
(modes are represented by the char. number).
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Figure 8. (a) The sorted characteristic angles (correlation method)
for Rec100× 60 and (b) U-slot antenna.
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Figure 9. (a) The sorted characteristic angles (correlation method)
for FRC B2 and (b) the detail at 2.1 GHz–2.8 GHz, same structure.
Compare these results with the unsorted data at Fig. 6 to notice
swapping and missing modes.

eig function. All modes are treated as existing from the 1st frequency
sample to the end of the tracking process. For simple structures, this
approach is quite satisfactory (see Fig. 8 for rectangle without and with
U-slot). For advanced structures, however, modes can easily “swap”,
or one mode might merge with another one; thereupon the mode goes
missing on the remaining frequencies (Fig. 9, FRC B2 (b)).

3.3. New Method

The new proposed tracking method is split into three stages —
preprocessing of raw data from the eig function, main sorting and
postprocessing (mode discrimination, eigenvalue interpolation and
refining). Contrary to the correlation method described in Section 3.2,
more tricks have had been employed, one of the basic precautions
is that the Z-matrix is now calculated in double-precision. A slight
increase in solving time (5–10%) is compensated by much precise
sorting. Since the new tracking method algorithm is rather extensive,
please follow the flowchart of the whole procedure shown at Fig. 10.

3.4. New Method: Preprocessing

While in the preprocessing stage, a number of operations are performed
in order to prepare and optimize raw data from the eig function for
main tracking routine. At first, eigenvalue and eigenvector matrices
of dimension (Modes × Frequencies) are allocated, the Z-matrix is
decomposed at all the frequency points and if all the requested modes
are not found, relevant empty entries are filled with NaNs. After
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Figure 10. New sorting method flowchart.

necessary zeroing the imaginary part of the eigenvectors, correlation
tables for all of the frequency samples and unsorted modes are
computed.

For each single frequency we have to deal with rectangular matrix
of dimension E ×M , where E is the number of triangle-edges and M
is the number of modes.

Next, a similarity limit is calculated for every mode m (VECm)
at a given frequency F with all the modes n at subsequent frequency
F + 1 (VECn). The similarity limit is based on a correlation between
eigenvectors (note that the absolute value makes opposite oriented
modes equal):

ρm,n = |corr(VECm,VECn)|. (8)
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Sufficient number of mesh elements generally differs and depends on
structure topology, desired accuracy of the modal shapes, number of
requested modes and frequency. Convenient number of triangles is in
order of hundreds for electrically small antennas.

At this point, the input data are correctly prepared and after
the necessary Matlab allocations, we continue with the main tracking
process.

3.5. New Method: Tracking Procedure

Tracking is performed sequentially through frequency samples. At
every step, prearranged correlation table for corresponding frequency
is loaded. Example of ordinary correlation table for sample frequency
indexes 5 and 6 is depicted in Fig. 11(a).

We demonstrate our effort on an example depicted at Figs. 11–13.
Typical correlation table is shown at Fig. 11(a). Higher freq. samples
(namely 5th and 6th) have been advantageously chosen because of
better clearness (mode m3 is already closed at this frequency, so the
Index Table could be used also for description of the Rescue Function).
Correlations between all accessible (unsorted) modes at 5th and 6th
frequency were calculated. Then the IT contains only sorted modes
(from previous frequencies) and modes that are sorted in the Primary
Sorting Routine (see Section 3.6). Because the meaning of IT is a little
intricate, diagram at the bottom of Fig. 11 represents the sorted modes
in more intuitive graphical form.

Right side of Fig. 11 depicts the index table of the sorted modes.
The index table (IT, in Fig. 11(b)) is allocated in the preprocessing
part and treated during both sorting process and post processing part.
Each column of IT matches one sorted mode. Obviously, at the end of
the tracking there could be more columns of the index table than the
number of computed modes from the TCM decomposition.

During the sorting process, one of the three cases could occur:

(i) Primary sorting: Mode from frequency F + 1 (6th sample at
Fig. 11(a)) sufficiently correlates with some mode from freq. F
(5th sample at Fig. 11(a)). See Section 3.6 later.

(ii) Rescue function: Mode from frequency F + 1 doesn’t correlate
with any mode from frequency F , but sufficiently correlates with
mode from lower freq. sample (and which is already closed). More
detail in Sections 3.7 and 3.8.

(iii) Opening new mode: Mode from frequency F +1 doesn’t correlate
with any mode from frequency F , or from lower frequencies (where
are the closed modes, for example the cell F3-m3 at Fig. 11(b)),
see Section 3.8.
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Figure 11. Treatment of correlation table at given frequency
step (m1–m4 — modes from original matrix) and the sorted modes
represented by table of indexes (IT); bottom part shows data from IT
as a “trajectory” of modes during the sorting process (X — mode is
closed, O — new mode is opened.).

Of course, as noted above, any mode can arise, vanish or rearise
spontaneously anywhere. Thus, the algorithm has to be able to
recognize all the cases mentioned hereinbefore.

3.6. New Method: Primary Tracking Routine

The desired tracking procedure is the ideal case stated as the number
one — selected mode from previous frequency sample simply continues
in the next frequency step (even though its position is different). It
means that the correlation value is sufficient enough to join these modes
together. The optimal value of minimal correlation depends on task
type, as a rule we adopt the value of 0.8. Such mode is then internally
marked as the employed mode (see the logical ones in dashed frames
at Fig. 11(a)) and its position in the original matrix is saved to the IT.

Index table contains entries that points to real data stored in
original matrix. We shortly recall that the original matrix is obtained
from the eig runtime and it is unsorted and could be particularly
damaged from the numerical point of view. Thus, for example at
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Fig. 11, mode at position 3 in original matrix and at 5th frequency
sample perfectly correlates (ρ32 = 1) with mode at position 2 at next
(6th) frequency step.

It often happens that certain mode doesn’t correlate sufficiently
with any other mode (e.g., m4 at Fig. 11 — no value exceeds 0.8).
More sophisticated method, as described in part 3.7, should be used
(see E© in the flowchart).

3.7. New Method: Rescue Function

The rescue function (ReF, E© in the flowchart) is employed when there’s
no regular solution found for one or more modes. In principle, this
automatically occurs when null or chaotic eigenvectors appear, or when
there are fundamental changes of currents with frequency so minimum
similarity limit is not reached. It has been found suitable to find out all
modes that are already closed and recalculate new correlations between
these (closed) modes and modes awaiting allocation into the index
table. The ReF maintains its local stack for this purpose. We try to
demonstrate the ReF concept at Fig. 12(a). This figure refers again to
data at Fig. 11. Output of the ReF is just binary and will be stated
as “success” and “fail”.

It is possible that some mode existed for several frequencies, than
disappeared and after several more samples rearises. It would be
appropriate to interconnect these parts because they represent the
same mode. For instance, mode m4 with low correlation at Fig. 11
failed in primary sorting and this is why the ReF is employed. The
ReF algorithm collects all modes that are already closed. It is mode m3
at frequency F3 at Fig. 11(a). Now, the ReF computes the correlation
between mode m4 at frequency F6 and mode m3 at freq. F3. If
the computed correlation satisfy the minimum correlation limit, closed
mode m3 will be reopened and linked with mode m4 (Fig. 12(a)). Of
course, because one mode was restored, another one has to be closed.
ReF then finds the last mode that used the 4th index (mode m4 in
Fig. 12) and closes it (see the bold slash in cell m4 -F6 at Fig. 12). For
purposes of localization of the first and the last valid sample of mode,
auxiliary vectors S and E have been implemented — see Fig. 12. Vector
S denotes starting position and E denotes ending position of modes.

If ReF failed, most likely the new mode has been found (see
Fig. 12(b)). Then task from the Section 3.8 is performed.

It was observed that about 30 percent of all modes in rescue
function can be relinked (restored). This value, although generally
dependent on numerical quality of the impedance matrix, was found
almost constant for number of tested planar structures.
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(a) (b)

Figure 12. Example of the rescue function and opening modes at freq.
sample F + 1 and closing modes at freq. sample F (rescue function
succeeds at (a) and fails at (b)).

3.8. New Method: Opening New Mode(s)

An opening procedure is called whenever both primary tracking and
the ReF break down. One or more new modes have to be established
— see Fig. 12(b) where the Rescue Function fails in saving mode m4
from Fig. 11. Then mode m3 stays unopened and new mode m6 is
created. Starting position is equal to 6 (at the 6th frequency sample,
see matrix S at Fig. 12(b)). The mode m4 in index table is closed (the
same bold slash as before), because it continues as the mode m6.

3.9. New Method: Post-processing

With the help of original data matrix and the information from IT,
modes are assigned to their correct positions. Modes have different
length and their number is greater than the size of the source matrix.
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To improve the quality of the sorted results, automated post processing
tools were developed and consist of:

(i) Mode pruning: Great number of modes found is especially caused
by NaN or chaotic vectors. These modes have usually only one
element in the index table. In post processing part it is possible
to prune these ones (length of modes is optional).

(ii) Final mode assignment: All remaining modes in the index table
IT are subsequently fulfilled with the real data stored in original
(source) matrix. Indexes from the index table show the actual
data position in original matrix.

(iii) Spline interpolation of empty places for rescued modes: It is
convenient (e.g., for resonant frequency evaluation) to interpolate
the empty places between the connected parts of modes that
were rescued. Such places are zero-filled (for instance, see zeros
in rescued mode m3 in Fig. 12(a)). The spline interpolation is
optional.

(iv) Monotonous modes removal: Several modes have negligible
meaning within the computed frequency range; see Fig. 14 (modes
with α ≈ 90◦). This implies that these modes could be deleted
to make the characteristic angles graph more transparent. Both
limits (blue dashed lines in Fig. 14) are optional.

(v) Displaying results: All required variables are allocated and
returned to the Matlab workspace. The set of requested sorted
modes can be depicted and further manipulated (zoom, export).

Figure 13. Example of pruning
of the index table (all modes
existing less than 3 frequency
samples will be wiped off as shown
by grey columns.

Figure 14. Removal of mono-
tonic modes.
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Figures 15 and 16 show the sorted characteristic angles by the
method described above — no mode converges into itself nor swaps to
another (compare with unsorted data at Figs. 5 and 6).

Finally, the storage matrices for eigenvalues and eigenvectors
contain only real-valued entries now. Moreover, the eigenvalues were
interpolated to present smooth behavior. This helps to easily find
resonant frequencies, estimate modal radiation Q [18] and so on.

Unfortunately, one truly tough (but not crucial) problem still
remains — managing degenerated modes. Example of degenerated
modes is shown at Fig. 19. They are the same modes, but rotationally
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Figure 15. New sorting method: (a) Char. angles for Rec100 × 60
and (b) U-slot antenna.
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Figure 16. New sorting method: Char. angles for FRC B2 (a) and
the expanded part for 2.1 GHz–2.8 GHz (two degenerated modes at
2.38GHz and 2.4 GHz are depicted).
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symmetric. Degenerated modes can be identified at Figs. 15 and 16
as well and their appearance is marked by orange ellipses. To remedy
this issue, some additional information has to be taken into the account
(like the area occupied by currents), but this is subject for future work.

4. SOME LIMITATIONS

Proposed method has some limitations discussed below. The so-called
split-ring [19] is introduced at Fig. 17. This structure shows a complex
behavior (the thin-strip coupled elements). Even here, however, the
suggested tracking method achieves favorable results (not comparable
with ordinary correlation). Nevertheless, the individual modes are not
tracked perfectly, see Fig. 18.

Figure 17. The split-ring example.

The correct selection of frequency samples is also important —
fine step is very time consuming, very rough step leads to errors in the
tracking algorithm (which can give bad results). As a compromise, it
is advisable to select at least two samples between two nearest modal
resonant frequencies. A better solution is to use iterative modal solver,
which adaptively adds the frequency samples in places that have large
mode distribution changes.

The correlation coefficient has an important role in the method
and cannot be removed. It determines the degree of (non-) similarity
where the selected mode is marked as a new (so far non-existing).
This threshold cannot be determined analytically, since the input data
contain numerical noise and their appearance is not known in advance.

Some examples (typically fractal structures) are still not sorted
correctly. This could be due to degenerate modes or due to a large set
of modes that are similar. Finer mesh would be better in this case.
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Figure 18. Char. angles for split-ring: (a) unsorted data and (b) new
tracking method.
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Figure 19. Manufactured fractal patch antennas ((a) FRC C1 with
double L-probe at and (b) FRC B2).
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Figure 20. Sorted numbers of the FRC C1 structure from Fig. 19(a).
First two modes were used. Resonant frequency is marked as thick
dashed line.
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Figure 21. Simulated and measured return loss of antennas from
Fig. 19.

5. APPLICATIONS

In this part we will briefly discuss practical applications of the new
sorting method. Two planar antennas with fractal geometry are used
for this purpose. Manufactured fractal antennas based on the U-
shaped IFS and the FRC B2 motif (mentioned above) are shown at
Fig. 19. In case of the U-shaped antenna, two dominant modes at
frequencies 1.35GHz and 2.34 GHz can be easily identified by the TCM
with the new sorting method incorporated, see Fig. 20. Because of
need for dual-band antenna behavior, both modes were employed (it
means that they are excited by a properly located double L-probe
structure) [20]). Infinite ground plane has been included during the
TCM analysis and height of the patch was set to H = 29mm. CST-
MWS full-wave FIT simulator was applied at the very end of the design
process for verification purposes of the TCM results. Comparison
between simulated and measured return loss is shown in Fig. 21 and the
agreement is obvious. Second antenna is shown at Fig. 19(b). Study
of properly sorted modes again enables us to find the right place of
feeding. More details about these particular antennas can be found
in [21].

6. CONCLUSION

Eigenvalue decomposition of the moment impedance matrix produces
not well ordered eigenmodes. It is needed for characteristic currents to
be properly linked to their according eigenvalues in ascending order.
Because the eigendecomposition might not be well numerically posed at
all frequencies of interest, additional advanced sorting process has been
developed and implemented into an already existing Characteristic
mode analyzer. It is observed that proposed method is obviously
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more efficient than the previous one that sorted just by correlation
of eigenvectors. Still, there is need for further improvements before
MoPSO could be subjoined in a robust way.
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