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Abstract—This work deals with the inverse source problem starting
from the knowledge of the radiated field in the near field zone. The
inverse problem is stated as the inversion of a linear integral equation
and the Singular Value Decomposition (SVD) is exploited as an
analysis and inversion tool. In particular, here, we deal with a 2D
geometry and aim at comparing the features of the inverse problem in
dependence on the nature of the source (electric or magnetic).

1. INTRODUCTION

This work deals with the classical problem of the determination of a
source current from the knowledge of the radiated field [1–4].

In particular, here, we consider the 2D geometry and a radiating
source current supported over a bounded rectilinear domain while the
radiated field is collected over a bounded rectilinear domain parallel to
the source domain and located in the near zone.

Such a kind of analysis has been already performed for a magnetic
rectilinear source, as shown in [5]. In general, this kind of problem
is stated as a linear inverse one [6] and in order to investigate the
performance of the inversion approach, the main effort is concerned
with the determination of the Number of Degrees of Freedom (NDF)
of the field in dependence of the geometrical properties (extent
and distance) of the source and the observation domains. In this
framework, a good analysis tool is represented by the Singular Value
Decomposition (SVD) of the relevant operator [1, 6].
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Aim of this paper is to investigate the different features of the
two inverse source problems for the case of the magnetic and electric
sources. In particular, the analysis is performed by the Singular Value
Decomposition and the reconstruction performances are evaluated in
terms of singular values behavior and regularized reconstruction of a
pulse source via the truncated SVD.

Therefore, the paper is organized as follows.
Section 2 briefly sketches the formulation of the inverse source

problem for both cases of the electric and magnetic source. Section 3
deals with the Singular Value Decomposition as a tool for the analysis
and inversion of a linear compact operator. Section 4 is devoted to
present the analysis of the two radiation operators and a comparison
between the singular values behaviors is pointed out and investigated.
Section 5 tackles the problem of the reconstruction of both magnetic
and electric impulsive source starting from the knowledge of the field.
Finally, conclusions follow.

2. FORMULATION OF THE INVERSE SOURCE
PROBLEM FOR THE MAGNETIC AND ELECTRIC
SOURCE

This section is devoted at presenting the mathematical formulation of
the inverse source problem in the 2D geometry for both kinds of electric
and magnetic source.

In particular, a rectilinear source is considered along the x-axis
and with extent given by S = [−XS , XS ]. The measurement domain,
within which the radiated field is measured, is also assumed to be
parallel to the x-axis, in near field at constant distance z1 and with
extent O1 = [−X1, X1] (see Figure 1 for the geometry of the problem).

Figure 1. Geometry of the problem.
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Now, for sake of simplicity, two separate subsections for magnetic
and electric sources are presented, respectively. In particular, each
subsection deals with the formulation of the related problem and the
relevant radiation operator is sketched out.

In particular, we have considered the case of the magnetic source,
because, also if the magnetic sources are not physical quantities, in
many cases the radiation problems are given in terms of “equivalent”
magnetic sources, as f.i. occurs for the aperture antennas.

2.1. Magnetic Source

This subsection deals with a magnetic source Jm, directed along the
x-axis. In this case, the tangential component of the radiated field is
directed along the y-axis and is given by

E(x, z1) =
β

4j

∫ XS

−XS

H
(2)
1 (βr)z1

r
Jm(x′)dx′ x ∈ O1 (1)

where H
(2)
1 (·) is the Hankel function of second kind and first order,

β = ω
√

ε0µ0 is the wave-number of the free-space, being ε0 and µ0 the
dielectric permittivity and the magnetic permeability of the free space,
respectively, r =

√
(x− x′)2 + z2

1 denotes the distance between the
generic point of the source domain and the point of the measurement
domain.

Relation (1) can be seen as a linear transformations

A : Jm ∈ L2(S) → E ∈ L2(O1) (2)

Equation (2) means that the only a priori information about the
magnetic current is that it is a square integrable function defined on
the source domain S whereas the radiated field is assumed as a square
integrable function defined on the measurement domain O1.

2.2. Electric Source

We assume that the electric source J is directed along the y-axis.
In this case, the tangential component of the radiated field is again
directed along the y-axis and is given by [7]

E(x, z1) =
ωµ0

4j

∫ XS

−XS

H
(2)
0 (βr)J(x′)dx′ x ∈ O1 (3)

where H
(2)
0 (·) is the Hankel function of second kind and zero-th order.

Equation (3) can be interpreted as a linear transformation

B : J ∈ L2(S) → E ∈ L2(O1) (4)
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that relates the square integrable function electric current J(x′)
defined on the source domain S to the radiated electric field over the
measurement domain O1.

3. THE INVERSE SOURCE PROBLEM

Accordingly to the outcomes of the previous Section, the problem of
the reconstruction of the magnetic current Jm (or alternatively of the
electric current J), starting from the knowledge of the radiated field
over the observation domain O1, can be stated as the inversion of the
operator A (or of the operator B).

The operators A and B exhibit some common properties, but
also few differences arise between them; here, we exploit SVD tool [6]
in order to present the common and different features of the two
operators.

As first common feature, the two radiation operators A and B are
compact operators [1] and accordingly, it is possible to express them
by exploiting the SVD. Here, the details for the SVD of the operator A
are given; of course, the same considerations hold even for the operator
B.

For the operator A, the singular system {σAn, uAn, vAn}∞n=0 can
be defined [6], wherein: the series {σAn}∞n=0 denotes the singular
values ordered in a non-increasing sequence; the set {uAn}∞n=0 is the
orthonormal basis for the subspace of the visible objects (i.e., the
objects that could be retrieved by the error-free data); the set {vAn}∞n=0
is the orthonormal basis for the closure of the range of the operator A.

A formal solution of the inverse problem is expressed as:

Jm(x′) =
∞∑

n=0

1
σAn

〈E, vAn〉uAn (5)

where 〈·, ·〉 denotes the scalar product in the data space L2(O1).
As a common feature of the two operators, for their compact-

ness [1, 6], the relative singular values cluster to zero asymptotically
(i.e., as their index tends to infinity); this entails that the related in-
version problem at hand is ill-posed. Accordingly, in order to obtain
a stable inversion of the operators in (1) and (3), the singular spec-
trum should be suitably truncated by accounting for the noise level on
data [6, 8]. For the case at hand, it will be seen that the singular val-
ues of A and B exhibit an almost step-like behavior [1, 5]; this means
that the singular values exhibit a limited dynamics (they are constant
or almost constant) before a knee after that they decay exponentially
fast.
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Consequently, the inversion of A (and B) is a severely ill-posed
problem [6]; this entails that the number of singular values to be
retained in a regularized reconstruction scheme is essentially finite and,
apart very low signal to noise ratio, is generally weakly dependent on
noise level and regularization scheme. Accordingly, it is possible to
identify the Number of Degrees of Freedom (NDF) of the radiated
field just as the number of singular values before the asymptotic fast
decay.

In this case, it is possible to adopt the Truncated SVD (TSVD)
as regularization scheme; this scheme consists in truncating the series
in (5) at an index NT , so that the regularized solution is achieved by

J̃m(x′) =
NT∑

n=0

1
σAn

〈E, vAn〉uAn (6)

where the index NT acts as a regularization parameter.
All considerations above hold also for the case of the electric

source and the relative operator B whose singular system is denoted
by {σBn, uBn, vBn}∞n=0.

4. A COMPARISON BETWEEN THE SINGULAR
VALUES FOR THE TWO OPERATORS

This section is devoted at analyzing the different behavior of the two
sequences of the singular values for the two radiation operators.

First, the results relative to the case of the magnetic source are
recalled [1, 5]. In particular, it is already found that the singular values
behavior of the operator A is step-like; in fact, the singular values are
constant before at a knee after which an exponential decay arises.

The knee arises at the singular value index

Ñ ∼=
[

2
λ

(R1 −R2)
]

(7)

where R1 =
√

(XS + X1)2 + z2
1 , R2 =

√
(XS −X1)2 + z2

1 and λ is the
wavelength.

Such a step-like behavior of the singular values permits to assume
the number of degrees of freedom of the radiated field equal to the
index Ñ given in (7), i.e., a severely ill-posed inverse problem has to
be tackled [6] and the TSVD can be arrested at an index NT = Ñ .

Let us turn to present a comparison between the singular values of
the two operators A and B. In particular, the comparison is performed
between the two operators by neglecting the constant quantities outside
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the integrals in (1) and (3), respectively. Accordingly, the two
normalized operators are denoted by Ã and B̃, respectively.

Now few mathematical considerations are in order. By assuming
that βr À 1 (this entails that the observation domain is only at
few wavelengths from the source domain) and by resorting to the
asymptotic form of the Hankel functions for large argument, the
relationship H

(2)
n (βr) ≈

√
2j

πβr jne−jβr holds [7].
Let us turn now to consider the operators given by (1) and (3); as

a general rule, the following relation hold for the two operators

X1∫

−X1

dx

∫ XS

−XS

∣∣∣∣∣
H

(2)
1 (βr)z1

r

∣∣∣∣∣
2

dx′ =
∞∑

n=0

σ̃2
An (8)

and
X1∫

−X1

dx

∫ XS

−XS

∣∣∣H(2)
0 (βr)

∣∣∣
2
dx′ =

∞∑

n=0

σ̃2
Bn (9)

By exploiting relations (8) and (9), it can be written

∞∑

n=0

σ̃2
An =

X1∫

−X1

dx

∫ XS

−XS

∣∣∣∣∣

√
2j

πβr
je−jβr

∣∣∣∣∣

2 ∣∣∣z1

r

∣∣∣
2
dx′

<

X1∫

−X1

dx

∫ XS

−XS

∣∣∣∣∣

√
2j

πβr
e−jβr

∣∣∣∣∣

2

dx′ =
∞∑

n=0

σ̃2
Bn (10)

and relation (10) makes possible to state that the summation of the
square singular values of the normalized operator B̃ (electric source) is
larger than the corresponding quantity for the operator Ã (magnetic
source). Anyway, it is worth noting that this statement does not permit
us to state that for each index the singular value of the operator B̃ is
larger than the homologous one of the operator Ã.

The theoretical statement in (10) is numerically confirmed by
considering a source domain with semi-extent Xs = 10λ and an
observation domain at distance z1 = 5λ with varying semi-extent
ranging in the interval X1 ∈ [λ, 20λ] with a step of λ. Red dashed
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line of Figure 2 depicts the quantity

Ratio =

X1∫
−X1

dx
∫ XS

−XS

∣∣∣H(2)
0 (βr)

∣∣∣
2
dx′

X1∫
−X1

dx
∫ XS

−XS

∣∣∣∣
H

(2)
1 (βr)z1

r

∣∣∣∣
2

dx′
(11)

for the different values of the semi-extent of the observation domain
ranging from λ to 20λ.

The same analysis has been performed also for the values of the
distance z1 ranging from 10λ to 25λ with a step of 5λ and the results
in term of the ratio R are depicted in Figure 2. It can be observed
that as long as the extent of the observation domain increases and/or
the distance of the observation domain decreases, the term z1/r has an
increasing role in making different the two integrand functions involved
in the numerator and the denominator of (11) and consequently to have
a ratio R more and more different from one. Therefore, for a fixed
value of the distance z1, the two singular values behavior become more
and more different as long as the extent of the observation domain
increases.

This is pointed out from the figures below that are all concerned
with the source semi-extent equal to Xs = 10λ and a quota z1 = 5λ.
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Figure 2. Ratio in Equation (11)
depicted for different semi-extent
of the observation domain: red
dashed curve z1 = 5λ; red dotted
line z1 = 10λ; green curve z1 =
15λ; blue dashed line z1 = 20λ;
blue dotted line z1 = 25λ.
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Figure 3. Comparison between
the absolute singular values of the
two normalized operators (blue
line: magnetic source; red dashed
line: electric source) in the case
X1 = 5λ and z1 = 5λ.
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Table 1.

X1 = 5λ X1 = 10λ X1 = 15λ X1 = 20λ
Ñ estimated by (7) 17 31 37 38

Ratio between
the first singular

values of the
two operators

1.82 2.22 2.60 2.97

Ratio R in (11) 1.62 1.68 1.90 2.14

Figure 3 depicts the case of a semi-extent of the observation
domain equal to X1 = 5λ. For this and the following figures, the red
dashed line and blue solid line refer to the singular values of the electric
and magnetic sources, respectively. The examination of this figure
shows that the magnetic singular values exhibits a knee which arises
at the index Ñ = 17 as estimated by (7). The same step-like behavior
also arises for the electric source whereas the dissimilarity between the
two behaviors arises in the zone before the common exponential decay.
In particular, it can be observed that the singular values for the electric
source are larger than the corresponding ones of the magnetic source.
Table 1 reports the ratio between the first (largest) singular values of
the two operators and the quantity R defined in (11).

The same analysis has been performed for the further three cases
of X1 = 10λ, X1 = 15λ and X1 = 20λ. Figures 4–6 depict the singular
values behavior for these three cases and Table 1 reports the relative
results. From the examination of the above figures and Table 1, some
considerations follow.

First of all, the expected step-like behavior of the magnetic source
(goodness of the estimate of the knee-index in (7)) is verified for all
the presented cases and a similar step-like behavior even holds for the
electric source.

Secondly, we verify that at the increase of the extent of the
observation domain, the increasing role in the integral provided by
the term z1/r makes it possible a more evident difference between the
singular values behaviors; this fact is also inferred by the values in the
Table 1.

In addition, it has been numerically verified (and not shown
here for sake of brevity) that, as expected, the same singular values
behaviors even holds in the case that the role of the observation
domain and the extent domain are interchanged. In other words, the
figures above shown can continue to hold for the “reciprocal” case of
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Figure 4. Comparison between
the absolute singular values of
the two operators (blue line:
magnetic source; red dashed line:
electric source) in the case X1 =
10λ and z1 = 5λ.
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Figure 5. Comparison between
the absolute singular values of
the two operators (blue line:
magnetic source; red dashed line:
electric source) in the case X1 =
15λ and z1 = 5λ.
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Figure 6. Comparison between
the absolute singular values of
the two operators (blue line:
magnetic source; red dashed line:
electric source) in the case X1 =
20λ and z1 = 5λ.
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Figure 7. Comparison between
the absolute singular values of
the two operators (blue line:
magnetic source; red dashed line:
electric source) in the case X1 =
10λ and z1 = 10λ.

the distance z1 = 5λ and the semi-extent of the observation domain
X1 = 10λ, while it is the semi-extent Xs of the source domain that
ranges from 5λ to 20λ.

A further analysis has regarded also the case of the increase in the
quota z1 for an observation domain with fixed semi-extent X1 = 10λ
(the semi-extent of the source is the same of the above case). In
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particular, besides the quota z1 = 5λ, already considered in Figure 4,
other three quotas z1 = 10λ, z1 = 15λ and z1 = 20λ are considered.

Figures 7–9 depict the comparison between the singular values in
the cases of distance z1 = 10λ, z1 = 15λ and z1 = 20λ, respectively.
Table 2 is the analogous of Table 1 where the varying parameter is
the distance z1. From the examination of Figures 7–9 and Table 2, it
can be inferred that as long as the distance z1 increases, the role of
the factor z1/r is less relevant in order to have a difference between
the two kernels in (11), and the two singular values behaviors become
more and more similar.
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Figure 8. Comparison between
the absolute singular values of
the two operators (blue line:
magnetic source; red dashed line:
electric source) in the case X1 =
10λ and z1 = 15λ.
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Figure 9. Comparison between
the absolute singular values of
the two operators (blue line:
magnetic source; red dashed line:
electric source) in the case X1 =
10λ and z1 = 20λ.

Table 2.

z1 = 5λ z1 = 10λ z1 = 15λ z1 = 20λ
Ñestimated by (7) 31 25 20 16

Ratio between
the first singular

values of the
two operators

2.22 1.56 1.30 1.18

Ratio in (11) 1.68 1.34 1.20 1.13
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5. TRUNCATED SVD REGULARIZED POINT SPREAD
FUNCTION

This section aims at presenting the features of the regularized
reconstruction of a Dirac function, for the two normalised radiation
operators Ã and B̃, at variance of the TSVD threshold in (6). In such
an analysis, the regularization parameter will be considered as the ratio
between the minimum singular value retained in the TSVD summation
and the maximum one.

The analysis is performed for the case of a source with semi-
extent equal Xs = 10λ and an observation domain at distance z1 = 5λ
and with semi-extent X1 = 20λ (Figure 6 depicts the singular values
behavior of the two operators). This case is chosen because the singular
values of the two radiation operators exhibit a significant difference
so that different performances are expected in the TSVD regularized
reconstruction of the impulsive source.

This is shown in Figures 10–13 that depict the reconstruction of a
unit-pulse function located at the center (x = 0) of the source domain.
The examination of these figures allows to point out that when the
TSVD threshold is high (the cases of TSVD threshold equal to 0.7 and
0.5) a significant difference in the reconstruction arises (see Figures 10,
11); this is due to the very different number of terms retained in TSVD
expansion, as reported in Table 3.

Figures 10 and 11 permit us to state that the reconstruction
with the magnetic source is reliable even with very low signal to
noise ratio; differently, for the electric source, due to the decay of
the singular values before the knee, the reconstruction results are
completely unreliable since they do not permit to localize the pulse
source.

Table 3.

TSVD Threshold

Number of
TSVD retained
terms for the
electric source

Number of
TSVD retained
terms for the

magnetic source
0.7 4 39
0.5 10 40
0.1 41 42
0.01 44 44
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Figure 10. Comparison between
the TSVD reconstruction of the
pulse function located at x =
0. (green line: magnetic source;
blue line: electric source). TSVD
threshold equal to 0.7.

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x/λ

N
o
rm

a
li
s
e
d
 u

n
it
s

Figure 11. Comparison between
the TSVD reconstruction of the
pulse function located at x =
0. (green line: magnetic source;
blue line: electric source). TSVD
threshold equal to 0.5.
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Figure 12. Comparison between
the TSVD reconstruction of the
pulse function located at x =
0. (green line: magnetic source;
blee line: electric source). TSVD
threshold equal to 0.1.
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Figure 13. Comparison between
the TSVD reconstruction of the
pulse function located at x =
0. (green line: magnetic source;
blue line: electric source). TSVD
threshold equal to 0.01.

Conversely, the reconstructions become quite similar in the other
two cases (TSVD threshold equal to 0.1, 0.01) where the TSVD
expansion involves almost the same number of terms (see Table 3).

These reconstruction results permit also to point out how the
subspace spanned by the singular functions in the unknown space
becomes very similar when all the singular values before the common
exponential decay are considered.
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A comparison between the reconstruction performance of the
inversion approach in the two cases can be also shown by pointing
out the different spectral contents defined as

SP (u) =
NT∑

n=0

∣∣_
un(u)

∣∣ (12)

where

_
un(u) =

XS∫

−XS

un(x) exp(−jux)dx (13)

represents the Fourier transform of the n-th right singular function
un(x).

The spectral content accounts for the class of the retrievable
harmonic content on dependence of the measurement configuration and
the choice of the TSVD regularization parameter [9–11]. Figures 14
and 15 depict the spectral content for the cases of the magnetic
and electric source, respectively, and for different values of the
TSVD threshold (the above mentioned ones and the additional TSVD
threshold equal to 0.3). A different behavior can be observed; for the
magnetic source the same spectral content arises for the different TSVD
threshold (Figure 14). The situation changes in the case of the electric
(see Figure 15) source where for the cases of TSVD threshold equal to
0.7 and 0.5, a strong filtering effect for the low spatial frequencies (low
values of u) can be observed, which disappears as the TSVD threshold
becomes smaller.
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Figure 14. Spectral content for the magnetic source and different
TSVD thresholds.
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Figure 15. Spectral content for the electric source and different TSVD
thresholds.

6. CONCLUSIONS

In this work, a comparison between the two radiation operators
concerned with the electric source and magnetic source is presented.
The analysis has been performed by means of the SVD tool that
have permitted to discuss the reconstruction performances of the two
formulations.

In particular, the analysis has shown that for the electric source,
the singular values are larger compared to the ones of the magnetic
source but at the same time they exhibit a smooth variation before the
exponential decay, which occurs an index that is, approximately the
same for a magnetic source.

Consequently, for low values of the signal to noise ratio, the quality
of the reconstruction of an electric source is significantly dependent on
the threshold fixed for TSVD and on the distance from source and
observation domain.
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