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Abstract—The diffraction field asymptotics on the edges of a slot in
the plane conducting screen and of a complementary strip is considered
using the exact solutions of corresponding stationary diffraction
problems, which have been derived before on the bases of the slot
(strip) field expansions into discrete Fourier series. It is shown that as
nearing the slot (strip) edges, the fields decrease or increase indefinitely
in magnitude by the power law with an exponent of modulus less
than unity, so the given exact diffraction solutions yield finite value
of electromagnetic energy density in any point of space.

1. INTRODUCTION

Any solution of diffraction problems should satisfy certain boundary
conditions, including the conditions at infinity (radiation conditions),
conditions at the interfaces of different media and conditions on their
fractures (edges) [1–5]. The conditions on extended interfaces are
formulated as exact equalities (for the spatial field components) [1–5],
but the other conditions are of less stringent character. The energy
density of the field, diffracted by a finite obstacle, should vanish
at infinity, and field energy must be finite in any bounded space
domain [1–6], i.e., the local energy density should be an integrable
coordinate function [6]. Thus, the interface conditions are taken
into consideration directly at solving the diffraction problem, but the
conditions at infinity and on the edges are used for selecting and testing
of obtained solutions. Generally, a solution of diffraction problem
is constructed as a superposition of an infinite number of different
waves, each of which satisfies necessary conditions at the interfaces
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individually, but not at all interfaces. The solving procedure for
a diffraction problem is reduced actually to enforce the remaining
conditions on the total field. Thus, there is no need to require
satisfaction of the conditions at infinity and on the edges initially
for each component of the diffraction field. It is enough that their
sum, i.e., the total field, satisfies the necessary conditions, although
each component can violate these conditions separately. For example,
Shevchenko [7] has shown that the sum of infinite number of plane
waves can satisfy the infinity condition, whereas these waves satisfy
the only condition of bounded amplitudes.

Such an approach has been proved to be helpful for the
construction of exact solutions, which describe the electromagnetic
wave diffraction by a slot in a plane conducting screen and by a
complementary strip [8]. There are a lot of works, where such
diffraction problems are studied under various boundary conditions
exactly and approximately (see, for example, [9–13]). However, as it
is known for us, only in the work of [8] their exact solutions under
the classical formulation of boundary conditions are presented for the
first time. These solutions are based on the field representation in the
form of Fourier integrals and series. That is why they do not admit an
explicit form of the field asymptotics near the edges of the conducting
surfaces, as it was easily obtained for the fields of Sommerfeld’s
diffraction by an isolated half-plane [14] (see also [2–4, 15]). In the
present work, we study behavior of the rigorous solutions [8] at the
edges of a slot and strip, because in paper [8] evaluation of such a
behavior was not carry out. Our main goal is to confirm physical
authenticity of the approach in [8] in terms of the edge conditions, i.e.,
to show that this approach provides finite values of the energy density
for the field solutions at the edge of a slot and strip.

2. DIFFRACTION FIELDS IN SPACE

In this section, we reproduce some results of [8], which are necessary for
the subsequent consideration. The problem under study is formulated
as a problem of stationary two-dimensional diffraction of a plane
electromagnetic wave

u(inc) = exp[ik(α0x + β0z)] (1)

by a slot in the infinitesimally thin perfectly conducting screen, or by
a complementary strip (Fig. 1). Here, i =

√ − 1 is the imaginary
unite; k = ω/c is the wavenumber, α0 = cos ϑ; β0 = sinϑ are
the parameters of wave propagation in x and z axes; ϑ is the
angle of its incidence. The field temporal dependence is assumed as
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(a) (b)

Figure 1. Diffraction by (a) a slot and (b) strip [8].

exp(−iωt). Usually, two-dimensional diffraction problems are reduced
to independent consideration of two different field polarizations [1–5]:
the first of which is characterized by orthogonality of the electric vector
to the plane of wave incidence (we call that the H polarization), and
the second one is defined by orthogonality of the magnetic vector to
this plane (the E polarization). They determine various spatial field
components

Ey = u Hx =
i

k

∂u

∂z
Hz = − i

k

∂u

∂x
(2a)

for the H polarization, and

Ex = − i

k

∂ū

∂z
Ez =

i

k

∂ū

∂x
Hy = ū (2b)

for the E polarization, where u and ū are the scalar complex functions
of the coordinates, which should satisfy the Helmholtz equation and
different boundary conditions [1–5]. Polarization of the total field (H or
E) is determined by the type of the incident wave function (1) (u or ū),
which corresponds to the direction of its electric vector (orthogonally
or in parallel to the plane of incidence).

The solution of the diffraction problem in [8] is based on the field
representation in the finite slot segment −l ≤ z ≤ l in the form of the
discrete Fourier series

Ey(0, z) =
∞∑

n=1

[
a(s)

n cos
(
kξ(s)

n z
)

+ ia(a)
n sin

(
kξ(a)

n z
)]

θ
(
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for the H polarization, and

Ez(0, z) =
∞∑

n=1

[
ā(s)

n cos
(
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n z
)

+ iā(a)
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(
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n z
)]

θ
(
l2 − z2

)
(3b)

for the E polarization, where a
(s,a)
n and ā

(s,a)
n are the unknown

amplitudes of the symmetric and antisymmetric (in z) Fourier
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components,

ξ(s)
n = ξ̄(a)

n =
π

kl

(
n− 1

2

)
ξ(a)
n =

π

kl
n ξ̄(s)

n =
π

kl
(n− 1) (4)

are their spatial frequencies, and θ(x) is the step Heaviside’s function:
θ(x) = 1 if x ≥ 0 and θ(x) = 0 if x < 0.

On the other hand, out of the plane x = 0 containing the screen
with a slot, the diffraction field can be represented in terms of a Fourier
integral. Its propagation outside this plane can be described with the
help of the integral expressions

Ey(x, z) =
∫ +∞

−∞
A(β)eik(αx+βz)dβ for x ≥ 0 (5a)

Ez(x, z) = −
∫ +∞

−∞
Ā(β)eik(αx+βz)dβ for x ≥ 0 (5b)

where
α =

√
1− β2 (6)

(with the nonnegative imaginary part [2–5]), and similarly for the other
spatial field components at x ≥ 0 and x ≤ 0 [8]. Equating (3) and (5)
at x = 0, one obtains the coupling formulas between the amplitudes of
the field expansions in all space (continuous spectrum) and on the slot
(discrete spectrum):

A(β) =
kl

2π

∞∑

n=1

[
a(s)

n Q(s)
n (β) + a(a)

n Q(a)
n (β)

]

Q(s)
n (β) = sinc

[
kl

(
β − ξ(s)

n

)]
+ sinc

[
kl

(
β + ξ(s)

n

)]

Q(a)
n (β) = sinc

[
kl

(
β − ξ(a)

n

)]
− sinc

[
kl

(
β + ξ(a)

n

)]
(7)

and similarly for the amplitudes of the E polarization [8], where sinc
is the conventional notation for the function sincx = sin x/x. By
this way, the solution of diffraction problem is reduced to finding the
amplitudes a

(s,a)
n and ā

(s,a)
n of the discrete Fourier series (3), which are

determined as the solutions of infinite-dimensional systems of linear
algebraic equations [8].

The amplitudes of the field diffraction by a strip (Fig. 1(b)) satisfy
the same equations (Babinet’s principle [2, 3]), so that the expressions
for the H diffraction fields in the case of a strip coincide with the
expressions for the E diffraction fields in the case of a slot, and
inversely [8].
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3. FIELD ASYMPTOTICS ON THE EDGES OF A SLOT
AND STRIP

The field behavior near the edges of a slot (strip) can be studied
by direct calculation of the diffraction field components (5) at small
distances from an edge ρ [5, 6]

E(ρ, ϕ) ≈ ρτ (b0 + b1ρ + b2ρ
2 + . . .) (8)

where τ is the exponent determining the field asymptotics at ρ → 0.
For its computation, it is convenient to use the following expansion

E(ρ,ϕ) ≈ exp
(
τ lnρ + c0 + c1ρ + c2ρ

2 + . . .
)

(9)

whose coefficients are related to the coefficients of expansion (8) by the
equations

b0 = exp(c0); b1 = b0c1; b2 = b0

(
c2 + c2

1/2
)
; . . .

Then, the exponent τ can be determined as a solution of the linear
approximation problem for the logarithm of the complex value E (9)
by the method of least squares [16] for several small values ρ. Here, one
can use various values of angle ϕ as nearing the slot edges in various
directions (Fig. 1(a)), because for them the field asymtotics should be
the same. Fig. 2 displays the values of the real part of τ for various
components of the electric and magnetic fields [8] near the edges of a
slot and strip, computed by this method. Under computation, we have
taken into account from 100 to 200 modes of the discrete spectrum (3)
and from 10000 to 20000 modes of the continuous spectrum (5) on the

(a) (b)

Figure 2. Exponent τ , determining the power field asymptotics on
the edge of (a) a slot and (b) strip, and computed by the method of
direct evaluation of various diffraction field components, as a function
of the slot (strip) half-width l.
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grid of the integration argument β of the step ∆β = 0.1. The obtained
values for the imaginary part of τ in magnitude are not greater than
0.001. This is the maximum calculation error for the fields on the
conducting screen, which was used as a criterion for the determination
of finite number of included modes (3), (5) [8]. Hence, the imaginary
part of the exponent τ may be neglected, and this exponent can be
considered as a real value.

As shown below, such an approach to determine the parameter
τ is not quite reliable when considering Fourier components of the
continuous spectrum (5) in any finite range of the propagation
parameter β. Now, we apply another technique for the evaluation
of an exponent of power field asymtotics. Let us pay attention to the
discrete field expansions (3) in the slot plane x = 0. When computing
these sums, one is also limited by the finite number of the included
discrete modes (3). We shall evaluate the asymptotic behavior of their
coefficients and the magnitude of remainders of the corresponding finite
sums at n → ∞. For that, assume the functions in the left-hand side
of (3) as

E(s)
y,z =

(
l2−z2

)τ exp(ikβ0z) E(a)
y,z = i(z/l)

(
l2−z2

)τ exp(ikβ0z) (10)

Within constant factors, they describe behavior of the symmetric and
antisymmetric parts of the fields Ey (3a) and Ez (3b) with the edge
asymptotics ρτ at ρ → 0, where ρ = |l − z| or ρ = |l + z|. For
our consideration, we can suppose that the functions (10) describe
the field behavior over the whole slot region −l ≤ z ≤ l, because
the fields on a slot display roughly similar coordinate dependences [8].
Besides, in (10), we have introduced additional exponential factors,
which describe the incident field distribution (1) on a slot and which
should be taken into account. For functions (10), let us calculate
the amplitude coefficients of the Fourier series (3). Here, one can
use routine formulas for the spatial frequencies (4) at great n, when
(πn/kl) À β0 and πn À 1. Within coefficients, independent of n and
τ , we get

a(s)
n ∼ l2τΓ(τ + 1) cos

(πτ

2

)
(−1)n+1

(
2

π(n− 1/2)

)τ+1

(11a)

a(a)
n ∼ l2τΓ(τ + 1) cos

(πτ

2

)
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(
2
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(11b)

ā(s)
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(πτ

2

)
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(
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n ∼ l2τΓ(τ + 1) sin
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2

)
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(
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where Γ is Euler’s gamma function [17]. As seen from here, the ratio
of two next coefficients, for each of the four series, depends only on the
parameter τ

an/an+1 ≈ −[1 + (τ + 1)/n]

where an is a
(s,a)
n or ā

(s,a)
n . Therefore, parameter τ can be calculated

with the help of a given ratio at sufficiently great n

τ ≈ −n [(an/an+1) + 1]− 1 (12)
The obtained Equation (11) also provides the opportunity to

evaluate the residual sum magnitude for the Fourier series (3).
Assuming that the sums of these series up to the Nth term are
computed, where N is a sufficiently great number ((πN/kl) À β0,
πN À 1). Let n = N + m, then, for the residual sums of these series
SN , we obtain from (11) within constant coefficients

S
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a
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)
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S
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ā
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ā
(a)
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(a)
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)
∼
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m=1

cos[c(N + m− 1/2)]
(N + m− 1/2)τ+1

where c = π(1 + z/l). To calculate these sums, one can use equations
[18]
∞∑

m=1

cos cm

(m + D)τ+1
=

1
Γ(τ +1)

∫ +∞

0
tτ

e−(D−1)t − e−Dt cos c

et + e−t − 2 cos c
dt ≈ 1

2Dτ+1

∞∑

m=1

sin cm

(m + D)τ+1
=

sin c

Γ(τ + 1)

∫ +∞

0
tτ

e−Dt

et + e−t − 2 cos c
dt ≈ cot(c/2)

2Dτ+1

(D = N − 1/2; N ; N − 1). Because of great magnitude of parameter
D, the main contributions to these integrals are produced by a
small vicinity of the point t = 0. This feature allows us to put
exp(t) + exp(−t) ≈ 2 in denominators of the integrands and yields
to simple expressions, written after the signs of approximate equality.
Then, we obtain the following simple evaluation for all four residual
sums

SN ∼ 1
N τ+1 cos(πz/2l)

(13)
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It follows from here that the magnitude of remainder of every Fourier
series (3) tends to zero under increase of the number N of included
series terms. This takes place at sufficiently great distance from the
slot edges, when cos(πz/2l) noticeably differs from zero. However, if z
is close to the slot edges, such a deduction is not true: for any finite
N , one cannot achieve small magnitude of the residual sums (13) at
z → ±l. In other words, terms of the series with low spatial frequencies
(small numbers n) determine the behavior of their sum (3) in the
distance of the slot edges, whereas the field asymptotics at these edges
will be determined by higher-order Fourier modes. Thus, the standard
technique of infinite sum truncation makes possible correct simulation
of diffraction fields in the distance of the slot edges, but it does not
provide adequate evaluation of their edge asymptotic behavior.

These conclusions hold also true for the representation of fields
outside the slot plane in the form of Fourier integrals (4). Really, the
substitution (7) and (8) into (5) yields

Ey(x, z) =
∞∑

n=1

[
a(s)

n B(s)
n (x, z) + a(a)

n B(a)
n (x, z)

]
(14)

where

B(s,a)
n (x, z) =

kl

2π

∫ +∞

−∞
Q(s,a)

n (β)eik(αx+βz)dβ

B(s)
n (x, z) = C(s)

n (x, z) + C(s)
n (x,−z)

B(a)
n (x, z) = C(a)

n (x, z)− C(a)
n (x,−z)

C(s,a)
n (x, z) =

kl

2π

∫ +∞

−∞
sinc[kl(β − ξ(s,a)

n )] eik(αx+βz)dβ

(15)

The function sinc[kl(β − ξ)] appreciably differs from zero only in a
certain vicinity of the point β = ξ. Therefore, for evaluation, one can
replace this function approximately with the finite function

f(β) =

{
cos

(
kl
2

(
β − ξ

(s,a)
n

))
for ξ

(s,a)
n − π

kl ≤ β ≤ ξ
(s,a)
n + π

kl

0 for β < ξ
(s,a)
n − π

kl or β > ξ
(s,a)
n + π

kl

because this function covers the leading lobe of the sinc function. We
evaluate the integrals (15) at great n, when the parameters ξn (4)
amount to sufficiently great values. That allows us to employ the
linear approximation on the argument β for the parameter α (6) in the
integrands

α ≈ iξ(s,a)
n + i

(
β − ξ(s,a)

n

)
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Then, we get
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n ≈ 1
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and residual sums of the series (14) take the form
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n z
)∣∣∣∣∣

evaluation of residual sums for the integrals on the continuous
spectrum (14) is reduced to the evaluation procedure for residual sums
of the discrete spectrum (3).

Note that Equation (12) provides an opportunity to study the field
asymptotics on the slot edges. Let the field values (3) near the edges be
proportional to (l2−z2)τ with several exponent τ . Then, Equation (12)
allows us to evaluate this exponent by computation of the ratio of two
next amplitudes of the Fourier expansions (3) at great n. Fig. 3 shows
the values of τ determined by such a procedure for the field components
Ey (3a) (H polarization) and Ez (3b) (E polarization), which were
calculated as rigorous solutions of diffraction problems [8] in the slot
plane. Here, the imaginary part magnitude is smaller than 0.001, i.e.,
smaller than the amplitude calculation error, so the parameter τ can
be considered as a real one. For the other spatial field components,
the character of asymptotic behavior on the edges can be determined
by Equations (2). For Ex, the exponent of power asymptotics is equal
to that of Ez (τE), for Hx, Hz, and for Hy it is equal to τH − 1 and
τE + 1, respectively [5, 6].

In the case of a strip, the rigorous solutions are complementary
to the solutions for a slot and determined by the same amplitudes of
Fourier expansions [8]. Therefore, in this case, one obtains the same
values of exponent τ .

Proceeding from the Sommerfeld’s solution of the wave diffraction
by a solitary half-plane [2, 3, 14, 15], one could expect that τH = 0.5 and
τE = −0.5 in the limit kl → ∞. In our case, the parameter τ slightly
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Figure 3. Exponent τ , determining the power field asymptotics on
the edges of a slot and strip for two different field polarizations (H
and E), and computed using higher order terms of Fourier series, as a
function of the slot (strip) half-width l.

varies near the values τH ≈ 0.61 and τE ≈ −0.39, differing from the
pointed Sommerfeld’s values even at kl > 20. Such a distinction can be
explained by inaccuracy of used evaluation technique for the parameter
τ at great kl in view of a limited number of the included modes (3).
Here, under increased kl, one should take into consideration higher
modes with very great values of the spatial frequencies (4), and for
that, our technique needs regular increase of their maximum order n,
which significantly increases the amount of computations.

Let us evaluate specifically the value of the slot half-width l,
for which the field asymptotics becomes the Sommerfeld’s one. In
this case, the total diffraction field should be represented by two
independent solutions for every edge of a slot separately. In other
words, the diffraction field components, arising at two different edges,
should not overlap one another in space. It is known that the
Sommerfeld’s solution is determined by the Fresnel’s integrals in
the argument (2kρ)1/2 [2, 3, 14, 15], which pass asymptotically to the
geometrical-optics solution at great values of this argument. These
integrals differ from their asymptotic limits at infinity on the values
of the order of the reciprocal of the argument [17]. Setting ρ = l (the
middle of a slot), then the Sommerfeld’s solution will coincide with
the geometrical-optics one, accurate to 0.001 at 4πkl ≥ 104, or at
kl ≥ 1000.

One should pay attention to appreciable discordance of the results
displayed in Figs. 3 and 2, that confirms incorrectness of exponent τ
computation using spatial field components. However, in any case, the
value of exponent τ , determining the field asymptotics on the edges
of a slot (strip), in magnitude is less than unity, so the local energy
density of diffraction field is an integrable coordinate function [5, 6].
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4. CONCLUSION

The main result of this study is that the rigorous solutions of diffraction
problems for a slot and strip [8] correspond to power-type character of
the field asymptotics at the edges of a slot (strip) with an exponent
of modulus less than unity. It means that these solutions provide
finite value of diffraction field energy density in any point of space.
Thereby, we have shown once again that an infinite sum of Fourier
field components, each of which has the linear and square asymptotics
on the edges of an obstacle, determines a power-type asymptotics of
the total field, having integrable local energy density.

This result has been established by considering amplitudes of the
field Fourier expansions at various distances from the edges. We have
ascertained that field behavior in the distance of the slot (strip) edges
is determined mainly by sums of Fourier components with low spatial
frequencies, whereas the field asymptotics directly on the edges is
caused by higher-order Fourier modes. An exponent of such power-type
asymptotics has been computed with the help of the ratio of higher-
order Fourier amplitudes. The proposed technique can be applied
with some modifications to study of fields at rigorous and approximate
solving of various diffraction problems.
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