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Abstract—This paper presents an improved polar format algorithm
(PFA) for geosynchronous synthetic aperture radar which undergoes
a near-circular track (GeoCSAR). GeoCSAR imaging geometry and
signal formulation considering orbit perturbations were derived to
ensure accurate slant range between antenna and targets. The
illuminated area is more than one million square kilometers due to the
long slant distance, resulting in large amount of data to be processed
and that the scene is a spherical crown rather than a plane. By
assuming spherical wavefronts instead of planar wavefronts, improved
polar format algorithm (PFA) was proposed to focus GeoCSAR raw
data on a spherical reference surface (ground surface), so that the size
of focused scene is no longer limited by the range curvature phase
error. Thus, this method could deal with large area imaging for
GeoCSAR precisely and efficiently. The implementation procedure,
computational complexity, phase error and achievable resolution were
presented to show the focusing capabilities of this imaging algorithm.
Numerical simulation was further performed to validate the feasibility
of this imaging algorithm and the correctness of analysis.
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1. INTRODUCTION

Geosynchronous Synthetic Aperture Radar (GeoSAR) has received
more and more attention since it possesses many advantages compared
to the low-earth orbit SAR [1]. For example, daily images of earth
can be acquired which benefit from the short revisit cycle of GeoSAR
(24 hours); benefit from the long slant range, the footprint size
of antenna-beam can be very large. The daily track of GeoSAR
could be “Figure 8”-like, near-circular or near-ellipse. Conventional
GeoSAR usually undergoes “Figure 8” track and corresponding
imaging algorithms were only based on the linear aperture [2, 3], and
the whole track were not fully utilized. In this paper, GeoSAR
which undergoes a near-circular track is considered and called as
Geosynchronous Circular SAR (GeoCSAR) to distinguish it from the
conventional GeoSAR.

GeoCSAR imaging is faced with several problems: 1) The orbit is
usually influenced by perturbations, such as anisotropic geopotential,
luni-solar attraction and solar radiation pressure [4]. The orbit
perturbations result in variation of geosynchronous orbit elements, and
disturb the regular motion of GeoCSAR; 2) The synthetic aperture
of GeoCSAR is a near-ellipse circle being divided into several sub-
apertures for 2D imaging, which means sub-apertures are irregular
and could not be approximated by lines or standard circular arcs; 3)
The observation area is very large and echoed data are of large volume.

For the first problem, it can be solved by taking into account of the
effect of orbit perturbation when establishing imaging model to ensure
accurate slant range between antenna and targets. For the second
and third problems, although those time domain imaging algorithms,
such as Back-Projection (BP) algorithm, could be used for the case of
arbitrary aperture, these algorithms are particularly time-consuming
for large area imaging [5–7]. The existing frequency-domain imaging
methods based on wavefront reconstruction theory for sub-aperture
or all-aperture Circular SAR is efficient, however, they could only be
applied to ideal circular geometries [5–8].

Polar Format Algorithm (PFA) operates in the azimuth-time,
range-frequency domain [9–12], and has the potential to adapt to
non-ideal tracks [10, 11]. However, traditional PFA assumes planar
wavefronts around a central reference point in the imaged scene,
resulting in the presence of range curvature phase error which limits
the size of focused scene [9, 12, 13]. It can not be applied to GeoCSAR
directly without modification, since the imaging area of GeoCSAR is
much larger than traditional low-earth orbit SAR and airborne SAR.
In this paper, imaging model is established with orbit perturbation.
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Then, by assuming spherical wavefronts instead of planar wavefronts
(which is close in its spirit to the method in [14]), GeoCSAR raw data
are focused on a spherical reference surface (ground surface), so the
size of focused scene is no longer limited by the range curvature phase
error.

The remainder of the paper is organized as follows: GeoCSAR
sub-aperture imaging geometry and imaging model are described
in Section 2. The improved PFA algorithm for GeoCSAR 2D
imaging is presented in Section 3. Reconstruction procedure,
computational complexity, phase errors and image resolution are also
given. Numerical simulation is shown in Section 4 and Section 5
concludes this paper.

2. GEOCSAR IMAGING GEOMETRY AND MODEL

In the MEGSD (Mean Equatorial Geocentric System of Date) reference
frame, the orbit of satellite is described by orbit element set S =
{a, e, i,Ω, ω, ν}T, where the six elements in S denote semi-major
axis, eccentricity, inclination, right ascension of the ascending node,
argument of perigee and true anomaly, respectively. In order to
facilitate analysis, define the unperturbed orbit element set as S0 =
{a0, e0, i0,Ω0, ω0, ν0}T, where a0 = 42164.2 km, ν0 is a function of
azimuth slow time tm that satisfies Kepler’s differential equation [4],

dν0/dtm =
√

µ
/
a3

0(1− e2
0)3(1 + e0 cos ν0)2 (1)

The distance between satellite to earth center rP is a function of ν,

rP = a(1− e2)
/
(1 + e cos ν) (2)

The latitude ϕ and longitude λ can be expressed by S{
λ = Ω−G0 + arg[cos(ω + ν) + j sin(ω + ν) cos i]− ψtm
φ = arcsin(sin(ω + ν) sin i) (3)

where G0 denotes Greenwith sidereal angle. Since it is not possible
to express ν explicitly in closed analytical form as a function of tm,
(3) is approximated by power series expansion to degree one with the
assumption of e2 ≈ 0, sin i ≈ i as

λ ≈ λ0 + 2e sin ν, φ ≈ i sin(ω + ν) (4)

where λ0 = Ω−G0 +arg[cos(ω+ν)+j sin(ω+ν) cos i]. In (4), it shows
two important motion components: 1) harmonic motion in longitude,
due to orbit’s eccentricity e; 2) harmonic motion in latitude, due to
satellite orbit’s inclination i. When ω = π/2 or 3π/2, i = 2e, it yields
(λ−λ0)2+ϕ2 ≈ i2 and the subsatellite ground track is approximately a
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Figure 1. Simulated satellite track.
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sampling.

circle. Figure 1 shows the satellite track simulated by direct numerical
integration of (2), where main short-period orbit perturbations (e.g.,
zonal and tesseral terms of earth’s gravity and luni-solar perturbations)
are considered [4].

Figure 2 shows GeoCSAR imaging geometry in earth-rotating
coordinate system. For the sake of clarity, assume Ω = 0. The Y -Z
plane is equatorial plane of earth. Y axis points toward east and X axis
toward north. Satellite position vector is denoted by rP = (rP , αP , θP )
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in spherical coordinates, where αP and θP can be calculated according
to (4) {

αP = arg
(√

sin2 φ + cos2 φ cos2 λ + cosφ sinλ
)
≈ i

θP = arg(cosφ + j cosφ cosλ) ≈ −ν
(5)

Let rT be position vector of a given target T which is located near
earth surface. rP (tm) and S(tm) in disturbed orbit are given by

rP (tm) = rP0(tm) + ∆rP (tm), S(tm) = S0(tm) + ∆S(tm) (6)
where rP0(tm) is derived from unperturbed orbit elements S0 using (2)
and (5). ∆rP (tm) and ∆S(tm) denote the offsets caused by orbit
perturbations. Since ∆S(tm) ¿ S(tm), (6) can be approximated as [4]

rP (tm) = rP0(tm) + ∆rP (tm), ∆rP (tm) =
∂rP

∂S

∣∣∣∣
S0(tm)

∆S(tm) (7)

∆S(tm) can be obtained by orbital perturbation models and orbit
measurement data. Substituting ∆S(tm) into (7), the satellite position
is

rP (tm) = rP0(tm) +

[
m11 m12 0 0 0 m16

0 0 1 0 0 0
0 0 0 0 0 −1

]
·∆S(tm) (8)

where m11 = 1−e2
0

1+e0 cos ν0(tm) , m12 =− 2a0e0
1+e0 cos ν0(tm)−

a0(1−e2
0) cos ν0(tm)

(1+e0 cos ν0(tm))2
,

m16 = a0(1−e2
0)e0 sin ν0(tm)

(1+e0 cos ν0(tm))2

As shown in Figure 3, the instantaneous slant range R(rP , rT ) =√
r2
P + r2

T − 2rP rT cosβ, where β is the angle between position vector
rP (tm) and rT ,

cosβ = sin αP sinαT cos(θp − θT ) + cosαP cosαT (9)
Then, echoed signal from target T after range compression is

E(kr, rP ) = I(rT , αT , θT ) exp{−jkrR(rP , rT )} (10)
where I(rT , αT , θT ) is the complex reflectivity of targets. kr is two-
way frequency wavenumber, and is related to instantaneous frequency
fr and speed of light c via kr = 4π(fc+fr)/c. fc is the carrier frequency.
kr ∈ [kr min, kr max], where kr min and kr max denote wavenumbers at the
minimum and maximum frequencies, respectively.

3. IMPROVED PFA FOR GEOCSAR 2D IMAGING

In this section, improved PFA for large area imaging of GeoCSAR is
addressed firstly. Then, reconstruction procedure and corresponding
computational complexity are given. Finally, phase error and image
resolution are discussed.
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3.1. Improved PFA

Let HT be height of target T. Denote ρ = c·t/2 as range spatial domain.
Figure 3 shows the sketch map of range resampling, rT = Re + HT ,

r = rT cosβ =
r2
P + r2

T − ρ2

2rP
(11)

Assume that all the targets are located exactly on the reference
surface, i.e., HT = 0. Then, ρ is mapped to rEqu instead of r, as shown
in Figure 3, and

rEqu =
r2
P + R2

e − ρ2

2rP
(12)

Projecting ρ to r can be realized by 1D resampling in spatial domain,
then the resulting signal is

Sr(r, rP)=Sr(ρ, rP)· exp{j(krcρ− k′cr)}=qr(r− rEqu)· exp{−jk′c · rEqu}
(13)

where Sr(ρ, rP ) =
∫

E(kr, rP ) exp{j(kr − krc)ρ} and

rEqu =
r2
P +R2

e−R2(rP , rT )
2rP

k′c =krc

(
dρ

dr

∣∣∣∣
ρ=ρmid

)
= −krc

rP

ρmid

B′≈Br

∣∣∣∣∣
dρ

dr

∣∣∣∣
ρ=ρmid

∣∣∣∣∣=
rP

ρmid
Br qr(r−rEqu)≈sinc

(
2B′

c
(r − rEqu)

) (14)

After resampling, the bandwidth B′ and wavenumber k′c are a function
of rP , thus they will vary with the satellite position. In the resampling
process, k′c needs to be set at a fixed value of −(rP /ρ0)mid · krc.

As for image formation, signal phase places a dominant role, so
the approximation made in the amplitude function qr ≈ sinc(2B′(r −
rEqu)/c) and the reflectivity of target I(xT , yT , zT ) does not affect
image quality. We assume I(xT , yT , zT ) = 1 and discuss the phase
of the signal separately in the following. Via range FFT,

Sr(k′, rP )=
∫

Sr(r, rP ) · exp
{−j(k′−k′c)r

}
dr=exp

{−jk′ · rEqu

}
(15)

Substituting R(rP , rT ), (9) and (14) into (15), then

Sr

(
k′, rP

)
=exp{−j(kP cos θP )xT−j(kP sin θP )yT−jkP cotαP (zT )} (16)

where kP = k′ sinαP . The angle αP varies along with the motion of
satellite (see (8)). Figure 4 shows data surface in frequency domain
which takes point target locating at (44◦46′28′′, N 0◦E) with HT = 0
for example. Let kx = kP ·cos θP , ky = kP ·sin θP , kz = kP ·cotαP , the
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received data in the spatial frequency domain is a non-planar ribbon
due to the non-planar collection.

As shown in Figure 3, choose a plane that is perpendicular to
Z axis and hn away from X-Y plane as the focus plane; that is,
multiplying (16) with a reference function,

H(kP,hn) = kP · cotαP · hn (17)

Then the signal in (16) becomes

SZ(k′, rP )=exp{−j(kP cos θP)xT−j(kP sin θP)yT−jkP cotαP (zT−hn)}
(18)

Then, via interpolation, the polar samples of SZ(k′, rP ) are
converted to 2D frequency format:

SZ(kx, ky)=exp
{
−jkxxT−jkyyT−j

√
k2

x + k2
y cotαP (zT − hn)

}
(19)

The 2D inverse Fourier transform of SZ(kx, ky) is the desired 2D
image. From third term on the right of (19), if height of scatterer
zT equals to that of focus plane hn, scatterers could be well focused.
However, because of the spherical character of imaging area, scatterers
are usually outside the focus plane. Within a certain target altitude
hHOF (depending on the amount and nature of the out-of-plane
motion), scatterers outside the focus plane could also be well focused.
In the following , the value of hHOF is derived.

Let θc be center of θP in a certain sub-aperture, as shown in
Figure 5, θ′ = θP − θc, then

R(rP , rT ) = uT cos θ′ + vT sin θ′ + hZ cotαP (20)

γ

γ
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η

Figure 4. Data surface in fre-
quency domain.
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Figure 5. Projection of spatial
sub-aperture.
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where uT = xT cos θc + yT sin θc, vT = −xT sin θc + yT cos θc. The
projection of satellite track on ground is a circle and Rprj is constant,
thus sinαP = Rprj/rP . Utilizing ν ≈ θP , (2) can be expressed as

rp ≈ a(1− e2)
1 + e cos θP

=
a(1− e2)

1 + e cos(θ′ + θc)
(21)

Substituting (21) into sinαP = Rprj/rP , and from the (Cartesian) law
of cosines,

cotαP =

√
1−A2(1 + e cos(θ′ + θc))2

A(1 + e cos(θ′ + θc))
(22)

where A = Rprj

/
a(1− e2). Since θ′c = 0, (20) can be expressed as

R(rP ) = cos θ′ · (uT + hZ · cotαPC
) + sin θ′ · vT + Npm (23)

where Npm = cos θ′(hZ cotαP /cos θ′ − hZ cotαPC
) denotes distortion.

Substitute (22) into Npm,

Npm =cos θ′ ·hZ ·
(√

1−A2(1+e cos(θ′+θc))2

A(1+e cos(θ′+θc)) cos θ′
−

√
1−A2(1+e cos θc)2

A(1+e cos θc)

)

(24)
From (23), (18) can be expressed as

SZ(k′, rP )=exp{−j(kx ·(xT +xToff)+ky ·(yT +yToff)}·exp{−jkP ·Npm}
(25)

where xToff and yToff denote the offsets along X and Y axes,
respectively

xToff = hZ · cotαPC
· cos θc

yToff = hZ · cotαPC
· sin θc

(26)

Npm will cause scatterers defocused if hZ ≥ hHOF . To guarantee image
quality, it requires that the phase variation caused by third term on
the right of (25) to be kept within π/4, i.e.,

|kP Npm| ≤ π/4 (27)

Let Rpm = (
√

1−A2(1+e cos(θ′+θc))2

A(1+e cos(θ′+θc)) cos θ′ −
√

1−A2(1+e cos θc)2

A(1+e cos θc)
), then from (27)

hHOF =
π

4 · |ku max| · |∆Rpm| (28)

where |ku|max ≈ kr max cos θ′ · sin i · (rP /ρ0mid). It is worth to notice
that different sub-apertures correspond to different values of Rpm and
hHOF .



Progress In Electromagnetics Research, Vol. 119, 2011 163

3.2. Reconstruction Procedure and Computational
Complexity

This subsection gives the practical implementation of the improved
PFA. According to (28), the total target scene of spherical crown shape
is divided into several sub-scenes with the altitude hn = Hsph − (2n−
1)hHOF , n = 1, 2 · · ·N , N = dH/2hHOF e (H is the height of the
spherical crown) and breadth D = 2hHOF in Z direction as shown in
Figure 6. The implementation procedure is summarized in Figure 7.
Assume the number of range samples is Nr, the number of azimuth
samples is Na, the imaging size is Ns × Ns, and the 1D interpolator
length is Mker.

........

X

Y
sub-scene

N

3
sub-scene

2
sub-scene

1
sub-scene

Figure 6. Sketch map of sub-scene mosaic.
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Step1: Map ρ to r via 1D resampling of the range compressed data
Sr(ρ, rP ). The computational complexity is O(MkerNaNr).

Step2: 1D range FFT of Sr(r, rP ). The computational complexity is
O(NaNr log Nr).

Step3: Multiply Sr(k′, rP ) with a set of reference function H(kP,hn)
and obtain a set of Sn

z (k′, rP ). The computational complexity is
O(NaNrN).

Step4: Convert every polar format data Sn
z (k′, rP ) to Cartesian

format data SZ(kx, ky) via a 2D interpolation. The computational
complexity is O(M2

kerN
2
s N).

Step5: 2D IFFT of the output signal to obtain the 2D image
of sub-scenes. The computational complexity of this step is
O(N2

s log Ns).
Step6: Splice all the sub-scenes into a whole scene. The

computational complexity of this step is O(N2
s ).

The total computational complexity of the improved PFA
is O((M2

ker + log Ns)N2
s N). The computational complexity of

BP algorithm, which is based on pixel-by-pixel processing, is
O(ηkerNaN

2N). The improved PFA is apparently more efficient than
BP.

3.3. Phase Error Analysis

In (12), when mapping ρ to r, all the scatterers were assumed locating
on the surface of earth. In fact, the signal of targets with height HT 6= 0
in frequency domain is

Sr(k′, rP )=exp
{
−jk′

r2
P +r2

T−R2(rP , rT )
2rP

}
=exp{jΦEqu+jΦerr} (29)

where
ΦEqu = −k′ · rEqu = −k′

(
r2
P + R2

e −R2 (rP , rT )
) /

(2rP )

Φerr = −k′ · (r − rEqu) = −k′
(
R2

e − r2
T

)/
(2rP )

(30)

From (30), Φerr is proportional to (r2
T − R2

e), when rT = Re,
Φerr = 0. That is to say, the targets located exactly on earth
surface can be accurately reconstructed. Utilizing rP from (8) and
cos ν/(cos θP sinα) = 1/ sin i, it yields

Φerr =−kP cos θ′ · (R2
e − r2

T )
2a(1−e2) sinαP cos θ′

− kx
e(R2

e − r2
T )

2a(1−e2) sin i
=Φl+Φh

(31)
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where Φl is linear phase error, Φh is high frequency phase error. Then

Φl = −ku ·mean
(

1
sinα cos θ′

)
· (R2

e − r2
T )

2a(1− e2)
− kx

e(R2
e − r2

T )
2a(1− e2) sin i

= −kx · xoff − ky · yoff

Φh = −ku ·
(

1
sinα cos θ′

−mean
(

1
sinα cos θ′

))
· (R2

e − r2
T )

2a(1− e2)

(32)

where xoff and yoff denote offsets of target position in X and Y axes
caused by Φl which has no effect on the focusing quality.

xoff = cos θc ·mean
(

1
sinα cos θ′

)
· (R2

e − r2
T )

2a(1− e2)
+

e(R2
e − r2

T )
2a(1− e2) sin i

yoff = sin θc ·mean
(

1
sinα cos θ′

)
· (R2

e − r2
T )

2a(1− e2)

(33)

From (33), the image distortion increases as the height of target
increases. The high frequency phase error Φh might lead to defocusing
for scatterers far away from the reference surface. To guarantee image
quality, the variation of Φh needs to be kept within π/4, i.e.,

∣∣∣∣kPmax

(R2
e − r2

T )
2a(1− e2)

∆µ(tm)
∣∣∣∣ ≤ π/4 (34)

where µ(tm) = cos θ′ · ( 1
sin α cos θ′ −mean( 1

sin α cos θ′ )). Thus the effective
imaging size is

∣∣R2
e − r2

T

∣∣ ≤ πa(1− e2)
2 |∆µ(tm)| · krmax sin i

(
ρ0

rP

)

mid

(35)

As long as the height of scatterer HT = rT − Re satisfies (35), it
could be well focused.

3.4. Resolution Analysis

Let rins be the position vector of the point that is the intersection of
perigee-apogee vector and Z axis, rins = (0, 0, a(1−e2) cos i) as shown
in Figure 4. γ is the angle between the underside of the truncated cone
and kx-ky plane, γ = arcsin(rT sinαT /|rins − rT |). Satellite-to-target
vector is r̃(tm) = rP (tm)−rT , while center of sub-aperture corresponds
to r̃c = r̃(θ̃c). Let ϑ be spatial angle that sub-aperture has swept, then

∆θ̃ = r̃( ̂
θ̃c), r̃(θ̃c+ϑ/2), and η = r̃(θ̃ ̂c), r̃(θ̃c+π) (see Figure 8). Rotate

X-Y plane by θ̃c on Z axis, and define the rotated plane as Ũ − Ṽ .
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(kx, ky) are projected into (k
Ũ
, k

Ṽ
), then the bandwidth

B
Ũ

= kmax ·
∣∣∣r′

(
θ̃c + ∆θ̃

)
− r′

(
θ̃c −∆θ̃

)∣∣∣ · cos
(η

2

)
· sin

(
∆θ̃

)

B
Ṽ

=
(
kmax − kmin · cos

(
∆θ̃

))
· cos

(η

2

)
· cos(γ)

(36)

Finally, the range resolution and the cross-range resolution are ρ
Ũ

=
π
/
B

Ũ
, ρ

Ṽ
= π

/
B

Ṽ
, respectively, as shown in Figure 9.

4. NUMERICAL SIMULATION

In this section, the imaging focusing capabilities of the improved PFA
in GeoCSAR configuration are investigated and verified by means of
numerical simulations. A sub-scene (third sub-scene) in the whole
scene is chosen for imaging as shown in Figure 10. Altitude of third
sub-scene in Z axis is h3 = 6334.5 km and breadth in Z axis is
hHOF = 2.6 km. The targets are located on the top edge and bottom
edge of the sub-scene. The distance spacing of targets on the ground
is 500 m.

A 50m × 5000m area in the sub-scene is chosen to display. The
center of the area is (83.1942◦N, 0.1895◦E). The targets locate along
the same latitude in the same area. Assuming that all the targets are
located exactly on the earth surface, and the image quality of targets
are the same in the coverage scene. For the given system parameters of
Table 1, hHOF calculated via (28) is hHOF = 1.3546 km and the range
of scatterer height calculated with (35) is |HT | ≤ 9.11 km.
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Table 1. Main system and processing parameters.

Parameters Values
Orbit inclination i0 0.1 rad
Orbit eccentricity e0 0.05

Argument of perigee ω0 π/2 rad
Carrier frequency fc 1.3GHz
Signal bandwidth B 150 MHz

Sampling rate fs 250 MHz
Pulse Repetition Frequency 112 Hz

Figure 10. Sketch map of a sub-scene in whole imaging scene.
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Figure 11. Imaging result of the chosen area, top edge of the third
sub-scene.

Figure 11 shows imaging result of the chosen area. The plane
that parallels X-Y plane with altitude h3 in Z axis is chosen as focus
plane. All targets are accurately reconstructed. From (26), there are
linear offsets of target position along X and Y axis. After geometric
correction, the focused targets are relocated at the correct position.
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Figure 12. Imaging result of target T via BP algorithm.
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Figure 13. Imaging result of target T via improved PFA.

Table 2. Imaging quality comparison between BP algorithm and
improved PFA.

Target T
BP algorithm Improved PFA

Res.

(m)

PSLR

(dB)

ISLR

(dB)

Res.

(m)

PSLR

(dB)

ISLR

(dB)

Range 8.8947 −13.2732 −10.3321 8.9440 −13.2596 −9.9807

Azimuth 8.8960 −13.2853 −10.3554 8.9075 −13.2781 −10.0766

Since the targets distribute along the same latitude, the focused image
of targets on the focus plane is an arc.

In order to show more details of the imaging results, spread
function of target T (as shown in Figure 11) is shown in Figure 12(a).
The azimuth and range profile are shown in Figure 12(b) and
Figure 12(c). The same target T has also been imaged with BP
algorithm for comparison, and corresponding imaging results are shown
in Figure 13. Quality metric of imaging results from BP algorithm
and the improved PFA are listed in Table 2, including 3 dB impulse
response width (IRW), peak sidelobe ratio (PSLR) and integrated
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sidelobe ratio (ISLR). From Table 2, it can be concluded that the
improved PFA has a comparable performance to BP algorithm, but the
improved PFA, as a frequency domain algorithm, deals with the echoed
data simultaneously and works more efficiently than BP algorithm.

5. CONCLUSIONS

This paper has proposed an improved PFA imaging algorithm for
GeoSAR which undergoes a near-circular track. Imaging geometry
and corresponding imaging model with orbit perturbation considered
has been derived, which helps to ensure accurate slant range between
antenna and targets. By assuming spherical wavefronts instead of
planar wavefronts, the proposed algorithm focuses GeoCSAR raw data
on a spherical reference surface (ground surface). Thereby the size
of focused scene is no longer limited by the range curvature phase
error. The implementation procedure has been presented while the
computational complexity are calculated, which shows the efficiency of
the proposed algorithm. Phase error and achievable resolution have
been analyzed, which assesses feasibility of the imaging algorithm.
Numerical simulation has been performed and the results about the
imaging quality further validate feasibility of the imaging algorithm
and correctness of the analysis.
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