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Abstract—This paper presents the results of Boundary Element
Method (BEM) numerical procedures of voltages distribution between
transmission lines in order to investigate the theoretical corona
discharges. The algorithm of the voltage distributions are coded in
Mathematica studying size of the system under controlling Neumann
and Dirichlet boundary conditions. Conducting experimental work at a
high voltage (HV) is potentially very dangerous. Therefore, simulation
is a vital research approach, and computer modeling offers significant
advantages to estimate optimal calculation over established system to
prevent dangerous voltage and not to exceed the corona voltage. In
this paper, the BEM results are verified with Finite Element Methods
(FEM) which is coded in Mathematica too.

1. INTRODUCTION

In recent years, the development of computational methods, as
well as advances in computer technology and improved numerical
research for solving boundary value problems have resulted in efficient
computer analysis of various types of physical models. Specifically,
in HV engineering the numerical methods play an important role in
determining the voltage distribution around and between the overhead
lines which is important to establish the properties and defects of
discharge in conductor and to analyze the both, insulating capabilities
and energy losses of overhead lines. It is known that more than 50%
of the power system accidents are caused by high voltage (current)
breakdown [1]. Therefore, studying the voltage distribution and
additionally gas breakdown are of our utmost purpose in design
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and protection of high voltage systems. Whereas such electrostatic
problems were previously approximated by rough models and verified
by expensive tests, it is now solved by computer models. A large
number of simulation programs have already been developed in various
applications [1, 2] and are frequently presented to engineers to use,
but their usage is limited. The goal of this work is therefore to
develop a computer program that simplifies analysis of HV media to
understand corona discharge and predict the overload effects of lines
in order to analyze voltage distribution between lines. From previous
simulation results, it was found that ∇V (nabla of voltage value) is
the primary factor in the gas breakdown, whereas the ratio of d∇V

dt ,
atmospheric pressure and relative humidity are relatively insignificant,
therefore, the Laplace equation with Neumann and Drichlet condition
are considered to measure the corona discharge. Two dimensional
boundary and finite element theory are demonstrated, providing a
practical example of a medium (atmosphere), with a transmission line
voltage of 220 kV, the line spacing of 6 m, and height of the lines
from the ground is 24 m. Although the governing equations of BEM
need strong fundamentals of electromagnetic basics, BEM was used in
analyzing of the HV system since it requires a less computation time
and provides an understandable concept of numerical calculation [3–7].

2. NUMERICAL DISCUSSION FOR A REGION OF HV

Electrostatic problems essentially consist of finding the unknown
potential function Φ that satisfies Laplace’s equation within a
prescribed solution region D under certain boundary conditions.
Usually these boundary conditions are the Dirichlet (Φ(x) = f(x)) and
Neumann (∂Φ

∂n = g(x)) types. We consider here finding the voltage (U)
distribution of a two dimensional quadrilateral second order Laplace
equation as the region shown in Figure 1:

220 kV

24 m

6 m
Line 1 Line 2

dV/dx = 0 dV/dx = 0

Figure 1. A plate with two dimensional transmission lines.
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The line-line voltage and ground potential are taken as Dirichlet
boundary conditions, and the rest of the boundary conditions are taken
as Neumann conditions satisfying:

∂U

∂x
= 0 and

∂U

∂y
= 0 (x, y) ∈ Γ (1)

where Γ symbolizes the boundary, and the Dirichlet conditions are
considered at 20◦C for natural convective air-cooling BEM formulation,
Green’s function as a solution of the Equation (2) through (7) as
follows.

∇2G (~r, ~ρ) = −δ (~r − ~ρ) (2)

With free boundary conditions in two dimensions, Green’s function is
given by

G (~r, ~ρ) = − 1
2πk

ln |~r − ρ̄| . (3)

Here, ~r and ~ρ are field and source points, respectively. Together with
equivalent boundary line charges on each subdivision or element for
the solution of the above problem we get BEM equations

c (~ρ)U (~ρ) =
∫

S

G (~r, ~ρ)
∂U(~r)
∇n

− U (~r)
∂G (~r, ~ρ)

∂n
dS (4)

where the constant element BEM formulation is then defined:

HU = G
∂U

∂n
(5)

where

H = c (~ρ)−
N∑

e=1

∫

Γe

(~r − ~ρ) · n
|~r − ~ρ|2 dΓe (6)

and

G =
N∑

e=1

∫

Γe

ln |~r − ~ρ| dΓe. (7)

where Γe is the boundary value for each element. The accuracy of
BEM essentially depends on the accuracy of evaluation of integrals.
The details of the integration schemes are covered in [1, 6–8, 11, 12].
The resulting Equation (8) can be separated into two parts defined as
known and unknown terms, so that it can be reduced to a system of
linear equations in the following form:

Cϕ = b (8)
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where C is a linear operator, and ϕ is the response of structure (voltage
or temperature) while the second hand side vector b is the admissible
(due to the boundary conditions imposed) excitation of the system.
Of common knowledge, this unknown vector ϕ from Equation (8) is,
in general, solved by iterative methods, due to the singularity of the
matrix C [15–18].

The Corona Voltage (Uk) is calculated empirically from Peek’s
formula [12, 15]:

Uk =
√

3E0mrδ

(
1 +

0, 3√
rδ

)
ln

(a

r

)
(9)

where E0 = 21.2 kV/cm is electric field of air; m represents line
coefficient of aging which is 0.68; δ represents dependent air coefficient
(760mmHg and 20◦C) which is 0.88; a represents the spacing between
lines (m) which is 6 m; r represents line radius which is 14mm. The
result of the Uk using Equation (9) is 233 kV.

The corona thickness (coat) around the lines is determined by:

f = 0.301
√

r (10)

(a) (b)

(c)

Figure 2. Voltage values versus interior nodes between lines for of (a)
220 kV, (b) 308 kV and (c) 352 kV.
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3. NUMERICAL SOLUTIONS PROCEDURE

The voltage distribution was determined as if gas breakdown occurred
around the lines at HV. This phenomenon causes big electrical losses,
called corona losses. The corona discharge occurs around the naked
lines so that the voltage distribution has values higher than Uk value,
which is found from Peek’s formula (Equation (9)). For the given
example, shown in Figure 1, Uk is calculated as 233 kV.

As given in Section 2, electrostatic mathematical equations,
identical for 2D Laplace equations, are solved numerically using
indirect BEM and verified by FEM. The equations have been solved
for nominal, 40% and 60% overloaded voltage values, and the results
are shown as a graph in Figures 2(a), (b) and (c), respectively [13–
16]. Those values are chosen to predict the changing rate for the
transmission lines. The voltage distribution demonstrates that corona
discharge is occurred on the line, surrounding the line as a coat, and the
thickness (coat) of the corona depends on the radius of the transmission
line (see Equation (10)).

The nominal voltage values of BEM are verified with FEM in
Figure 3 which is almost closed. FEM result approached to that of
BEM after fifty iterations. A certain number of nodes in the region
of interest are taken intentionally, but it can be increased as required.
For the point of eliminating the requirement for interior points, BEM
model greatly reduces those (interior points) for a particular problem.
This, in turn, reduces the time and system resources required for the
solution of the problem. In a HV operation, it is necessary to know
how voltages are distributed or what their maximum values are inside
the insulated gases to avoid dielectric breakdown or flashover between
two electrodes.

Robin’s boundary condition may also be used instead of Neumann
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Figure 3. Voltage values BEM results for 220 kV verified with FEM.
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boundary condition for the previously solved region just leaving all
other conditions the same. Since medium is taken homogenous, the
Robin condition does not make any change for the results of the
problem. While studying with the numerical methods, putting the
boundary condition with minimum error has vital importance. In this
study, BEM results are compared to analytical and FEM results, and
it shows that the region voltage distributions are solved with maximum
approximation. Figure 3 indicates that the results are almost the same
for BEM, FEM and Analytical Solution [9, 10, 12, 15].

4. CONCLUSION

Overall, the results presented here indicate that the numerical analysis
of corona discharge at HV applications is suited to electrostatic
computations. Corona discharge voltage and voltage distribution
should be determined, either at the busbar or between the transmission
lines. The study has shown that even at 40% and 60% overloads of
nominal values, the voltage values did not change more than nominal
distribution values, as shown in Figures 2(a), (b) and (c). This
demonstrates that the corona thickness depends mostly on the radius
of the transmission lines. Additionally, from the numerical studies, it
is shown that corona discharge can be determined numerically. These
are very important findings for the design of high voltage transmission
lines. This study is also inspiring for calculating the thickness of the
corona discharge. Furthermore, the study also has shown that BEM
has some distinct advantages over FEM.
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