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Abstract—In the paper, an Illuminating Modes concept is introduced
in order to find microstrip antenna parameters — resonant frequency,
resonant resistance and radiation pattern. The concept is based
on illuminating the rectangular patch by a single normally-incident
plane wave. It results in the surface current density induced on the
patch which is found by means of two-dimensional Spectral Domain
Approach. Then, the resonant frequency, the quality factor, the
resonant resistance and the radiation pattern of the analysed antenna
are found. Application of Illuminating Mode concept in Spectral
Domain Approach effects in analysis simplification and less time
consuming calculations with no waste of the accuracy. Exemplary
results for several kinds of radiators are presented, showing satisfactory
level of agreement with published data.

1. INTRODUCTION

Microstrip antennas are widely used in various kinds of devices in
almost every type of wireless and radar applications. From the
theoretical point of view a single rectangular microstrip radiator can
be treated as a lossy resonator of a quality factor related to the
radiation phenomenon. There are a lot of theoretical and numerical
tools [1–3] that enable to describe radiation from such a radiator and
provide results useful in practical application [4]. The Spectral Domain
Approach (SDA) is one of the most efficient tools, convenient and
time saving on the stage of numerical implementation. In literature
one can find two approaches of SDA: (i) one-dimensional [5–8] and
(ii) two-dimensional [9, 10]. The first one is generally destined for
analysis of transmission lines. However, if the field variation along
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one dimension is small enough, it can also be applied for analysis of
the resonator. It takes place eg., for rectangular planar patch operating
with fundamental mode TM01. The results presented in [7] confirmed
the utility of such an approach. Two-dimensional approach is oriented
on solving the problems with 2D field variations. A complex frequency
is introduced in order to find a nontrivial solution of characteristic
Equations [9, 10] that permits then to find the surface current (more
precisely the coefficients of the basis functions expansion used to
approximate the surface current). Note that such an approach need
no excitation. Therefore, some authors analyse resonators excited by
a probe, what yields the current density, radiation pattern and input
impedance [11].

In this paper, two-dimensional SDA is applied to analyse the
radiation phenomena of rectangular microstrip radiator. We extended
the concept of Hybrid Radiation Mode (HRM) and the condition at
infinity for HRM of microstrip line [7] for two-dimensional case of
a planar rectangular resonator. In order to describe the radiation
phenomena the concept of so called Illuminating Mode (IM) is
introduced. As a single IM we will call an elementary plane wave,
illuminating the structure, the current induced on the patch and the
scattered field.
In this method, the rectangular patch is illuminated by a single plane
wave. A surface current density induced on the rectangular patch is
found from SDA via method of moments. Then, the resonant frequency
and radiation resistance are obtained from resonant curve of the surface
current and equivalent capacitance of the patch. The radiation pattern
is found with help of angular spectrum concept. Application of single
IM to approach the radiation effect remarkably simplifies the solution
with no waste of accuracy.

In the paper, SDA is employed to calculate a diffraction response
of the obstacle (microstrip resonator) illuminated by an elementary
plane wave. This method leads to find radiator parameters necessary
in an antenna design. According to the best knowledge of the authors,
diffraction theorem presented in literature (eg., [12–15]) is used rather
to calculate radiation pattern or RCS for fixed structures, whereas
design issue is often omitted.

Proposed IM can be extended for analysis of Frequency Selective
Structures (FSS), in which excitation of normally incident plane wave
is one of the most desired. Unlike the author, who introduced a vector
spectral domain in order to illuminate the structure by plane wave [16],
in this publication, we show how the normal incidence of plane wave
can be implemented in SDA approach.

In Section 2, we introduce the concept of Illuminating Modes
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and explain how the radiation field can be composed of such modes.
Section 3 describes the implementation of the concept for the case of
rectangular microstrip radiator. In particular we show that condition
at infinity for Hybrid Radiation Mode in 2D case does not lead to
iterative procedure as in the 1D case (i.e., transmission line problem).
The exemplary calculations for rectangular radiator parameters
(resonant frequency, radiation resistance, radiation pattern) compared
to the results obtained from other approaches are also presented in this
section. The last section of the paper is the conclusion.

2. THEOREM

Let us consider the structure shown in the Fig. 1. The rectangular
patch of size L×W is located on the substrate of dielectric constant εr

and thickness h. Both the substrate and the ground plane are infinite
in the x and y directions. The lossless dielectric substrate is denoted as
the 1st region and open lossless region as 2nd one. Note, that the patch
is assumed to have negligible thickness compared to its width. The
finite thickness can be analysed in SDA by treating the metallization
as a separate layer [17], but it is neglected in our analysis. Let us define
the Fourier transform of an electric and magnetic fields changing with
the time (for convenience the coefficient eiωt is omitted):

F̃ (kx, ky) =
∫∫

F (x, y)e−i(kxx+kyy)dxdy (1)

where: F = {E, H} are electric and magnetic field components,
F̃ = {Ẽ, H̃} are their transforms.

Application of the transform (1) to the wave equation yields:

∇2
zF̃xi(kx, ky, z) + k2

ziF̃xi(kx, ky, z) = 0 i = {1, 2} (2)

Figure 1. Rectangular
microstrip radiator.

visible region
(uniform plane waves)

invisible region
(non-uniform
plane waves)

Figure 2. Visible and invisible regions
of the (kx, ky) plane.
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with well known form of the solution in open region:

F̃x2(kx, ky, z) = AF2(kx, ky)e+ikz2z + BF2(kx, ky)e−ikz2z (3)

where:
kz2 =

√
k2

2 − k2
x − k2

y =
√

k2
2 − ρ2 (4)

and k2 = ω
√

ε2µ2, ρ2 = k2
x + k2

y.
Note that wave Equation (2) involves only x-component of an

electric (magnetic) field, that corresponds to resonant dimension of
the structure.

Let us now discuss the radiation phenomena based on the
analysis of spectral plane (kx, ky) shown in the Fig. 2. The spectral
representation of the fields in open region consists of the continuum
of uniform and non-uniform plane waves [18]. Wavenumber kz2 is
purely imaginary in the invisible region and real in the visible one.
As a consequence, if the structure excitation is to exist, the spectral
representation of the field consists of both incoming AF2(kx, ky)e+ikz2z

and outgoing BF2(kx, ky)e−ikz2z plane waves, so that the boundary
condition at the interface z = h is fulfilled. It has been shown [19]
that in case of modes from visible part (incoming and outgoing waves)
the radiation condition is fulfilled, if the eigenfunctions are bounded.
Note, that taking into account only outgoing waves it results in no
excitation.

2.1. Illuminating Modes Concept

Each point (kx0, ky0) inside the circle (ρ < k2) corresponds
to a particular direction (φ0, θ0), from which the radiator is
illuminated by an elementary plane wave of spectral representation
AE2(kx0, ky0)e+ikz20z:

kx0 = k2 sin θ0 cosφ0 (5)
ky0 = k2 sin θ0 sinφ0 (6)

kz20 =
√

k2
2 − k2

x − k2
y (7)

Point (kx0, ky0) is also related to the direction of an elementary
reflected plane wave (BE2(kx0, ky0)e−kz20z). It means, that all points
inside the circle form the continuum of the incoming and outgoing
waves from all possible physical directions (θ ∈< 0, π >, φ ∈< 0,
2π >). Let us now assume that the structure is illuminated by a single
plane wave, incoming from a given direction (φ0, θ0). It results in
reflected and scattered fields and also in a surface current induced on
the patch. Both reflected and scattered fields depend on the direction
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of incoming plane wave. The current induced on the patch is also a
function of (φ0, θ0). All physical phenomena (reflected field, scattered
field and surface current) related to a single plane wave incoming from
direction (φ0, θ0) will be called Illuminating Mode IM(kx0, ky0). The
scattered field, necessary to calculate the radiation pattern, is a part
of IM(kx0, ky0) and can be found in an analogous manner as induction
theorem shows [20] — the current induced on the patch is a source
of scattered field. Therefore, the scattered field is found by using the
current distribution excited by incoming plane wave, but excluding the
excitation.

It should be strongly emphasised, that both the current and the
scattered field consist of the continuum of both parts of spectral plane:
(i) inside the circle (ρ < k2), corresponding to far field, and (ii) outside
the circle (ρ > k2), corresponding to near field. Thanks to this, the
boundary conditions in x0y plane for tangential field components at
the interface z = h are fulfilled.

To relate the unknown amplitudes of incoming and outgoing waves
we can apply the condition at infinity for Hybrid Radiation Mode
(described for 1D case in [7]). According to Equation (3) the electric
and magnetic fields in the open region are expressed as::

Ẽx2(kx, ky, z) = AE2(kx, ky)e+ikz2z + BE2(kx, ky)e−ikz2z (8)

H̃x2(kx, ky, z) = AH2(kx, ky)e+ikz2z + BH2(kx, ky)e−ikz2z (9)

From Maxwell equations we calculate the component Ẽy2(kx, ky, z)

Ẽy2(kx, ky, z) =− 1
k2

2 − k2
x

[
kxkyẼx2(kx, ky, z)+

−iωµkz2

(
AH2(kx, ky)e+ikz2z−BH2(kx, ky)e−ikz2z

)]
(10)

Let assume that the structure is shielded from top by electric wall at
z = D. The components Ẽx2 and Ẽy2 are therefore the tangential
components, so they should vanish even if this wall is moved to the
infinity [19]. As a result this condition can be written in the following
form:

lim
z→∞




AE2(kx, ky) BE2(kx, ky)
iωµkz2

k2
2 − k2

x

AH2(kx, ky)
−iωµkz2

k2
2 − k2

x

BH2(kx, ky)



[

e+ikz2z

e−ikz2z

]
=

[
0
0

]
(11)

whose nontrivial solution is of the form:
AE2(kx, ky)BH2(kx, ky) + AH2(kx, ky)BE2(kx, ky) = 0 (12)

and can be rewritten as:

AH2(kx, ky) =

(
q1 + q2

Ẽh
y (kx, ky)

Ẽh
x(kx, ky)

)
·AE2(kx, ky) (13)
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where:

q1 =
kxky

ωµ2kz2
q2 =

k2
2 − k2

x

ωµ2kz2
(14)

Note, that Equation (12) has the same form as condition at infinity
for HRM [7]. However, it concerns resonant structures (2D), whereas
HRM defined in [7] describes the radiation mode of waveguiding
structures.

In the next step Equation (13) is applied to the classical
formulation of SDA relating the currents and the fields at interface
z = h (see Fig. 1):

[G][J̃ ] = [Ẽ] + [∆][a] (15)

where:
[G] — dyadic Green’s function,
[J̃ ] = [J̃x(kx, ky), J̃y(kx, ky)]T — vector of surface current densities on
the patch,
[Ẽ] = [Ẽh

x , Ẽh
y ]T — vector of electric fields at the plane z = h,

[∆] — matrix of forcing amplitudes,

[a] =
{

[AE2(kx, ky), AH2(kx, ky)]T for ρ < k2

[0, 0]T for ρ ≥ k2

The components of vector [J̃ ] are expressed as the sum of basis
functions j̃xi(kx, ky), j̃yi(kx, ky):

J̃x(kx, ky) =
Nx∑

i=1

ai · j̃xi(kx, ky) J̃y(kx, ky) =
Ny∑

i=1

bi · j̃yi(kx, ky) (16)

where Nx, Ny are the numbers of basis functions.
After applying Galerkin method over Equation (15), we obtained

wanted basis coefficients ai and bi: Let remind, that excitation
amplitudes AE2(kx, ky) and AH2(kx, ky) are related by Equation (13).
Therefore, the problem can be solved using iterative procedure [7].
However, applying single Illumination Mode simplifies the calculations.
It eliminates both iterative procedure and integration on the right side
of Equation (15) as shown in the following subsection.

2.2. Normal Illuminating Mode

A single Illuminating Mode denoted as IM(0, 0) corresponds to a
normally incident, x-polarised plane wave. Spectral amplitudes related
to IM(0, 0) are therefore:

AE2(kx, ky) = δ(0, 0) AH2(kx, ky) = 0 (17)
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It is worth to discuss the relation between these amplitudes as
a function of illumination angle (see Equation (13)). For normal
illumination we assume kx = ky = 0 and due to the fact that
Ẽy(kx, ky) is an odd function of kx we have AH2(kx, ky) = 0. In
the case of illumination along axis kx or ky (kx · ky = 0) the result
will be equal (AH2(kx, ky) = 0). For different illumination angles
we can find the spectral amplitude AH2(kx, ky) directly from the
relation (13), if AE2(kx, ky) = δ(kx, ky) is assumed. Let remind
that Dirac function δ(kx, ky) is a spectral representation of a single
plane wave. Note, that the application of spectral amplitudes (17)
eliminates the iterative procedure proposed in [7]. Moreover, due
to Dirac Delta function features, integration occurred in the inner
product containing the excitation function is vanished. It results in
simplification of calculation and time saving. Thanks to application of
Galerkin method obtained currents J̃x(kx, ky) and J̃y(kx, ky) fulfill the
boundary condition at the interface z = h. As mentioned in previous
subsection, the current transforms consist of two parts: inner (ρ < k2)
and outer (ρ ≥ k2) parts of circle ρ2 = k2

2. Therefore, the electric field
(scattered field) at z = h found from:

[Ẽ] = [G][J̃ ] (18)

contains also both parts so it can be applied to calculate field in
region 1:

Ẽi1(kx, ky, z) =
sin(kz1z)
sin(kz1h)

Ẽi(kx, ky, h), 0 ≤ z ≤ h, i = {x, y} (19)

Ẽz1(kx, ky, z) = i
kz1

kz2

cos(kz1z)
sin(kz1h)

Ẽz2(kx, ky, h), 0 ≤ z ≤ h, (20)

and in region 2:

Ẽi2(kx, ky, z) = Ẽi(kx, ky, h)e−ikz2(z−h), z ≥ h, i = {x, y} (21)

Ẽz2(kx, ky, z) = Ẽz2(kx, ky, h)e−ikz2(z−h), z ≥ h, (22)

where:

Ẽx(kx, ky, h) = G11(kx, ky)J̃x(kx, ky) + G12(kx, ky)J̃y(kx, ky) (23)

Ẽy(kx, ky, h) = G21(kx, ky)J̃x(kx, ky) + G22(kx, ky)J̃y(kx, ky) (24)

Ẽz2(kx, ky, h) = −kxẼx(kx, ky, h) + kyẼy(kx, ky, h)
kz2

(25)

It should be noted that the relations above are valid in both visible and
invisible regions. Therefore, knowledge of surface density current and
electric field at z = h permits us to calculate fundamental parameters
of the antenna as shown in the following section.
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3. NUMERICAL RESULTS

In the first part of this section we show how to calculate parameters of
the patch antenna using the proposed method. In order to calculate
the parameters of exemplary rectangular microstrip radiator, two
dimensional SDA has been implemented in Matlab environment. The
radiators are illuminated by IM(0, 0) corresponding to a normally-
incident, x-polarised plane wave. All the fundamental parameters
have been calculated and compared with data obtained from ADS
Momentum simulator, which uses the method of moments. In the
second part of this section the comparison of other patches is shown
and some comments are added. As a basis and test functions the
trigonometric ones are used with Nx = 4 and Ny = 4 for resonant and
nonresonant directions, respectively.

3.1. Resonant Frequency

The structure that is analysed in this case study is a single patch
located on the substrate of 0.79 mm height and of 2.22 electric
permittivity. The length and the width of the radiator are equal to
25mm and 40 mm, respectively. The resonant frequency is found from
observation of the current of IM(0, 0). Sweeping over the interesting
frequency range forms the resonance curve of the radiator current
density (J̃x). The frequency for which the maximum amplitude occurs
is a resonance frequency (fr). It should be noted that the resonant
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Figure 3. Normalized squared magnitude of surface current density
(|J̃x(kx, ky)|2) induced on the patch by IM(0, 0) mode.
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frequency is actually related to aniresonance, for which radiation
resistance, corresponding to the radiation ability of the antenna, takes
sufficiently large values. The resonance curve for the sum of squared
magnitude of base coefficients ai (see Equation (16)) for analysed
structure is shown in Fig. 3. The maximal surface density current
occurs at fr = 3.89GHz, whereas the frequency obtained from ADS
Momentum equals 3.87GHz. Note that the quality factor can be
found in this curve and we will use it later to calculate the radiation
resistance.

In the Fig. 4 the surface density current (Jx(x, y)) at resonant
frequency is shown. It can be clearly seen that the most intensiveness

y (mm)

x 
(m

m
)

6040200-20-40-60
-40

-0.05

J

Figure 4. Surface current density (Jx(x, y)) induced on the patch by
IM(0, 0) mode.

(a) (b)

Figure 5. Resonant component of an electric field (Ex(x, y)) at z = h.
(a) Real part. (b) Imaginary part.
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of the current is focused on the edges. Some nonzero values occurred
outside the patch are caused by a finite range of integration in the
inverse Fourier transform.

The electric field on the z = h plane is calculated in the next step
using (18). The result is shown in Fig. 5. The maximum density of
the electric field is focused in the close vicinity of the radiating edge
as was expected.

3.2. Radiation Pattern

The radiation pattern can be expressed as a function of Fourier
transforms of the fields components defined over the whole x0y plane
at z = h [18]. In the first step we use the x and y components of
electric field obtained from (18) to find the z the component:

Ẽh
z (kx, ky) = −kxẼh

x(kx, ky) + kyẼ
h
y (kx, ky)

kz
(26)

Next, we find the asymptotic values (z → ∞) of electric field
components and we transform them to the spherical coordinate system.
Note, that in the far field region the radial component of the field
should be equal to zero so applying this property we can calculate the
far field transversal components:

Eθ(r, θ, φ) ∼ ik2

2π

e−ik2r

r
cos θ ·

[
Ẽh

x(kx, ky) cos θ cosφ +

+ Ẽh
y (kx, ky) cos θ sinφ− Ẽh

z (kx, ky) sin θ
]

(27)
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Figure 6. Radiation pattern of the antenna: (a) E-plane. (b) H-plane.
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Eφ(r, θ, φ) ∼ ik2

2π

e−ik2r

r
cos θ ·

[
Ẽh

x(kx, ky) sinφ + Ẽh
y (kx, ky) cosφ

]
(28)

where kx and ky are related to the the variables (θ, φ) by (5) and
(6). After applying Equations (27) and (28) radiation pattern can be
calculated.

The radiation patterns in two cuts, E-plane and H-plane are
presented in Figs. 6(a) and 6(b), respectively. In the same Figure
the patterns calculated by ADS Momentum are also presented. The
both patterns are almost identical so it confirms the proper calculation
of the electric field at z = h plane.

3.3. Radiation Resistance

The radiation resistance is found from a cavity model. The quality
factor (Qrad) is distinguished from the resonance curve of the current
(see Fig. 3 antenna) . Then the capacity of equivalence cavity (Cec) is
calculated [7]. All calculated variables are then substituted into:

Rrad =
Qrad

2πfrCec
(29)

The calculated radiation resistance for analysed structure is equal to
180Ω, whereas the resonant resistance of the same patch fed by short
(about 1% of the patch length) microstrip line, simulated in ADS
Momentum equals 169 Ω.

The presented results show a good accuracy of the presented
method. Small differences in case of radiation resistance results from
the estimation in cavity model.

3.4. Resonant Frequencies and Radiation Resistances of
Different Patches

The comparison of 5 different rectangular microstrip antennas is
shown in Tables 2 and 3. Dimension of radiators are shown in
Table 1. Two parameters that are compared: resonant frequencies
and radiation resistances. The results are obtained from ADS
Momentum, from the proposed method (this method) and from one-
dimensional SDA presented in [6, 7] (1D). Additionally the comparison
of calculation time for proposed method and ADS Momentum is shown
in Table 4. The standard mesh density (λ/20) has been applied for
ADS Momentum calculation.

One can see that convergence of results is very accurate in terms
of resonant frequencies. For a thin substrate the difference between 1D
and 2D approaches is small enough. It can be easily explained as the
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field variation along the nonresonant dimension is very small in this
case. For structures with more significant thickness the results of the
proposed method are close to results obtained from Momentum. It is
clear that the assumption of no variation along nonresonant dimension
is not fulfilled in this case.

The radiation resistance is more sensitive to the precision of the
field calculation than the resonant frequency and this effect is observed
in Table 3. The differences between proposed approach and results

Table 1. Dimension of analysed resonators.

name W [mm] L [mm] h [mm] εr

rct 01 40 25 0.79 2.22
rct 02 30 20 1.32 10.2
rct 03 40 25 1.59 2.22
rct 04 30 19 2.64 10.2
rct 05 29.5 19.5 3.07 2.33

Table 2. Resonant frequency [GHz] of different resonators.

name this method ADS Momentum 1D SDA [7]
rct 01 3.89 3.87 3.88
rct 02 2.28 2.27 2.27
rct 03 3.78 3.77 3.77
rct 04 2.30 2.29 2.27
rct 05 4.42 4.50 4.39

Table 3. Radiation resistance [Ω] of different resonators.

name this method ADS Momentum 1D SDA [7]
rct 01 180 167 111
rct 02 502 458 196
rct 03 191 174 122
rct 04 610 433 -
rct 05 278 204 -
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Table 4. Normalised calculation time for single frequency point.

name this method ADS Momentum
rct 01 1.00 2.15
rct 02 1.00 2.00
rct 03 1.00 2.11
rct 04 1.00 2.11
rct 05 1.00 2.18

from Momentum are of order several percents for thin substrates and
are much lower (about three times) than for 1D SDA. For a thick
substrate even 2D approach leads to the results which cannot be
acceptable. It means that another model (not cavity) should be applied
in such a case. However, such types of the antennas are generally
realised on thin substrates .

In terms of calculation time the proposed method is about two
times more efficient than ADS Momentum (see Table 4).

4. CONCLUSION

In the paper the concept of Illuminating Modes has been introduced
and implemented for the analysis of microstrip rectangular resonators
by means of Spectral Domain Approach. The structure has been
excited by a single Illuminating Mode IM(0, 0), corresponding to a
normally incoming plane wave. It has been shown that a single
mode excitation is sufficient enough to induce a surface current on
the patch, which, in turn, is a source of a complete spectrum of the
antenna fields (near and far field). Choice of a single Illuminating
Mode IM(0, 0) to excite the structure also results in the significant
simplification of the calculation — the computation time is about
two times shorter compared to ADS Momentum for standard mesh
density (λ/20). Proposed analysis can be used to find the antenna
parameters. Resonant frequency, radiation pattern and radiation
resistance have been calculated using the proposed method. Good
agreement with results obtained from the full wave simulator has been
achieved. Therefore, the method can be applied to antenna arrays
or different shapes of patches under the condition of changes in basis
function. It is worth to mention, that the method can be potentially
applied for analysing of FSS, for which a normal incident plane wave
is one of the most desired excitations.
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