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Abstract—In many cases, the study of DOA estimation techniques
is developed based on ideal condition of signal sources and array
sensor antennas. But, there are much more errors as a result of signal
shadow effects from noise contribution and interference of installation
environment in real system. In this paper, the DOA estimation
algorithm using the de-noising pre-processing based on time-frequency
conversion analysis was proposed, and the performance was analyzed.
This is focused on the improvement of DOA estimation at a lower SNR
and interference environment.

1. INTRODUCTION

The direction of arrival (DOA) estimation is an important technology
for the identification of a measured target signal. This is a
core technology to resolve illegal interference signals for spectrum
monitoring.

A study of DOA estimation techniques is generally based on
ideal conditions of a signal source and sensor array. But there are
many errors as a result of signal shadow effects and physical limits of
antenna construction. The performance of a DOA estimation system is
also affected by noise contribution and interferences from installation
environments. Most of the algorithms are using the amplitude
and phase responses of an array antenna. Various super resolution
algorithms are proposed by the analysis of a spatial covariance matrix
of an array antenna such as a MUSIC [1]. The performance of
super-resolution algorithms is generally limited by the ever-present
sensor noise, restricted observation time period, array geometry and
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modelling errors. It can be assumed that the accuracy of DOA
estimation can be remarkably improved by modelling the accurate
array response. This is accomplished by measuring the steering vectors
for the signal-subspace algorithms such as MUSIC [1, 2], ESPRIT [3]
and ML [4]. But there are many limitations to collect the calibrated
steering vectors. And, there are much more errors as a result of signal
shadow effects from noise and interference of installation environment
in real system [5].

The wavelet denoising is a useful tool for various applications of
image processing and acoustic signal processing for noise reduction.
There are some trials for DOA estimation by applying the wavelet
transform method into several subbands MUSIC scenarios [6–8]. But
they do not consider larger noise bandwidth with interference signal
included in processing samples. In this paper, the DOA estimation
algorithm using a time-frequency conversion pre-processing method
with a signal OBW (Occupied Bandwidth) analysis was proposed and
the effectiveness was verified through the simulation. This is focused
on the improvement of DOA estimation performance at lower SNR and
interference environment. This is in compliance with the radio usage
trends of lower power and widening signal bandwidth especially.

2. SUBSPACE BASED DOA ESTIMATION

A DOA estimation algorithm can estimate the direction by the
correlation of amplitude and phase information from the array antenna.
This is realized by the synchronized processing of multi channel signals
from an array antenna [9].

The complex received signal xm(t) (1 < m < M) of the m-th
sensor zm (1 < m < M) by the incident signal of kn (1 < n < N)
at time t can be expressed as Equation (1). It is assumed that N
narrow band signals of a directional vector k = [k1, k2, . . . , kN ] are
projected on the M omni-directional sensors with the sensor location
vector of z = [z1, z2, . . . , zM ]. The narrow band signal is defined as
sn(t−τn(m)) ≈ sn(t). There is nearly no change of the signal envelope
sn(t) for the time delay τn(m) of passing the array antenna [2, 10].

xm(t) =
N∑

n=1

sn(t)ej{ω0(t−τn(m))+ϕn} + ηm(t) (1)

τn(m) =
zm · kn

c
(1 ≤ m ≤ M) (2)

Here ϕn is a random phase of the n-th signal, ηm(t) is random variable
noise with a mean zero and a variance of σ2, and c is the velocity
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of a radio wave. The generalized received signal vector model can be
expressed as Equation (3).

x(t) = A(θ)s(t) + η(t) (3)
Here, x(t) is a [M × 1] received signal vector of an array antenna, The
A(θ) is a [M ×N ] steering vector matrix for an incidence angle θi, s(t)
is a [N × 1] signal source vector, and η(t) is a [M × 1] noise vector.

The correlation between the outputs of each element of the
array antenna includes the information about the direction of incident
signals. This spatial covariance matrix can be a useful parameter for
the DOA estimation [11, 12]. The M ×M spatial covariance matrix of
an M array antenna is defined as following,

Rx = E
[
x(t) xH(t)

]
(4)

Here, E means the expectancy of an ensemble average and H is the
hermitian complex conjugate transpose.

This spatial covariance matrix is represented by the signal and
noise covariance matrix with the assumption of a spatially white noise
uncorrelated with a signal. Let Rs be the covariance matrix of emitter
signals and σ2 be the noise variance at a sensor.

Rx = A(θ)RsA(θ)H + σ2Rη (5)

Rs = E
{
s(t) sH(t)

}
(6)

Rn = σ2Rη = E
{
η(t) ηH(t)

}
(7)

Rη would be the unitary matrix I if the random processing noise vector
η(t) is spatially white noise with an average zero. And, the covariance
matrix shown in Equation (5) separates into the signal eigenvector (6)
and noise eigenvector (7).

The estimation process of a covariance matrix from finite data
is performed by the time average with the assumption of an ergodic
process. The vector space technique separates the vector space as a
signal subspace and a noise subspace through the eigen de-composition
of a covariance matrix. The vector space technique estimates the DOA
from this subspace. It is a method using the orthogonal property of
a signal subspace and a noise subspace. The representative MUSIC
estimation function is described as Equation (8).

PMUSIC (θ) =
AH(θ)A(θ)

AH(θ)RnRH
n A(θ)

(8)

This MUSIC algorithm method searches for the directions that
the noise subspace is orthogonal to the steering vectors correlated
with a signal subspace. The resolution and statistical stability of
this algorithm is generally superior to the classical DOA estimation
methods [13, 14].
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3. NEW APPROACH OF DOA ESTIMATION

A signal subspace based DOA estimation performance is affected by
the two factors of an accurate array manifold modeling and a spatial
covariance matrix of a received array signal. A higher SNR signal for a
target source is required for an accurate estimation from finite received
signal samples. But the DOA estimation performance is limited by the
lower SNR from interference signals and environmental noise.

For the performance improvement of DOA estimation, this paper
proposed a pre-processing technique of time-frequency conversion
methodology for signal filtering. This method includes a time-
frequency conversion technique with a signal OBW (Occupied
Bandwidth) measurement based on wavelet de-noising method as
shown in Fig. 1. This is a DOA method for SNR improvement based
on time-frequency conversion approach. The improvement of a DOA
estimation performance was verified by the simulation.

x(t)

R̂

X(f)

i
λ iu

Applying DOA Estimation Algorithms 

P(θ)

Acquisition of Received Digital Signal
(I/Q)

Applying Wavelet De-noising with
DFT using Acquired Time Sample Data

Re-Arranging Data from filtered X[fL fH]

Spectrum Analysis

          Display

Measuring OBW from X(f)

Define f  , fL H

Save Temp X(f)

Amplitude & Phase

Estimation of Filtered Covariance Matrix R[f  ,L fH]

Processing of Eigen De-composition

Figure 1. Proposed DOA estimation method.
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This is proposed to overcome the limitation of existing DOA
estimation techniques based on only time domain analysis. The more
effective estimation is expected by the improvement of SNR from the
proposed pre-processing techniques of frequency domain analysis. The
proposed method collects a time sampled signal x(t) from an array
antenna as shown in Fig. 1. The upper and lower 99% — OBW limits
fL and fH of a signal are determined from X(f), which is the DFT
result of a received signal x(t). The filtered covariance matrix R[fL, fH ]
can be obtained from the estimated signal energy, X[fL, fL+1, . . . , fH ]
with an improved SNR. And the more exact OBW measurement is
expected through the proposed wavelet de-noising method based on
time-frequency analysis. The proposed OBW limits are defined as
following measurement concepts of Equations (9) ∼ (12). This process
can effectively eliminate small interference noises from the target signal
streams by the frequency domain analysis [15, 16]. Where PX is a
power of each spectrum frequency elements {f1, . . . , fN}. The 99%
OBW is calculated from the upper limit fH and the lower limit fL of
0.5% OBW point from each spectrum boundary.

Prel =
fN∑

i=f1

PX(i) (9)

∆Pβ/2 = Prel × β/2[% ] (β = 1 for 99% OBW analysis) (10)

fL = arg min
fL




∣∣∣∣∣∣

fN∑

fL=f1

PX(fL)−∆Pβ/2

∣∣∣∣∣∣


 (11)

fH = arg min
fH




∣∣∣∣∣∣

f1∑

fH=fN

PX(fH)−∆Pβ/2

∣∣∣∣∣∣


 (12)

An improved DOA estimation is expected from the filtered
covariance matrix and eigen-decomposition processing at particularly
low SNR signal conditions. By the proposed pre-processing, it
can effectively reject adjacent interferences at low SNR conditions.
Moreover, it can acquire the signal spectrum with an improved DOA
estimation spectrum simultaneously without additional computation.
This improved signal spectrum is important results for radio
surveillance procedure.

The signal de-noising is achieved by the discrete wavelet
transform-based thresholding to the resulting coefficients, and
suppressing those coefficients smaller than certain amplitude. An
appropriate transform can project a signal to the domain where the
signal energy is concentrated in a small number of coefficients.
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The proposed Wavelet de-noising process get a de-noised version of
input signal obtained by thresholding the wavelet coefficients. In this
paper, the wavelet procedure applied the heuristic soft thresholding of
symlet wavelet decomposition at level one. This de-noising processing
model is depicted as following simple model.

s(n) = f(n) + σe(n), n = 0, . . . , N − 1 (13)

In this simplest model, e(n) is a Gaussian white noise of
independent normal random variable N(0, 1) and the noise level is
supposed to be equal to 1. Using this model, it follows the objectives of
noise removal by reconstruct the original signal f . It can be assumed
that the higher coefficients are result from the signal and the lower
coefficients are result from the noise. The noise eliminated signal is
obtained by transforming back into the original time domain using
these wavelet coefficients [17–19].

4. THE SIMULATION RESULTS

The effectiveness of the proposed method is verified by the simulation
for low SNR signals which is a measurement limit under on-air
condition. DOA estimation according to various SNR signals was
performed based on the Monte Carlo methodology for performance
analysis of the proposed method.

The simulation is conducted for 5-elements UCA model with Rn =
0.5λ. The incident signal was supposed as only azimuth model with 90
degree elevation for convenience. The proposed simulation is performed
for the low SNR signals at 100 deg incident angle from −20 dB to 0 dB
with an −30 dB SNR interference signal. The normalized frequency
of each signal was assumed as 0.15 rad/sec and 0.35 rad/sec with the
incident angles of 100 deg and 50 degree, respectively.

Figures 2–4 show the simulation results for −12 dB SNR condition
as examples. Fig. 2 compare the signal spectrums between the received
noisy signal and the wavelet de-noised signal using soft heuristic
thresholding at the level 1 by the 8-tap symlet wavelet [20, 21]. The
wavelet de-noised signal is eliminating the noise spectrum outside of
the desired signal well, and the improved SNR is expected from the
simulation. The Mark-A indicates a desired −12 dB SNR signal and
the mark-B is a simulated interference signal after de-noising stage.

And, the eigenvalues for the simulation signal are compared
through the eigen decomposition of a covariance matrix for the 1024
time sampled data in Fig. 3. Figs. 3(a) and 3(b) are the eigen values
from the conventional method and the proposed method, respectively.
Fig. 3(b) shows that the rank of a covariance matrix can be more
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1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Eigen Value of MUSIC Method

Index

E
ig

e
n
 V

a
lu

e

 

 

MUSIC Method

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 Eigen Value of Proposed Method

Index

E
ig

e
n
 V

a
lu

e

 

 

Proposed Method

(a) Classical MUSIC method (b) Proposed method

Figure 3. Comparison of eigen values for the simulation.

accurately decided from the proposed method compared to Fig. 3(a).
The signal contribution is concentrated on the first eigen value. It
can be assumed that the signal and the noise subspace are separated
effectively by the improvement of SNR using the proposed method.

Figure 4 shows a DOA estimation spectrum for the conventional
DOA estimation and the proposed method using this pre-processing
stage. From the simulation, the DOA performance was improved to
more than 10 dB by the proposed pre-processing of OBW analysis with
a wavelet de-noising method. The broken line shows the result of a
conventional method and the unbroken line shows the improved spatial
spectrum spurious for the proposed method.

Figure 5 summarises the successful probability for the proposed
trials for each DOA estimation method. The successful condition is
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Figure 5. Probability of successful DOA estimation.

defined as 5-degree rms of DOA estimation accuracy for each SNR
simulation. Fig. 5(a) and Fig. 5(b) compare the each successful
probability result at 3-elements UCA and 5-elements UCA condition.
From the simulation, the reliable DOA estimation process can be
expected for −18 dB SNR signal using the proposed method, but for
−12 dB SNR signal using the conventional method at 5-elements UCA
condition.

Figure 6 shows the comparison results of DOA estimation
performance for low SNR signals with interference and noise. The
DOA estimation performance was compared by the spurious peak of
DOA estimation spectrums which increase a measurement ambiguity
and probability of successful DOA estimation. The performance
improvement is normalized by the spurious peak for each DOA
estimation simulation of conventional method. The simulation was



Progress In Electromagnetics Research C, Vol. 24, 2011 21

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
0

2

4

6

8

10

12

14

16

18
Normalized Spurious Peak Comparison(anum=5)

SNR [dB]

A
v
e
ra

g
e
 S

p
u
ri
o

u
s
 I

m
p
ro

v
e
m

e
n

t 
[d

B
]

Beamformer Wavelet Denoised

Beamformer Proposed Method

MUSIC Wavelet Denoised

MUSIC Proposed Method

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
0

2

4

6

8

10

12

14

16

18
Normalized Spurious Peak Comparison

SNR [dB]

A
v
e
ra

g
e
 S

p
u
ri
o
u
s
 I

m
p
ro

v
e
m

e
n
t 

[d
B

]

anum=3

anum=4

anum=5

anum=6

(a) Comparison for various estimation method (b) Comparison for various antenna elements

Figure 6. Comparison of spurious peak (normalized to conventional
method).
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Figure 7. Comparison of relative processing time of proposed method.

performed for arbitrary random signals using the MUSIC DOA
estimation algorithm. It shows the relative improvement of an averaged
spurious peak of a spatial spectrum normalized for a conventional DOA
estimation method. Fig. 6(a) compares the performance improvement
for Eigen-based Beam-form method and MUSIC method by applying
the proposed pre-processing. Fig. 6(b) is MUSIC simulation results for
various UCA antenna elements.

Form the simulation results, the proposed method improves the
DOA estimation performance of accuracy and spurious peak of spatial
spectrum especially for lower SNR signals. The proposed method
improves the spurious peak characteristic more than 10 dB at less



22 Kim, Kim, and Choi

than −10 dB SNR signal condition by applying MUSIC estimation.
Fig. 7 shows the computing complexity for several condition of applied
samples (Fig. 7(a)) and antenna numbers (Fig. 7(b)). The relative
processing time increases about 13% by applying the proposed method
for 5-elements with 1024 samples and increases corresponding to
sample numbers for DOA estimation processing.

5. CONCLUSION

The spectrum components coming from other signal sources will bring
quality degradation by distorting the original spectrum distribution.
In this paper, the improvement of DOA estimation capability was
considered at on-air condition of noise and interferences.

The proposed DOA estimation method includes the wavelet de-
noising technique with OBW Analysis pre-processing for low SNR
conditions by applying the time-frequency conversion. This method
is applied to an UCA DOA estimation model for the performance
analysis. The effectiveness is verified by the simulation for a low SNR
signal model. The proposed method shows an improved ability of DOA
resolution and estimation error at the noise and interference conditions.
These are the measurement limits at on-air environment.

For the effective spectrum analysis, it needs a time domain analysis
for DOA estimation and a frequency domain analysis for an interference
spurious and OBW measurement. The proposed DOA estimation
method gets a more than 10 dB ambiguity improvement of DOA
estimation spectrum from the simulation.

It is expected to have more effective and reliable radio spectrum
monitoring through the proposed spectrum monitoring techniques.
But, it needs more researches to improve the proposed performance
for various radio conditions such as co-channel multi-path and
impulsive noise environment. The co-channel interference and
the adjacent channel interference would be common conditions of
spectrum monitoring due to wideband, high frequency and low power
communications.

REFERENCES

1. Schmidt, R. O., “Multiple emitter location and signal parameter
estimation,” IEEE Trans. on Antennas and Propagation, Vol. 34,
276–280, 1986.

2. Michael, L. and L. L. Scharf, “A new subspace identification
algorithm for high-resolution DOA estimation,” IEEE Trans. on
Antennas and Propagation, Vol. 50, No. 10, 1832–1390, Oct. 2002.



Progress In Electromagnetics Research C, Vol. 24, 2011 23

3. Ray, R. and T. Kailath, “ESPRIT — Estimation of signal
parameter via rotational invariance techniques,” IEEE Trans. on
Acoust. Speech Signal Process., Vol. 37, No. 7, 984–995, Jul. 1989.

4. Jaffer, A. G., “Maximum likelihood direction finding of stochastic
sources: A separable solution,” Proc. ICASSP, 2893–2896, New
York, USA, Apr. 1988.

5. Fallahi, R. and M. Roshandel, “Effect of mutual coupling and
configuration of concentric circular array antenna on the signal
to interference performance in CDMA systems,” Progress In
Electromagnetics Research, Vol. 76, 427–447, 2007.

6. Xue, Y., J. Wang, and Z. Liu, “Wavelet packets-based direction-of
arrival estimation,” Proc. ICASSP, II.505–II.508, May 2004.

7. Wang, B., Y. Wang, and H. Chen, “Spatial wavelet transform
preprocessing for direction of arrival estimation,” Antennas and
Propagation Society International Symposium, Vol. 4, 672–675,
2002.

8. Sathish, R. and G. V. Anand, “Spatial wavelet packet denoising
for improved DOA estimation,” Proceedings of the 14th IEEE
Signal Processing Society Workshop on Machine Learning for
Signal Process., 745–754, Oct. 2004.

9. Harabi, F., H. Changuel, and A. Gharsallah, “Direction of arrival
estimation method using a 2-L shape arrays antenna,” Progress
In Electromagnetics Research, Vol. 69, 145–160, 2007.

10. Barabell, A. J., “Improving the resolution performance of the
eigen-structure based direction finding algorithm,” Proc. ICASSP,
336–339, Boston, MA, 1983.

11. Cadzow, J. A., Y. S. Kim, and D. C. Shiue, “General direction-
of-arrival estimation: A signal subspace approach,” IEEE Trans.
on Aerospace and Electronic System, Vol. 25, 31–47, Jan. 1989.

12. Krim, H. and M. Viberg, “Two decades of array signal processing
research,” IEEE Signal Processing Magazine, 67–94, Jul. 1996.

13. Stoica, P. and A. Nehorai, “Performance comparison of subspace
rotation and MUSIC methods for direction estimation,” IEEE
Trans. on Signal Processing, Vol. 39, 446–453, Feb. 1991.

14. Friedlander, B., “A sensitive analysis of MUSIC algorithm,” IEEE
Trans. on Acoust., Vol. 38, 1743–1751, Oct. 1990.

15. ITU-R SM.1794, Wideband Instantaneous Bandwidth Spectrum
Monitoring Systems, International Telecommunication Union,
Jan. 2007.

16. Kim, S. T., J. S. Lim, and K. R. Cho, “Occupied bandwidth
measurement of multi-FA CDMA signal at remote site,” MW



24 Kim, Kim, and Choi

Journal, Vol. 51, No. 8, Aug. 2008.
17. Donoho, D. L., “De-noise by soft-thresholding,” IEEE Trans. on

Information Theory, Vol. 41, No. 3, 613–627, May 1995.
18. Chang, S. G., B. Yu, and M. Vetterli, “Adaptive wavelet

thresholding for image denoising and compression,” IEEE Trans.
on Image Processing, Vol. 9, 1532–1546, Sep. 2000.

19. Rao, A. M. and D. L. Jones, “A denoising approach to multisensor
signal estimation,” IEEE Trans. on Signal Process., Vol. 48, 1225–
1234, 2000.

20. Percival, D. B. and A. T. Walden, Wavelet Methods for Time
Series Analysis, 206–450, Cambridge University, UK, 2000.

21. Anbarjafari, G. and H. Demirel, “Image super resolution based
on interpolation of wavelet domain high frequency subbands and
the spatial domain input image,” ETRI Journal, Vol. 32, No. 3,
390–394, Jun. 2010.


