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Abstract—A rigorous fast numerical method called E-PILE+SMCG
is introduced and then used in a Monte Carlo study of scattering from
a three dimensional perfectly electrical conductor (PEC) object below
lossy soil rough surface. This method is the three dimensional (3D)
extendability of PILE (Propagation-Inside-Layer Expansion) method
which is proposed for two dimensional (2D) scattering problem. The
rough surface with Gaussian profile is used to emulate the realistic
situation of statistically rough surface, while the tapered incident wave
is chosen to reduce the truncation error. The 3D angular correlation
function (ACF) and bistatic scattering coefficient (BSC) are studied
and applied to the detection of a target embedded in the clutter. The
ACF is computed by using numerical method with circular azimuthal
angle averaging technique. Because of its success in suppressing
the clutter scattering, the technique appears attractive in real life
implementation.

1. INTRODUCTION

Electromagnetic sensing of buried objects in the presence of random
rough surface is important due to applications in the detection
of subsurface pipes, landmines, etc. Some approximate analytical
models have been derived in the small roughness limit problem [1, 2].
However, the complexity of the problem has limited the development
of more general approximations. Some works have explored numerical
solutions [3–5], but have concentrated primarily on two dimensional
scattering problems to reduce computational complexity. The two
dimensional rough surface ground (i.e., three dimensional (3D)
scattering problem) is a more realistic problem as investigated by
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mangy researchers [6–8]. In [8], the EM scattering from a 3D shallow
object buried under a 2D random rough dielectric surface is analyzed
by using the steepest descent fast multi-pole method. However, the
random surface and object are modeled as a whole, which make it
difficult to apply this method treating larger and complex problems.

In the numerical simulations of the scattering by an object under
a rough surface, the size of the surface plays an important role: the
unknown number of surface is much lager than that of the object. So
it is interesting to investigate exact fast numerical methods to treat
this large problem. For instance, the sparse matrix/canonical grid
algorithm (SMCG) of Tsang et al. with the complexity of O(N log N)
in [9–11], the novel acceleration forward backward method (FB/NSA)
of Torrungrueng et al. with the complexity of (O(N)) in [12], the
steepest descent fast multi-pole method (SDFMM) of Jandhyala et
al. with the complexity of (O(N)) in [13]. In [14], the general sparse
matrix/canonical grid algorithm (G-SMCG) is introduced to compute
the electromagnetic scattering from object on ocean surface. For the
problem of an object under a rough surface, the interaction between
rough surface and object must be considered. These methods cannot
be applied since there are two different and distinct surfaces.

Recently, Dechamps et al. developed a fast numerical method,
PILE (Propagation-Inside-Layer Expansion) [15], devoted to the
scattering by a stack of two one dimensional (1D) interfaces separating
homogeneous media. Bourlier et al. have applied the PILE method for
an object located below a 1D rough surface [16]. The main advantage of
the PILE method is that the resolution of the linear system (obtained
from the method of moments) is broken up into different steps: Two
steps are dedicated to solving for the local interactions, which can
be done from efficient methods valid for a single rough surface, such
as SMCG and FB/NSA. Two steps are dedicated to solving for the
coupling interactions. The purpose of this paper is to extend the PILE
method to the 3D scattering problem of an object buried under soil
rough surface. In order to accelerate the extended PILE method and
to treat a large problem, the local interactions of the rough surface
are computed by using SMCG because of its relative simplicity of
programming and low complexity of computation.

To characterize object below the rough surface, the angular
correlation function (ACF) and bistatic scattering coefficient (BSC) are
utilized. The ACF is the correlation function of two scattering fields in
two different directions, corresponding to two incident fields. In [17–
20], the ACF of rough surface is studied by analytical and numerical
methods, and the results are compared with experimental. The ACF
has also been applied to the detection of a buried object [21, 22]. For
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the detection of a object under a rough surface, the scattering of the
object is often obscured by clutter such as rough surface scattering and
random medium scattering, which makes it difficult to detection the
object. From [21, 22], we known that by making use of the ACF, the
contribution of clutter to the angular correlation function is minimal
away from the memory line, making the contribution of the buried
object more conspicuous by many dB. In this paper, we study the
ACF of wave scattering by an object buried under soil rough surface
for 3D scattering problems. For the ACF applied in detecting buried
object, the object is associated with one realization of the random
rough surface, therefore realization averaging is meaningless. In the
3D ACF, we make the circular azimuthal angle averaging, which is
successful for detection the 3D object.

2. THEORY AND FORMULATION

Figure 1 illustrates the basic geometry considered in this paper: a PEC
object is located below a rough surface. The rough interface between
free space and a dielectric medium with relative complex permittivity
ε1 is described by z = f(x, y), and generated by Monte Karlo method.
The θi and ϕi are incident angles, and the θs and ϕs are scattering
angles.
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Figure 1. The geometry of a PEC object buried under rough surface.

2.1. The Boundary Integral Equations

To avoid edge limitations, the incident field is tapered so that the
illuminated rough surface can be confined to the surface area Lx×Ly.
Consider the tapered plane wave incident on the structure along
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k̂i = sin θi cosϕix̂ + sin θi sinϕiŷ − cos θiẑ. Then the incident fields
can be expressed in terms of spectrum of the incident wave [9, 270–
368]

Hinc(x, y, z) = −1
η

∫ ∞

−∞
dkx

∫ ∞

−∞
dky exp(ikxx + ikyy − ikzz)

·ETE(kx, ky)ĥ(−kz) (1)

Einc(x, y, z) =
∫ ∞

−∞
dkx

∫ ∞

−∞
dky exp(ikxx + ikyy − ikzz)

·ETE(kx, ky)ê(−kz) (2)

where ETE(kx, ky) represents the spectrum of the incident field, defined
as

ETE(kx, ky) =
1

4π2

∫ ∞

−∞
dx

∫ ∞

−∞
dy exp(−ikxx− ikyy)

· exp(i(kixx + kiyy)(1 + w)) exp(−t) (3)

t = tx + ty =
(
x2 + y2

)
/g2 (4)

tx =
(cos θi cosϕix + cos θi sinϕiy)2

g2 cos2 θi
(5)

ty =
(− sinϕix + cos ϕiy)2

g2
(6)

w =
1
k2

0

[
(2tx − 1)
g2 cos2 θi

+
(2ty − 1)

g2

]
(7)

The parameter g controls the tapering of the incident wave. In the
above, k0 and η are the wave-number and wave impedance of free
space respectively, and ê, ĥ denote the polarization vectors.

For TE wave incidence

ê(−kz) =
1
kρ

(x̂ky − ŷkx) (8)

ĥ(−kz) =
kz

k0kρ
(x̂kx − ŷky) +

kρ

k0
ẑ (9)

And for TM wave incidence

ĥ(−kz) = − 1
kρ

(x̂ky − ŷkx) (10)

ê(−kz) =
kz

k0kρ
(x̂kx − ŷky) +

kρ

k0
ẑ (11)

with kz =
√

k2
0 − k2

ρ and kρ =
√

k2
x + k2

y.



Progress In Electromagnetics Research B, Vol. 33, 2011 321

Let r′ = x′x̂ + y′ŷ + f(x′, y′)ẑ and r = xx̂ + yŷ + f(x, y)ẑ denote
source point and field point separately. The fields in region 0 and
region 1 satisfy the following equations [9, 552–576]:

Jr(r)
2

− n̂×
{∫

S
(−iω)Mr(r′)ε0G0ds′

+P

∫

S
[(Jr(r′))×∇′G0 + n̂ ·Hr(r′)∇′G0]ds′

}

= n̂× (Hinc(r) + Hsac
o (r)) (r ∈ S) (12)

n̂ ·Er(r)
2

− n̂ ·
{∫

S
Jr(r′)iωµG0ds′

+P

∫

S
[Mr(r′)×∇′G0 + n̂ ·Er(r′)∇′G0]ds′

}

= n̂ · (Einc(r) + Esac
o (r)) (r ∈ S) (13)

−Mr(r)
2

− n̂×
{∫

S
Jr(r′)iωµG1ds′

+P

∫

S
[(Mr(r′))×∇′G1 + n̂ ·Er(r′)∇′G1]ds′

}

= −n̂×Esac
o (r) (r ∈ S) (14)

− n̂ ·Hr(r)
2

− n̂ ·
{∫

S
(−iω)Mr(r′)ε1G1ds′

+P

∫

S
[(Jr(r′))×∇′G1 + n̂′ ·Hr(r′)∇′G1]ds′

}

= −n̂ ·Hsac
o (r) (r ∈ S) (15)

Esac
r (r)|tan= iωµ1

∫

Sb

[
Jo(r′)+

1
k2

q

∇(∇′ · (Jo(r′)))
]
G1ds′ (r∈Sb) (16)

where,G0,1 = exp(ik0,1R)
4πR andR=

√
(x−x′)2+(y−y′)2+(f(x, y)−f(x′, y′))2,

k0 and k1 are the wave-number of the upper and lower medium,
S denotes the rough surface, and Sb denotes the surface of object.
Jo(r) = n̂o ×Ho(r), Mr(r) = n̂×Er(r), Jr(r) = n̂×Hr(r). The unit
normal vector n̂ and n̂′ refer to primed coordinates and point away
from the lower medium, n̂o and n̂′o point away from the object.

Hsac
o (r) =

∫

Sb

Jo(r′)×∇′G1ds′ (17)

Esac
o (r) = − i

ωε1
∇×

∫

Sb

Jo(r′)×∇′G1(r, r′)ds′ (18)
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Esac
r (r) = −

∫

S
[(−iωµ1)Jr(r′)G1 +Mr(r′)×∇′G1 +∇′G1n̂′ ·Er(r′)]ds′

(19)
The Hsac

o and Esac
o denote the scattering field from object to rough

surface, and Esac
r denote the scattering field from upper surface to

object.

2.2. The E-PILE Method

The integral equations of rough surface is discretized by using Method
of Moment (MoM) with pulse base function. Therefore, the integral
equations of object is discretized by using MoM with the Rao-Wilton-
Glisson (RWG) base function which is introduced in [23]. After
discretizing Equations (12)–(19), we get the following matrix equation

ZX = V (20)

where Z is the total impedance matrix of size (N + M) × (N + M)
(N is the number of unknown belongs to rough surface, and M is the
number of unknown belongs to object). V is the incidence field vector.

VT =
[
VT

r VT
o

]
(21)

VT
r is the incidence field vector of rough surface. For 2D dielectric

rough surface
VT

r = [Finc
x ,Finc

y , 0, 0, 0,Jinc
n ] (22)

with

F inc
x (r) =

√
1+

(
∂f(x, y)

∂x

)2

+
(

∂f(x, y)
∂y

)2

n̂×Hinc
r (r) · x̂ (23a)

F inc
y (r) =

√
1+

(
∂f(x, y)

∂x

)2

+
(

∂f(x, y)
∂y

)2

n̂×Hinc
r (r) · ŷ (23b)

J inc
n (r) =

√
1 +

(
∂f(x, y)

∂x

)2

+
(

∂f(x, y)
∂y

)2

n̂ ·Einc
r (r) (23c)

VT
o is the incidence field vector of object. Because the object is buried

under the rough surface, so we have VT
o = 0.

X is the unknown vector.

XT = [XT
r XT

o ] (24)

XT
r is the unknown vector of rough surface, and the unknowns are the

six field components on the rough surface.

XT
r = [FT

x ,FT
y ,FT

n ,JT
x ,JT

y ,JT
n ] (25)
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with

Fx(r) =

√
1 +

(
∂f(x, y)

∂x

)2

+
(

∂f(x, y)
∂y

)2

n̂×Hr(r) · x̂ (26a)

Fy(r) =

√
1 +

(
∂f(x, y)

∂x

)2

+
(

∂f(x, y)
∂y

)2

n̂×Hr(r) · ŷ (26b)

Fn(r) =

√
1 +

(
∂f(x, y)

∂x

)2

+
(

∂f(x, y)
∂y

)2

n̂ ·Hr(r) (26c)

Jx(r) =

√
1 +

(
∂f(x, y)

∂x

)2

+
(

∂f(x, y)
∂y

)2

n̂×Er(r) · x̂ (26d)

Jy(r) =

√
1 +

(
∂f(x, y)

∂x

)2

+
(

∂f(x, y)
∂y

)2

n̂×Er(r) · ŷ (26e)

Jn(r) =

√
1 +

(
∂f(x, y)

∂x

)2

+
(

∂f(x, y)
∂y

)2

n̂ ·Er(r) (26f)

XT
o is the unknown vector of object, and the unknown is the surface

current on the object.

XT
o = [Jo1,Jo2,Jo3] (27)

with

Jo1(r) = n̂×Ho(r) · x̂ (28a)
Jo2(r) = n̂×Ho(r) · ŷ (28b)
Jo3(r) = n̂×Ho(r) · ẑ (28c)

In order to solve efficiency the linear system (20), the impedance matrix
is expressed from sub-matrices as [14]

Z =
[

Zr Zo→r

Zr→o Zo

]
(29)

Zr and Zo correspond exactly to the self-impedance matrices of rough
surface and object.

Zr =
[ 〈pm,Hsac

r (r, pn)〉
〈pm,Esac

r (r, pn)〉
]

(r ∈ S) (30)

where, 〈, 〉 denotes surface integration. pm and pn is the pulse basis.

Zo =
[
〈fm,Esac

o (r, jn)〉Sb

]
(r ∈ Sb) (31)
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A popular choice for the functions jn and fm is the RWG basis, which
will be used here.

The matrices Zo→r and Zr→o can be interpreted as coupling
impedance matrices between object and upper surface.

Zo→r =
[ 〈fm,Hsac

o (r, fn)〉
〈fm,Esac

o (r, fn)〉
]

(r ∈ S) (32)

Zr→o = [〈pm,Esac
r (r, pn)〉] (r ∈ Sb) (33)

The reverse of the matrix Z is:

Z−1 =
[

T U
Q W

]
(34)

where
T = (Zr − Zo→r(Zo)−1Zr→o)−1 (35a)
U = −(Zr − Zo→r(Zo)−1Zr→o)−1Zo→r(Zo)−1 (35b)
Q = −(Zo)−1Zr→o(Zr − Zo→r(Zo)−1Zr→o)−1 (35c)
W = (Zo)−1 + (Zo)−1Zr→o(Zr

−Zo→r(Zo)−1Zr→o)−1Zo→r(Zo)−1 (35d)
By using Equations (34) and (35), the total field on the rough surface
can be expressed as

Xr = (Zr − Zo→r(Zo)−1Zr→o)−1(Vr − Zo→r(Zo)−1Vo) (36)

Because the object is buried under the rough surface, so VT
o = 0. Thus

Equation (36) can be expressed as:

Xr = (Zr − Zo→r(Zo)−1Zr→o)−1Vr

= (I− (Zr)−1Zo→r(Zo)−1Zr→o)−1(Zr)−1Vr (37)
where I is the identity matrix. Let us introduce the characteristic
matrix Mc as

Mc = (Zr)−1Zo→r(Zo)−1Zr→o (38)
Then the first term in Equation (37) can be expanded as an infinite
series over p

(I− (Zr)−1Zo→r(Zo)−1Zr→o)−1 =
p=∞∑

p=0

Mp
c (39)

For the numerical computation, the sum must be truncated at order
PPILE. Combing the Equations (38) and (39), the total unknown vector
on the rough surface is then expressed as

Xr =




p=pPILE∑

p=0

Mp
c


 (Zr)−1Vr =

p=pPILE∑

p=0

Y(p)
r (40)
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Figure 2. The physical interpretation of the Mc.

We define the norm ‖Mc‖ of a complex matrix by its spectral radius,
i.e., the modulus of its eigenvalue which has the highest modulus.
Expansion (40) is accurate if ‖Mc‖ is inferior to 1. Y(p)

r is defined
as {

Y(0)
r = (Zr)−1Vr for p = 0

Y(p)
r = McY

(p−1)
r for p > 0

(41)

The physical interpretation of Mc is shown in Figure 2: in the zeroth
order term, (Zr)−1 accounts for the local interactions on the upper
rough surface, so Y(0)

r corresponds to the contribution of the scattering
on the rough surface when it is illuminated by the direct incident
field Vr. In the first order, Zr→o propagates the field on the rough
surface toward the object, (Zo)−1 corresponds to the contribution of
the scattering on the object, and Zo→r propagates the field on the
object toward the upper surface again. Finally, (Zr)−1 updates the
field values on the upper rough surface. So the characteristic Mc

realizes a back and forth between the upper surface and the lower
object. In a word, the order PPILE of PILE corresponds to the back
and forth interaction between the upper surface and object.

2.3. Acceleration of E-PILE by Using the SMCG

The advantage of the PILE method is that the most complex
operations, which is (Zr)−1u in (40) (u is a vector), only concern
the local interactions on rough surface and can be calculated by fast
numerical methods that already exist for single 2D rough surface,
like for instance the SMCG. The SMCG will be used in this paper
because of its relative simplicity of programming and low complexity
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of computation. It is based on the fact that performing (Zr)−1u is
equivalent to solving Zrv = u for v, this latter problem can be solved
iteratively by using a conjugate gradient scheme as Pre-BICGtab. At
each iteration, it is necessary to compute Zrv, where v is an updated of
(Zr)−1u. The SMCG is employed at this step to speed up the product
Zrv.

We choose a neighborhood distance rd as the distance which
defines the boundary between the weak and strong element of the
impedance matrix. Then the impedance matrix of rough surface is
decomposed into the sum of a strong matrix Zr,(strong) and a weak
matrix Zr,(weak).

Zr = Zr,(strong) + Zr,(weak)
r (42)

where Zr,(strong) represents near field strong interaction and Zr,(weak)

represents non-near field weak interaction. The strong matrix
Zr,(strong) is a sparse matrix which needs to be stored in the compute
process. And the weak matrix Zr,(weak) is a Toeplitz matrix, so the
weak matrix elements can be expanded in a Taylor’s series about the
horizontal distance between the two points

Zr,(w) =
M∑

m=0

Zr,(weak)
m (43)

The zeroth term of above equation is called the flat surface
contribution.

Zr,(FS) = Zr,(weak)
0 (44)

Then the equations are solved using iterative method liking the Pre-
BICGtab. The matrix-vector products of Zr,(FS)v and Zr,(weak)v
can be computed quickly by using a 2-D FFT algorithm (as shown
in Figure 3), and Zr,(strong)v is computed by using traditional MoM
method. As a result, the complexity of SMCG is O(N log N).

As a conclusion, we call E-PILE+SMCG this method, in order
to differentiate it from the PILE method for 2D scattering problem.
Because the unknown number of rough surface is much larger than
that of object, so the complexity of E-PILE+SMCG is approximately
the same to that of SMCG.

2.4. The Bistatic Scattering Coefficient and Angular
Correlation Function

After the surface currents are solved, the scattered fields in medium 0
can be calculated. The scattering amplitudes for both the co-polarized
and cross-polarized polarization s Fβα are respectively [9, 570–572]
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Figure 3. Scheme of the FFT acceleration of the product Zr,(weak)v
when Zr,(weak) a Toeplitz matrix.

Fhα =
ik0

4π
√

2ηP i
α

exp(−ikr)
∫

S

[
(Mrx(r′) cos θs cosφs

+Mry(r′) cos θs sinφs −Mrz(r′) sin θs)
−η(Jrx(r′) sin φs − Jry(r′) cos φs)

]
ds (45a)

Fvα =
ik0

4π
√

2ηP i
α

exp(−ikr)
∫

S

[
(Mrx(r′) sin φs

−Mry(r′) cos φs) + η(Jrx(r′) cos θs cosφs

+Jry(r′) cos θs sinφs − Jrz(r′) sin θs)
]
ds (45b)

where, h means horizontal polarization, and v means vertical
polarization, Mr(r) = Mrxx̂+Mryŷ+Mrz ẑ, Jr(r) = Jrxx̂+Jryŷ+Jrz ẑ.
The scattering amplitudes in (32) are normalized by the square root
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Figure 4. The geometry of azimuthal averaging.

of the incident power 2ηP inc
α , which is given as

pinc
α =

2π2

η

∫

kρ<k0

dkxdky|Eiα(kx, ky)|2 kz

k0
(46)

Since the buried object is under a single random rough surface, the
realization averaging that is usually done in random rough surface
scattering simulations is not applicable. In the numerical results, both
the bistatic scattering coefficient (BSC) and ACF are calculated based
on azimuthal averaging (as shown in Figure 4).

Let Nϕ be the number of zaimuthal angles. The bistatic scattering
coefficient is

σβα(θs, θi) =
1

Nϕ

Nϕ∑

n=1

|Fβα(θs, ϕsn; θi, ϕin)|2 (47)

The ACF is the correlation function of two scattered fields in directions
θs1 and θs2, corresponding to two incident fields in θi1 and θi2,
respectively. The ACF of scattered fields from rough surface exhibits
a strong correlation known as the angular memory effect, which is
generally small away from the memory line [20, 21]. The memory line
obeys the angular relation sin θs2 − sin θs1 = sin θi2 − sin θi1, which is
a consequence of the statistical translation invariance of the random
rough surface. And the ACF can be calculated as following

Γβα(θs2, θi2; θs1, θi1)

=
1

Nϕ

Nϕ∑

n=1

Fβα(θs2, ϕs2n; θi2, ϕi2n)F ∗
βα(θs1, ϕs1n; θi1, ϕi1n) (48)
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where ϕin and ϕsn are incident and scattering azimuthal angles. In
the scattering plane, they are related to each by the realizations of
ϕsn = ϕin for θs having the same sign as θi, ϕsn = ϕin + 180◦ for θs

having the opposite sign as θi.

3. NUMERICAL RESULTS

The soil’s rough surface profiles used in the study are realizations of a
rough surface with a Gaussian spectrum

W (kx, ky) =
lxlyh

2

4π
exp

(
− l2xk2

x + l2yk
2
y

4

)
(49)

Here, lx and ly are the correlation lengths in x- and y-directions,
respectively, and h is the rms height of the rough surface.

In order to study the convergence of E-PILE+SMCG versus its
order PPILE, define the Relative Error (RE) of nth order as

RE: τ(n) =
norm

∣∣∣Zr
(
X(n)

r −X(n−1)
r

)∣∣∣
norm |Vinc| (50)

The norm of a vector of components Xi and of length N is expressed
as norm (X) =

∑i=N
i=1 |Xi|2. The vector Xr represents the current on

the rough surface. The vector Vinc represents the initial incident field.
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Figure 5. The BSC of a buried sphere.
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3.1. Validation and Efficiency of the Method

In Figure 5, the E-PILE+SMCG computer code is compared with the
method published in [9, Chapter 11, Volume 2]. The buried object is
assumed to be a PEC sphere of radius r = 0.3λ at burial depth d =
0.6λ, where the incident angle is θi = 20◦, g = L/4 (L is Lx or Ly in this
case) and the relative dielectric constant of the soil is εr = 2.0 + 0.2i.
The sphere surface is discretized into 240 triangle patches. The sizes
of the rough surface in the x and y directions are Lx = Ly = 8.0λ.
The surface rms height is h = 0.02λ, and the correlation lengths are
lx = ly = 0.5λ. The surface is sampled at 64 points per λ2 giving
4096 points on the rough surface and 24576 surface unknowns. The
bistatic scattering coefficient (BSC) for HH-polarization (HH-BSC)
and V H-polarization (V H-BSC) are shown in Figure 5(a). The BSC
for V V -polarization (V V -BSC) and HV -polarization (HV -BSC) are
shown in Figure 5(b). The RE of every order is also shown in Figure 5.
From Figure 5, we can know that the result of E-PILE+SMCG is
well agreement with that in [9] when RE is smaller than 10−2, and
the largest error between two methods is 0.2 dB. So, in the following
examples, the iteration process is terminated when RE is smaller than
10−2. At the same time, the RE decreases when the order P increases,
so one can conclude that good convergence is obtained.

3.2. The Comparison between BSC and ACF

We calculate the scattering amplitudes for 10 azimuthal angles at 0◦,
36◦, 72◦, . . ., and 324◦, respectively. There is only one realization
of the random rough surface. The BSC and ACF are calculated
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Figure 6. The BSC of a buried sphere.
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Figure 7. The ACF of a buried sphere.

by using azimuthal angular averaging as given in Equations (47)
and (48). The results are plotted as function of the scattering angle θs2.
Parameters for other angles are θi1 = 20◦, θs1 = −20◦, and θi2 = 20◦.
The fully polarimetric results of BSC and ACF are calculated and
shown in Figures 6 and 7. Figure 6(a) shows the results of BSC
for HH-polarization and V H-polarization component, and the results
for V V -polarization and HV -polarization component are shown in
Figure 6(b). Both the results with and without the object sphere are
shown for comparison. As expected, there is a peak in the specular
direction, which is due to the slightly rough surface. We see that
the differences of BSC between with and without the object for co-
polarizations are larger than those for cross-polarizations. This is
because the cross-polarization components are mainly due to the rough
surface scattering. Because the object is a sphere, it is only a small
cross-polarization contribution in BSC. It is also found that there are
larger differences for the V V component than for the HH component.
Figure 7 shows the absolute value of ACF for rough surface with and
without object, in which βα-|ACF| represents the absolute value of
ACF for βα-polarization. We can see the large difference of |ACF|
between with and without an object in both the co-polarization and
cross-polarization result. As shown in Figure 7, the difference of |ACF|
is large even for angles closed to the nadir direction. This is because
the memory effect is avoided and rough surface scattering is minimized
in the |ACF|. As a conclusion, the difference of |ACF| for rough surface
with and without object is larger than that of BSC, which shows that
the ACF has great advantage for detecting buried object over BSC.
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3.3. The Relationship between ACF and Rough Surface
Profile

Figure 8 shows the amplitude of the |ACF| for sphere buried in
soil rough surface of three different correlation lengths for fully
polarization. The other parameters are given by h = 0.02λ, d = 0.6λ,
r = 0.3λ, Lx = Ly = 8.0λ and εr = 2.0+0.2i. The results show that the
amplitude of the |ACF| increases as the correlation length increases,
especially at specular direction. In particular, the difference of |ACF|
for three correlation lengths is larger for the cross-polarization case.
Figure 9 shows the amplitude of the |ACF| for sphere buried in soil
rough surface of three different rms heights, with d = 0.6λ, r = 0.3λ,
Lx = Ly = 8.0λ, lx = ly = 0.02λ and εr = 2.0 + 0.2i. We can see that

H
H

-|
A

C
F

|

scattering angle θs2

(a) (b)

0.07
0.06

0.05

0.04

0.03

0.02

0.01

0.00

V
H

-|
A

C
F

|

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

lx = ly = 0.5λ

lx = ly = 1.5λ

lx = ly = 1.0λ

-40 -35 -30 -25 -20 -15-10 -5 0 5 10 15 20 25 30 35 40
scattering angle θs2

-40 -35 -30 -25 -20 -15-10 -5 0 5 10 15 20 25 30 35 40

lx = ly = 0.5λ

lx = ly = 1.5λ

lx = ly = 1.0λ

V
V

-|
A

C
F

|

0.07
0.06

0.05

0.04

0.03

0.02

0.01

0.00

H
V

-|
A

C
F

|

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

Figure 8. The ACF for different correlation lengths.
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Figure 9. The ACF for different rms heights.
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the amplitude of the ACF increases as the rms length increases, not
only at specular direction but also at all the other directions, which
is different for the case of Figure 8. At the same time, we also found
that the difference of the difference of the |ACF| is more distinct for
the cross-polarization case because the cross-polarization contribution
is directly influenced by roughness of soil surface.

3.4. The Relationship between ACF and Object

Figure 10 shows the amplitude of |ACF| for buried sphere with different
depths. The other parameters are h = 0.02λ, r = 0.3λ, lx = ly = 0.5λ,
Lx = Ly = 8.0λ and εr = 2.0 + 0.2i. The results show that the
amplitude of the ACF decreases as the depth of the sphere increases
because the distance between rough surface profile and object increase
as the depth of object increases and because the mutual interaction
between buried sphere and the soil rough surface decreases, which
finally infects the ACF. The difference of ACF for cross-polarization
is small. Figure 11 shows the amplitude of the |ACF| for buried
sphere with different radii, with other parameters given by d = 0.6λ,
h = 0.02λ, Lx = Ly = 8.0λ, lx = ly = 0.02λ and εr = 2.0 + 0.2i. As
expected, we can see that the amplitude of the ACF increases as the
radii of the sphere increases. This is because the mutual interaction
between buried object and soil rough surface increases as the radii
increases. At the same time, because sphere has small contribution
for cross-polarization scattering, the difference of the ACF for cross-
polarization is smaller than that for co-polarization.
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Figure 10. The ACF for buried sphere with different depths.
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Figure 11. The ACF for buried sphere with different radii.

4. CONCLUSIONS

By extending the PILE method which is introduced for 2D scattering
problem, a rigorous fast numerical method E-PILE+SMCG is proposed
for scattering from 2D rough surface with 3D buried object (3D
problem). The SMCG method is used for accelerating the calculation
the integral equations of the rough surface, and the object is computed
by traditional MoM. The complexity of this method is similar to that of
SMCG (N log N). Then this method is used to compute the scattering
from soil rough surface with buried sphere object. In Figure 5, the
results of E-PILE+SMCG are in agreement with that in literature,
which shows the validity of this method. At the same time, the
convergence of E-PILE+SMCG is also discussed. Then, this method
is used to study the scattering field and ACF of soil rough surface with
buried object. In Figures 6 and 7, the results show that the ACF has
great advantage for detecting buried object over BSC. At last, the ACF
is studied for different parameters of rough surface such as rms height
and correction length and for different parameters of sphere object such
as radii and depth. The simulation result shows that the ACF can be
influenced greatly by parameters of rough surface and object, and this
characteristic can be very useful in realistic detecting technology.
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