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Abstract—The propagation equation, written in a curvilinear
coordinate system, is solved by using a perturbation method inspired
from quantum physics and extended to imaginary eigenvalues and
evanescent waves. The parameter of perturbation is the groove depth
which is small compared to the period. The method is expanded
up to second order for the non-degenerate problem. In this way
the solutions have analytical form compared to a numerical method.
They present the advantage to put in evidence the evolution of the
energy distribution for different diffraction orders as a function of the
magnitude of the perturbation. The efficiencies which are deduced
from these analytical solutions are compared of those obtained by the
curvilinear coordinate method. The good agreement between the two
methods occurs for a groove depth with respect to the wavelength less
than or equal to 0.16. Thus, this new approach opens a new range of
applications for inverse problems.

1. INTRODUCTION

The curvilinear coordinate method is a well known method for
modelling wave diffraction at a periodic surface. The main feature
of this method is the use of a translation coordinate system that
maps the profile to a plane and enables to express the problem as an
eigenvalue problem which can be easily numerically solved by standard
algorithms [1–4]. The eigenvalues correspond to diffracted directions
and the eigenfunctions correspond to fields of diffracted waves in these
directions. The system which must be solved is generally of infinite
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dimension but can be limited to a problem of finite lower dimension
when the diffracting surface is not very different from a plane. In this
case it is possible to obtain the solution by a perturbation method
inspired by quantum physics methods. Our approach is comparable to
that of Malischewsky in the field of seismology [5, 6].

Historically, the perturbation method has its roots in early
celestial mechanics and it was first used to solve algebraic equations,
before being applied to the operator theory, especially in quantum
mechanics version. In this case the calculations are easier than the
corresponding classical perturbation techniques presented by Goldstein
et al. [7].

The perturbation theory is widely used in electromagnetism. For
instance it has been recently used to calculate the sensitivity of
chirowaveguides to circular birefringence [8] and to investigate the
plane wave diffraction by a semi-infinite parallel-plate waveguide with
sinusoidal wall corrugation [9, 10].

Here, we are interested in the analysis of diffraction by shallow
gratings. In a first paper [11] we have combined the theory of
perturbation with the method of curvilinear coordinates. However,
this work was inspired by text book [12] widely used in quantum
mechanics. In that field, the perturbation method has been established
from Hamiltonian operator which is a hermitian operator of which
the eigenvalues (energy levels) are real and the eigenvectors form an
orthonormal basis in the case of non-degenerate states. That’s why we
had only considered propagative waves. This preliminary study paved
the way for the general case that should also include evanescent waves.

Thus, the main purpose of the present paper is to propose the
general case that considers both propagative and evanescent waves
corresponding to real and imaginary eigenvalues. For that, we relate
in detail the different states of the analytical calculation of the
perturbation method applied to a simple case: a sinusoidal surface
the groove depth of which is small with respect to the period of the
profile. The analytical solutions, eigenvalues and eigenfunctions, are
obtained from known eigensolutions of the unperturbed problem that
is a plane surface. The amplitudes of eigenfunctions are determined
from boundary conditions. The domain of validity of the perturbation
method is obtained by comparison with rigorous numerical method.
We have calculated with both methods the diffracted efficiencies of
a given perfectly conducting sinusoidal grating. Let us recall that
efficiencies correspond to the fraction of incident energy scattered
in discrete directions. For the case under consideration the relative
uncertainty for efficiencies was less than 8% for groove depth to
wavelength ratio smaller than 0.16.
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Figure 1. Sinusoidal grating with incident and diffracted waves.

2. FORMULATION OF THE PROBLEM

In Cartesian coordinate (Oxyz), we assume a cylindrical surface whose
generatrix, parallel to the Oz axis, is on the line y = hca(x) localised
in the (xOy) plane with y ≥ 0 (Figure 1).

The periodic function a(x) with period d is assumed continuously
differentiable. This surface represents the interface between the
vacuum and a perfectly conductor medium. It is illuminated by a
monochromatic plane wave of angular frequency ω, wavelength λ and
wave number k = 2π/λ.

Our study is related to a sinusoidal grating which the profile
a(x) = 1/2 sin 2πx/d. This profile is normalized so that the groove
depth hc is the maximal deviation from the y-axis with: max a(x) −
min a(x) = 1.

The incidence angle θo varying from −π/2 to π/2 is positively
counted as shown in Figure 1. The diffraction angles θ are oriented in
the reverse trigonometric sense.

We wish to calculate the distribution of diffracted energy as a
function of the angle θ when hc is small with respect to the period d.

The time dependence of the electromagnetic field is such that:

i∂/∂t = ω (1)

The problem presents an invariance according to z-axis translation,
that is:

∂/∂z = 0 (2)

For 2D problems there are two types of solution according to whether
the z-component of electrical or magnetic field is parallel to the z-axis.
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One can summarize:

TE polarization for : Ez 6= 0 ⇒ Ex = Ey = 0 (3)
Hz = 0 ⇒ Hx 6= 0, Hy 6= 0 (4)

TM polarization for : Ez = 0 ⇒ Ex 6= 0, Ey 6= 0 (5)
Hz 6= 0 ⇒ Hx = Hy = 0 (6)

Let us denote F (x, y) the Ez or Hz component according to TE or
TM polarization. In this case, F (x, y) is solution of the following
propagation equation which is deduced from Maxwell’s equations:[

(∂/∂x)2 + (∂/∂y)2 + k2
]
F (x, y) = 0 (7)

with a medium with refractive index equal to unity.
The other components of electromagnetic field can be calculated

from F (x, y).

3. PERIODIC SURFACE WITH hc CLOSE TO ZERO

Let consider the special case of a periodic surface y = hca(x) with hc

close to zero.
The propagation Equation (7) is an eigenvalue equation of the

form: [
(−i∂/∂x)2 + (−i∂/∂y)2

]
F (x, y) = k2F (x, y) (8)

According to the wave-particle duality and corresponding relations
introduced in quantum physics, we associate to wave vector k (kx, ky)
of the (xOy) plane the operator:

k (kx = −i∂/∂x, ky = −i∂/∂y) (9)

Let kα and kβ the eigenvalues of kx and ky, with real values
(fundamental rule in quantum physics).

The Equation (8) implies:

α2 + β2 = 1 (10)

According to the incidence angle θ0 and the diffraction angles θ
(Figure 1) the eigenfunction F (x, y) of Equation (8), is written to
within a constant A− or A+ and one has:

- for the incoming incident wave:

F−(x, y) = A− exp(ikα0x) exp(−ikβ0y) (11)

- for outgoing diffracted wave:

F+(x, y) = A+ exp(ikαx) exp(+ikβy) (12)
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From the periodicity of the rough surface we have shown in [11] the
quantification of diffracted beam directions.

Let Up = {m/|αm| < 1}, then it is possible to define the angles
θm so that:

αm = sin θm = sin θ0 + mλ/d with m = 0,±1,±2, . . . ,±Np (13)

and:

±βm = ±(1− α2
m)1/2 = ± cos θm with −Np ≤ m ≤ Np (14)

For simplification of analytical calculations we consider the same
diffracted real order number on both sides of zero-order.

Consequently, the eigenfunctions F p+
m (x, y) and F p−

m (x, y) associ-
ated to each of m-th direction of k (also called m-th order) representing
outgoing and incoming progressive waves respectively are:

F p±
m (x, y) = Ap±

m exp(±ikβmy) exp(ikαmx) (15)

In the case where

m /∈ Up, set U ev = {m′/|αm′ | > 1}, (16)

then:

αm′ = α0 + m′λ/d with m′ = ±(Np + 1), . . . ,±N (17)

and:

±iβm′ = ±i
(
α2

m′ − 1
)1/2 with Np + 1 ≤ |m′| ≤ N (18)

N being the truncature order for numerical calculations.
The corresponding waves denote the evanescent waves (or

exponentially decaying waves) which decrease quickly when y increases
by positive value (negative sign in exponential) or y increases by
negative value (positive sign in exponential):

F ev±
m′ (x, y) = Aev±

m′ exp(∓kβm′y) exp(ikαm′x) (19)

To the incoming incident field (11) corresponds the diffracted field
F+(x, y) which is the sum of the outgoing progressive plane waves and
outgoing evanescent waves:

F+(x, y) =
∑

m∈Up

Ap+
m exp(ikβmy) exp(ikαmx)

+
∑

m′∈Uev

Aev+
m′ exp(−kβm′y) exp(ikαm′x) (20)

Denote U = Up ∪ U ev. The set U is to 2N + 1 dimensional.
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4. THE PROPAGATION EQUATION FROM THE
TRANSLATION COORDINATE SYSTEM

4.1. The Differential Operators

Our goal is to determinate the scattered field defined as the difference
between the total electromagnetic field and the incident field. The
field must satisfy the far-field radiation conditions and the boundary
conditions along the interface. In order to express the latter simply, we
use the so-called “translation coordinate system” (u, v, w) [1] defined
from Cartesian coordinates as follows:

u = x

v = y − hca(x)
w = z

(21)

In this case the diffracting surface corresponds to v = 0. Note that the
z-component of electrical or magnetic field (Ez or Hz) is unchanged in
the new coordinate system. We it call F (u, v) and it is considered as
an unknown function.

One must write the differential operators in the translation
coordinate system:

∂/∂x = ∂/∂u− hca
′∂/∂v

∂/∂y = ∂/∂v
(22)

where: a′ = da/dx.
The propagation Equation (7) is changed to:

{
(∂/∂u)2 − hc

[
(∂/∂u)a′ + a′(∂/∂u)

]
(∂/∂v)

+(h2
ca
′2 + 1)(∂/∂v)2 + k2

}
F (u, v) = 0 (23)

In this equation, it is not the profile function a(x) which appears but its
derivative a′(x). This shows the invariance of problem by translation
with respect to the variable v.

In order to use reduced quantities, we define:
h = 2πhc/d: the normalized magnitude

and: ä = da′(x)/2π: the normalized derivative of the profile which is
a periodic function of period d.

Then, the Equation (23) becomes:
{
(∂/∂u)2 − h [(∂/∂u)ä + ä(∂/∂u)] (∂/∂v)

+(h2ä2 + 1)(∂/∂v)2 + k2
}

F (u, v) = 0 (24)

It is an equation with constant coefficients according to v and periodical
coefficients according to u.
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Consequently:

F (u, v) =
∑
m

Fm(v) · exp(ikαmu) (25)

with αm satisfying (13) and (17) by analogy to the previous case of a
surface with periodicity d in the u-direction,
and:

Fm(v) = Fm exp(ikρv) (26)

where Fm and ρ are unknowns of problem.

4.2. Dirac Notation

The set of pseudo-periodic functions F (u, v) provided with scalar
produce form a subspace ¿m of the Hilbert functional space ¿.

In order to simplify the writing of equations it is very useful to
represent the vectors of this space with Dirac notation as in quantum
physics:

- an element of space ¿ is noted by the column vector |f〉 or “ket”,
- an element of dual space ¿† is a row vector 〈f | or “bra”.

The “bra” is the adjoint (noted †) of the “ket”:

〈f | = [|f〉]† (27)

For −N < m < +N , the set of functions exp(ikαmu), represent
also the orthonormal Fourier’s basis of 2N + 1 dimension denoted
{| exp(ikαmu) >} (or {|em〉 to simplify) of the subspace ¿m of the
Hilbert functional space ¿. In ¿m the scalar produce is defined as
“bracket”:

〈exp(ikαmu)| exp(ikαnu)〉 =
1
d

d∫

0

(exp(ikαmu))†

· exp(ikαnu)du = δmn (28)

where δmn, the Kronecker symbol, equal to unit for m = n and to zero
for m 6= n.

4.3. Matrix Form of the Propagation Equation

In Hilbert subspace ¿m we can associated to each functional operator
(−i∂/∂u) a square matrix of 2N + 1 dimension noted [−i∂/∂u].

The coefficients of propagation Equation (24) are independent of
the variable v, then according to (26) the differential operator (−i∂/∂v)
behaves as a single multiplication.
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Furthermore in this basis, the components Fm(v) of the function
F (u, v) are regrouped in |f〉. Then, in this basis {| exp(ikαmu)〉}, the
Equation (24) is written in matrix form:

{
[−i∂/∂u]2 − h ([−i∂/∂u][ä] + [ä][−i∂/∂u]) (−i∂/∂v)

+
(
h2[ä]2 + [I]

)
(−i∂/∂v)2 − k2

} |f〉 = 0 (29)

with:

[−i∂/∂u] = k[α] where [α] is a diagonal matrix so that: αm,m =
αm as defined in Equations (13) and (17) (that is m ∈ U) and
αm,n = 0 if m 6= n.
(−i∂/∂v) = kρ where ρ is a numerical factor.
[I] is an identity matrix,
[ä] is a Toeplitz matrix associated to the normalized derivative of
profile function. It is formed by the Fourier coefficients äm,n of
ä(x) so that:

(ä)m,n = (ä)m−n =
1
d

d∫

0

ä(x) exp
[
i(m− n)

2π

d
x

]
dx (30)

Thus, the Equation (29) is written as:
[−([I]− [α]2)− h([α][ä] + [ä][α])ρ + (h2[ä]2 + [I])ρ2

] |f〉 = 0 (31)

From diagonal matrix [α], set a new diagonal matrix [β] so that:

[β]2 = [I]− [α]2 (32)

The diagonal elements βm of [β] are writing:

β2
m = 1− α2

m (33)

By convention, we set:

- for m ∈ Up

βm = +(1− α2
m)1/2 if |αm| < 1 and −Np ≤ m ≤ Np (34)

- for m′ ∈ U ev

iβm′ = +i(α2
m′ − 1)1/2 if |αm′ | > 1 and Np+1 ≤ |m′| ≤ N (35)
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5. CONVERSION OF THE PROPAGATION EQUATION
INTO EIGENVALUES EQUATION

5.1. The Eigenvalues Equation

In order to calculate eigenvalues on the one hand and to get a series
expansion in h on the other hand we propose to calculate ρ by
introducing an auxiliary function: F ′(v) = ρF (v) [3]. The associated
vector is |f ′〉 of which terms are the components F ′

m(v) of F ′(v) in the
basis {| exp(ikαmu)〉}.

Thus, in the doubled subspace ¿m⊕ ¿m with the basis B:
{| exp(ikαmu)〉, | exp(ikαmu)〉} we obtain the following system:

[
−h[β]−2([α][ä] + [ä][α]) [β]−2(h2[ä]2 + [I])

[I] 0

] [ |f〉
|f ′〉

]
=ρ−1

[ |f〉
|f ′〉

]
(36)

which appears as a 2(2N + 1) dimensional system where ρ−1 is the
eigenvalue and

|ϕ〉 =
[ |f〉
|f ′〉

]
is the eigenvector. (37)

The Equation (36) is written in the following form:(
M (0) + hM (1) + h2M (2)

)
|ϕ〉 = ρ−1 |ϕ〉 (38)

with:

M (0) =
[

0 [β]−2

[I] 0

]
(39)

M (1) =
[
−[β]−2[A] 0

0 0

]
(40)

M (2) =
[

0 [β]−2[B]
0 0

]
(41)

setting:

[A] = [α][ä] + [ä][α] (42)

[B] = [ä]2 (43)

5.2. Principe of the Perturbation Method

We wish to solve the eigenvalues Equation (38) written in the form:

M |ϕ〉 = ρ−1 |ϕ〉 (44)

with:
M = M (0) + hM (1) + h2M (2) (45)
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Such a problem cannot be solved exactly with rigorous mathematics.
Therefore, as many physical problems, it can be solved approximately.
We propose a perturbation method inspired by quantum physics
methods for non degenerate states [12]. The solutions that we obtain
have analytical expressions.

The matrix M (Equation (45)) is split into three terms: an
unperturbed matrix M (0) and two terms of perturbation hM (1) and
h2M (2) depending of the parameter h. This small dimensionless
parameter h, shows the intensity of the perturbation with regard to
plane surface:

h: first-order perturbation;
h2: second-order perturbation.
The solutions of the perturbed problem are obtained from those

known eigensolutions of the unperturbed problem (that is for h = 0).
In this case the translation coordinate system is the same as the
Cartesian system.

The principle of the method is as follows:
- to calculate exactly eigenvalues and eigenfunctions for the

unperturbed problem (that is for h = 0).
- to verify that eigenfunctions form an orthonormal basis.
- to write the matrix M in the eigenbasis of unperturbed problem.

It will be denoted M.
- to determine the corrective terms that must to be added to the

known eigensolutions of unperturbed problem in order to obtain
the approximate solutions of M according to an expansion in
powers of h to second-order.

6. UNPERTURBED PROBLEM (h = 0): PERIODIC
PLANE SURFACE

6.1. Eigensolutions of Unperturbed Problem

Calculate eigenvalues and eigenvectors of unperturbed operator M (0),
written in the basis B, satisfying the equation:

M (0)

[ |em〉
|em〉

]
= (ρ(0)

m )−1

[ |em〉
|em〉

]
(46)

To simplify the expression, let:
(ρm)−1 = rm (47)

To zero-order, the eigenvalues, given in a matrix form, are:

[r(0)±] = ±[β−1] (48)
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The corresponding basis eigenvectors denoted: |e±m〉 have their
components grouped in the following matrix T :

T =
[

[I] [I]
[β] −[β]

]
(49)

This is the matrix of B to B± basis change, such that:
[ |e+

m〉
|e−m〉

]
= tT

[ |em〉
|em〉

]
(50)

where tT denotes the transpose of T matrix. According to the
condition of normalization of basis vectors 〈e±m|e±m〉 = 1, the new basis
B±: {|e+

m〉normalized , |e−m〉normalized} in under space ¿+
m⊕¿−m is identical

to the initial basis B: {|em〉, |em〉}.
In this basis B±: {| exp(ikαmu)〉, | exp(ikαmu)〉} the matrix of

eigenvalues is:

[r(0)] =
[

[β−1] 0
0 −[β−1]

]
(51)

and the matrix associated eigenfunctions is:
∣∣∣ψ(0)

〉
=

[ ∣∣ψ(0)+
〉

∣∣ψ(0)−〉
]

(52)

To components of |ψ(0)+〉 and |ψ(0)−〉 we associate respectively the
components F

(0)+
m (v) and F

(0)−
m (v) of eigenfunctions F (0)+(v) and

F (0)−(v) in the basis B± when m ∈ U varies in the range (−N,+N).
These components are:

- for m ∈ Up F p(0)±
m (v) = F p(0)±

m exp(±ikβmv) (53)

- for m′ ∈ U ev F
ev(0)±
m′ (v) = F

ev(0)±
m′ exp(∓kβm′v) (54)

with respective amplitudes F
p(0)±
m and F

ev(0)±
m′ .

Thus, to zero-order the analytical solutions corresponding to the
unperturbed problem are written in the following form:

- form ∈ Up F p(0)±
m (u, v)=F p(0)±

m exp(±ikβmv) exp(ikαmu) (55)

- form′ ∈ U ev F
ev(0)±
m′ (u, v)=F

ev(0)±
m′ exp(∓kβm′v) exp(ikαm′u)(56)

They represent respectively the same plane waves given in (15) and
evanescent waves given in (19).
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6.2. Propriety of Eigenfunctions of Unperturbed Problem

The perturbation method requires that eigenfunctions of unperturbed
problem in under space ¿+

m⊕ ¿−m form an orthonormal basis. For more
generality we note respectively |ψp(0)±

m 〉 and |ψev(0)±
m′ 〉 these solutions

given by (55) and (56) when their amplitude is equal to the unity.
According to m ∈ Up and m′ ∈ U ev when m and m′ vary within

the range (−N, +N), these new basis functions needful to solve the
perturbed problem are respectively:

- for ¿+
m :

∣∣∣ψ(0)+
m

〉
=




∣∣∣ψev(0)+
m′

〉
∣∣∣ψp(0)+

m

〉
∣∣∣ψev(0)+

m′

〉




=

[ exp(−kβm′v) |exp(ikαm′u)〉
exp(ikβmv) |exp(ikαmu)〉

exp(−kβm′v) |exp(ikαm′u)〉

]
(57)

- for ¿−m :
∣∣∣ψ(0)−

m

〉
=




∣∣∣ψev(0)−
m′

〉
∣∣∣ψp(0)−

m

〉
∣∣∣ψev(0)−

m′

〉




=

[ exp(+kβm′v) |exp(ikαm′u)〉
exp(−ikβmv) |exp(ikαmu)〉
exp(+kβm′v) |exp(ikαm′u)〉

]
(58)

and for ¿+
m⊕ ¿−m we set:

∣∣∣ψ(0)
m

〉
=




∣∣∣ψ(0)+
m

〉
∣∣∣ψ(0)−

m

〉

 (59)

With regard to basis vectors of B±{| exp(ikαmu)〉, | exp(ikαmu)〉},
these new functions {|ψ(0)+

m 〉, |ψ(0)−
m 〉} are estimated to within a

phase term exp(±ikβmv) for propagative waves and amplitude term
exp(∓kβm′v) for evanescent waves of which decrease quickly when v
increases respectively by positive or negative values.

Each set of functions {|ψ(0)+
m 〉} on the one hand and {|ψ(0)−

m 〉} on
the other hand form an orthonormal basis of 2N +1 dimension for each
under space ¿+

m and ¿−m.
From the definition of scalar produce (28), summarize the

normalization calculation of |ψ(0)+
m 〉 on the one hand and |ψ(0)−

m 〉 on
the other hand in each under space ¿+

m and ¿−m:
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- for propagative waves it is easy to show the next relations:

with m,n ∈ Up
〈
ψp(0)+

m

∣∣∣ψp(0)+
n

〉
=

〈
ψp(0)−

m

∣∣∣ψp(0)−
n

〉
=δmn (60)

- for evanescent waves, from the relation: (∂/∂v)† = −(∂/∂v) we
find that:

(exp(±kβm′v))† = exp(∓kβm′v) (61)

Taking into account (61), with m′, n′ ∈ U ev we find that:
〈
ψ

ev(0)+
m′

∣∣∣ψev(0)+
n′

〉
=

〈
ψ

ev(0)−
m′

∣∣∣ψev(0)−
n′

〉
= δm′n′ (62)

- For a mixing of propagative wave and evanescent wave we obtain:

with m ∈ Up and n′ ∈ U ev

〈
ψp(0)+

m

∣∣∣ψev(0)+
n′

〉
=

〈
ψ

ev(0)+
n′

∣∣∣ψp(0)+
m

〉
= δmn′ (63)

and 〈
ψp(0)−

m

∣∣∣ψev(0)−
n′

〉
=

〈
ψ

ev(0)−
n′

∣∣∣ψp(0)−
m

〉
= δmn′ (64)

In fact, when m = n′ the two waves are of the same kind and
relations (63) and (64) are identical either to (60) or to (62).

Taking into account results of (60), (62)–(64) we point out that it
is not necessary to do the distinction between m ∈ Up and m′ ∈ U ev.
Then, later on we shall take the same letter m not primed on the union
U of Up and U ev with −N < m < +N .

Then the same set of relations (60), (62)–(64) can be summarized
by: 〈

ψ(0)±
m

∣∣∣ψ(0)±
n

〉
= δmn (65)

This last relation shows that each set of functions {|ψ(0)+
m 〉} on the one

hand and {|ψ(0)−
m 〉} on the other hand determine an orthonormal basis

of 2N + 1 dimension for each of them ¿+
m and ¿−m.

But in space ¿+
m⊕ ¿−m, the set {|ψ(0)+

m 〉, |ψ(0)−
m 〉} forms only an

orthogonal basis of 2(2N + 1) dimension. In fact, the different species
of scalar produce which appear give the next results:

- for m, n ∈ Up:
〈
ψp(0)±

m

∣∣∣ψp(0)∓
n

〉
= 0 with m 6= n (66)

〈
ψp(0)±

m

∣∣∣ψp(0)∓
n

〉
= exp[∓ik(βm + βn)v] with m = n (67)
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- for m′, n′ ∈ U ev:〈
ψ

ev(0)±
m′

∣∣∣ψev(0)∓
n′

〉
= 0 with m′ 6= n′ (68)

〈
ψ

ev(0)±
m′

∣∣∣ψev(0)∓
n′

〉
= exp[±k(βm′ + βn′)v] with m′=n′ (69)

- for m ∈ Up, n′ ∈ U ev:〈
ψp(0)±

m

∣∣∣ψev(0)∓
n′

〉
= 0 with m 6= n′ (70)

〈
ψp(0)±

m

∣∣∣ψev(0)∓
n′

〉
=

〈
ψp(0)±

m

∣∣∣ψp(0)∓
m

〉

= exp[∓ik(βm + βm)v] with n′ = m (71)〈
ψp(0)±

m

∣∣∣ψev(0)∓
n′

〉
=

〈
ψ

ev(0)±
n′

∣∣∣ψev(0)∓
n′

〉

= exp[±k(βn′ + βn′)v] with m = n′ (72)

As previously, we can summarize the set of results given by
Equations (66)–(72) by following relations:

- for m, n ∈ U 〈
ψ(0)±

m

∣∣∣ψ(0)∓
n

〉
= 0 with m 6= n (73)

〈
ψ(0)±

m

∣∣∣ψ(0)∓
n

〉
6= 1 with m = n (74)

Then the basis {|ψ(0)+
m 〉, |ψ(0)−

m 〉} is an orthogonal basis.
But for v = 0, on the perfectly conducting surface, the functions

which depend on v into relations (67), (69), (71), (72) take the value
one. Therefore in this case, the relations (73), (74) are spelt:

- for m, n ∈ U 〈
ψ(0)±

m

∣∣∣ψ(0)∓
n

〉
= δmn (75)

Then, in this case (v = 0), the basis {|ψ(0)+
m 〉, |ψ(0)−

m 〉} is an orthonor-
mal basis identical to the basis B±: {| exp(ikαmu)〉, | exp(ikαmu)〉}.

7. PERTURBED PROBLEM (h 6= 0): PERIODIC ROUGH
SURFACE

7.1. Writing of the Matrix M in the Eigenbasis B± of the
Unperturbed Problem

In basis B± the matrix M is changed to M according to the following
relation:

M = T−1MT (76)
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Thus, M appears in the form:

M = M(0) + hM(1) + h2M(2) (77)
with:

M(0) =
[

[β−1] 0
0 −[β−1]

]
(78)

M(1) =
[

[C] [C]
[C] [C]

]
(79)

M(2) =
[

[D] −[D]
[D] −[D]

]
(80)

setting:
[C] = −[β−2][A]/2 (81)
[D] = [β−2][B][β]/2 (82)

7.2. Solutions of Perturbed Problem

The eigenstates of the perturbed problem must satisfy the equation:
M |ψm〉 = rm |ψm〉 (83)

with M given by (77) and:

|ψm〉 =
[ |ψ+

m〉
|ψ−m〉

]
in under space ¿+

m ⊕¿−m (84)

The principle of perturbation theory is to expand eigenvalues rm and
eigenstates |ψm〉 in series of powers of h keeping only a finite number
of terms. Here, we take expansions up to second-order in agreement
with the writing of the operator M in Equation (77).

Furthermore, we suppose that the eigenstates |ψ(0)
m 〉 and the

eigenvalues r
(0)
m of the unperturbed operator M(0) are known and satisfy

the following equation:

M(0)
∣∣∣ψ(0)

m

〉
= r(0)

m

∣∣∣ψ(0)
m

〉
(85)

We consider the case v = 0 where the set of vectors |ψ(0)
m 〉 forms an

orthonormal basis {|ψ(0)+
m 〉, |ψ(0)−

m 〉} in the space of states ¿+
m⊕ ¿−m.

Let us apply the fundamental idea of perturbation theory and
let us assume that both the eigenvalues and eigenvectors of M can
be expanded in powers of the perturbation parameter h in order to
determine the coefficients in the perturbation expansions:

rm = r(0)
m + hr(1)

m + h2r(2)
m (86)

|ψm〉 =
∣∣∣ψ(0)

m

〉
+ h

∣∣∣ψ(1)
m

〉
+ h2

∣∣∣ψ(2)
m

〉
(87)



298 Gavaix, Chandezon, and Granet

To go beyond the first approximation in a systematic method,
we substitute the three expressions (77), (86) and (87) into (83)
and compare coefficients of powers of h to obtain the successive
approximation equations:

M(0)
∣∣∣ψ(0)

m

〉
= r(0)

m

∣∣∣ψ(0)
m

〉
(88)

and:

M(0)
∣∣∣ψ(1)

m

〉
+M(1)

∣∣∣ψ(0)
m

〉
= r(0)

m

∣∣∣ψ(1)
m

〉
+r(1)

m

∣∣∣ψ(0)
m

〉
(89)

M(0)
∣∣∣ψ(2)

m

〉
+ M(1)

∣∣∣ψ(1)
m

〉
+ M(2)

∣∣∣ψ(0)
m

〉
= r(0)

m

∣∣∣ψ(2)
m

〉
+ r(1)

m

∣∣∣ψ(1)
m

〉

+r(2)
m

∣∣∣ψ(0)
m

〉
(90)

If we denote the complete set of eigenstates of M(0) by |ψ(0)
i 〉, then any

function |ψ(1)
m 〉 and |ψ(2)

m 〉 can be expanded in terms of the |ψ(0)
i 〉:∣∣∣ψ(1)

m

〉
=

∑

i

a
(1)
mi

∣∣∣ψ(0)
i

〉
(91)

∣∣∣ψ(2)
m

〉
=

∑

i

a
(2)
mi

∣∣∣ψ(0)
i

〉
(92)

We substitute expressions (91) and (92) into Equations (89) and (90).
Then we project these later upon the basis functions {〈ψ(0)+

m |, 〈ψ(0)−
m |}

of dual space (¿+
m⊕ ¿−m)† within the aim to do to appear the scalar

produces as defined in (28).
Furthermore, it is necessary to use the normalization of corrected

wave functions to each order. We choose the phase so that 〈ψ(0)
m |ψm〉

has a real value. This requirement imposes the following conditions:
- to zero order, the conditions (65) and (75),
- to first order, 〈ψm|ψm〉 = 1 that is 〈ψ±m|ψ±m〉 = 1 and 〈ψ±m|ψ∓m〉 = 1

if the choice of the phase is such that:〈
ψ(0)±

m

∣∣∣ψ(1)±
m

〉
=

〈
ψ(1)±

m

∣∣∣ψ(0)±
m

〉
= 0 (93)

and: 〈
ψ(0)∓

m

∣∣∣ψ(1)±
m

〉
=

〈
ψ(1)±

m

∣∣∣ψ(0)∓
m

〉
= 0 (94)

- to second order, 〈ψm|ψm〉 = 1 if the choice of the phase is such
that:〈

ψ(0)±
m

∣∣∣ψ(2)±
m

〉
=

〈
ψ(2)±

m

∣∣∣ψ(0)±
m

〉
= −1/2

〈
ψ(1)±

m

∣∣∣ψ(1)±
m

〉
(95)

〈
ψ(0)∓

m

∣∣∣ψ(2)±
m

〉
=

〈
ψ(2)±

m

∣∣∣ψ(0)∓
m

〉
= −1/2

〈
ψ(1)±

m

∣∣∣ψ(1)∓
m

〉
(96)
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The set of algebraic calculations lead to results below for the mth
perturbed eigenvalues rm and the mth perturbed eigenvectors |ψm〉,
correct to second order:

rm = r(0)
m + h

〈
ψ(0)

m

∣∣∣M(1)
∣∣∣ψ(0)

m

〉
+ h2

[〈
ψ(0)

m

∣∣∣M(2)
∣∣∣ψ(0)

m

〉

+
∑

i6=m

∣∣∣
〈
ψ

(0)
i

∣∣∣M(1)
∣∣∣ψ(0)

m

〉∣∣∣
2
/

(
r(0)
m − r

(0)
i

)

 (97)

|ψm〉 =
∣∣∣ψ(0)

m

〉
+ h

∑

i6=m

[(〈
ψ

(0)
i

∣∣∣M(1)
∣∣∣ψ(0)

m

〉)
/

(
rm − r

(0)
i

)] ∣∣∣ψ(0)
i

〉

+h2





∑

j 6=m

∑

i6=m

[(〈
ψ

(0)
i

∣∣∣M(1)
∣∣∣ψ(0)

m

〉)
/

(
rm − r

(0)
i

)]

[(〈
ψ

(0)
j

∣∣∣M(1)
∣∣∣ψ

(0)
i

〉)
/

(
r(0)
m − r

(0)
j

)] ∣∣∣ψ(0)
j

〉

−
∑

j 6=m

[(〈
ψ

(0)
j

∣∣∣M(1)
∣∣∣ψ(0)

m

〉)

(〈
ψ(0)

m

∣∣∣M(1)
∣∣∣ψ(0)

m

〉)
/

(
r(0)
m − r

(0)
j

)2
] ∣∣∣ψ(0)

j

〉

−1/2
∑

i6=m

∣∣∣
(〈

ψ
(0)
i

∣∣∣M(1)
∣∣∣ ψ(0)

m

〉)
/
(
r(0)
m − r

(0)
i

)∣∣∣
2 ∣∣∣ψ(0)

i

〉

+
∑

j 6=m

[(〈
ψ

(0)
j

∣∣∣M(2)
∣∣∣ψ(0)

m

〉)
/

(
r(0)
m − r

(0)
j

)] ∣∣∣ψ(0)
j

〉


 (98)

The Equation (98) is of the form:

|ψm〉 =
∣∣∣ψ(0)

m

〉
+ h

∑

i

a
(1)
mi

∣∣∣ψ(0)
i

〉
+ h2

∑

i

a
(2)
mi

∣∣∣ψ(0)
i

〉
(99)

In matrix notation, the Equation (98) is written:

|ψ〉 =
{

[I] + h
[
a(1)

]
+ h2

[
a(2)

]} ∣∣∣ψ(0)
〉

(100)

where [a(1)] and [a(2)] are the matrix of which elements given in (98) are
respectively the coefficients a

(1)
mi and a

(2)
mi of developments (91) and (92)

of |ψ(1)
m 〉 and |ψ(2)

m 〉 against |ψ(0)
i 〉.
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8. RETURN TO INITIAL EIGENFUNCTIONS IN BASIS
B

The initial eigenvector |ϕ〉 that we seek is obtained from |ψ〉
(relation (100)) and the matrix T (49) of B to B± basis change:

|ϕ〉 = T |ψ〉 (101)

that is: [ |f〉
|f ′〉

]
= [T ]

[ |ψ+〉
|ψ−〉

]
(102)

The sought eigenfunctions, solutions of Equation (38), are written in
the matrix form according to a expanding in powers of perturbation
parameter h. They are:

[ |f〉
|f ′〉

]
=

{[
[F (0)+] [F (0)−]
[F ′(0)+] [F ′(0)−]

]
+ h

[
[F (1)+] [F (1)−]
[F ′(1)+] [F ′(1)−]

]

+h2

[
[F (2)+] [F (2)−]
[F ′(2)+] [F ′(2)−]

]}[
[ψ(0)+] 0

0 [ψ(0)−]

][ |A+〉
|A−〉

]
(103)

with: [F (0)+] = [F (0)−] = [I] since |ψ(0)+
m 〉 form an orthonormal basis

as well as |ψ(0)−
m 〉,

[F ′(0)+] = [β][F (0)+] and [F ′(0)−] = −[β][F (0)−]

[F (1)+], [F (1)−], [F (2)+], [F (2)−] are matrices deduced from (100)
and (102).

Each of these functions are defined to within an amplitude term
which are the components of |A+〉 and |A−〉. They will be calculated
in the next paragraph in order to satisfy the boundary conditions.

9. BOUNDARY CONDITIONS AT THE GRATING
SURFACE

The boundary conditions at the perfectly conducting surface deals with
the tangential component Et(u, v) of electrical field. It is equal to zero
for v = 0 and all u.

9.1. TE polarization

In TE polarization the tangential component Et(u, v) of the electrical
field is represented by the sum for all m-th orders of functions F+

m(u, v)
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for outgoing waves and F−
m(u, v) for incoming waves, each of them

being affected with the arbitrary constants A+
m and A−m :

Et(u, v) =
∑
m

A+
mF+

m(u, v) + A−mF−
m(u, v) (104)

The constants A+
m and A−m will be adjusted to satisfy the boundary

condition for v = 0 and all u, that is with matrix notation:

[F+][A+] + [F−][A−] = 0 (105)

For simplification, we set the magnitude of electric field of incident
wave equal to unity for each incident and evanescent order.

[A−] = [A(0)−] = [I] (106)

[A+] is expanding in powers of h:

[A+] = [A(0)+] + h[A(1)+] + h2[A(2)+] (107)

as:
[F±] = [F (0)±] + h[F (1)±] + h2[F (2)±] (108)

given by Equation (103).
We substitute the three expressions (106), (107) and (108)

into (105). Then comparing coefficients in powers of h one gets the
coefficients of the [A+] expansion which are:

[A(0)+]=−[F (0)+]−1([F (0)−][A(0)−]) (109)

[A(1)+]=−[F (0)+]−1([F (1)−][A(0)−] + [F (1)+][A(0)+]) (110)

[A(2)+]=−[F(0)+]−1([F(2)−][A(0)−]+[F(2)+][A(0)+]+[F(1)+][A(1)+])(111)

9.2. TM Polarization

We still must write the continuity of the tangential component Et(u, v)
of electric field on conductor surface (v = 0 and all u).

A classical calculation of Et(u, v) shows that it is proportional to
a function G(u, v):

Et(u, v) = G(u, v) · Z0 cosϕ (112)

with:
G(u, v) = häαF (u, v)− (1 + h2ä2)F ′(u, v) (113)

Z0: vacuum impedance
ϕ: angle between the tangent to the profile and x-axis

Furthermore, to functions F (u, v) and F ′(u, v) firstly defined in the
basis B correspond in the normalized basis B± to:
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- the functions F+(u, v) and F ′+(u, v) = βF+(u, v) for outgoing
waves,

- the functions F−(u, v) and F ′−(u, v) = −βF−(u, v) for incoming
waves.

Then, on the grating surface we write the continuity of the sum for
all m-th orders of G+

m(u, v) and G−
m(u, v) each respectively multiplied

by the arbitrary constants A+
m and A−m. These constants must be

adjusted to satisfy the boundary condition G(u, 0) = 0 for all u. In
matrix notation one writes:

[G+][A+] + [G−][A−] = 0 (114)

with:
[G±] = h[ä][α][F±]− (

[I] + h2[ä]2
)
[F ′±] (115)

and:
[F ′±] = ±[F±][β] (116)

We apply the same method for [A−] which is taken equal to unity
([A−] = [A(0)−] = [I]).

Since [F±] and [F ′±] are known to second order in powers of
h (103) and (116), [G±] and [A+] will be expanded to fourth order
in powers of h:

[A+] = [A(0)+] + h[A(1)+] + h2[A(2)+] + h3[A(3)+] + h4[A(4)] (117)

The coefficients of expansion of [A+] are calculated to fourth order in
powers of h. They are given in matrix form below:

[A(0)+] = −[G(0)+]−1
(
[G(0)−][A(0)−]

)
(118)

[A(1)+] = −[G(0)+]−1
(
[G(1)−][A(0)−] + [G(1)+][A(0)+]

)
(119)

[A(2)+] = −[G(0)+]−1
(
[G(2)−][A(0)−] + [G(2)+][A(0)+]

+[G(1)+][A(1)+]
)

(120)

[A(3)+] = −[G(0)+]−1
(
[G(3)−][A(0)−] + [G(3)+][A(0)+]

+[G(2)+][A(1)+] + [G(1)+][A(2)+]
)

(121)

[A(4)+] = −[G(0)+]−1
(
[G(4)−][A(0)−] + [G(4)+][A(0)+]

+[G(3)+][A(1)+]+[G(2)+][A(2)+]+[G(1)+][A(3)+]
)

(122)
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10. CALCULATION OF EFFICIENCY

It is interesting to define an efficiency P equal to the fraction of incident
energy which is transmitted in each diffracted wave. This energy is
obtained from the flow of Poynting vector through the unit surface
perpendicular to y-axis.

Then:
P = |E|2ρ+/β− ≈ |E|2β+/β−, (123)

limiting the expansion of ρ+ to the first-order of the perturbation
in order to compare our results in the same direction as curvilinear
coordinate method.

For TE polarization : [PTE ]=[A+][A+]∗
(
[β+][β−]−1

)
(124)

For TM polarization : [PTM ]=[A+][A+]∗
(
[β+][β−]−1

)
(125)

The values of PTE and PTM are calculated according to a fourth order
expansion in powers of h for each of them:

P = P (0) + hP (1) + h2P (2) + h3P (3) + h4P (4) (126)

The expansion terms are analytically known:

- For PTE , they are in matrix form:

[PTE ]=
{

[A(0)+][A(0)+]∗ + h
(
[A(1)+][A(0)+]∗ + [A(0)+][A(1)+]∗

)

+h2
(
[A(2)+][A(0)+]∗ + [A(1)+][A(1)+]∗ + [A(0)+][A(2)+]∗

)

+h3
(
[A(2)+][A(1)+]∗ + [A(1)+][A(2)+]∗

)

+h4
(
[A(2)+][A(2)+]∗

)} (
[β+][β−]−1

)
(127)

- For PTM , they are in matrix form:

[PTM ]=
{

[A(0)+][A(0)+]∗ + h
(
[A(1)+][A(0)+]∗ + [A(0)+][A(1)+]∗

)

+h2
(
[A(2)+][A(0)+]∗ + [A(1)+][A(1)+]∗ + [A(0)+][A(2)+]∗

)

+h3
(
[A(3)+][A(0)+]∗ + [A(2)+][A(1)+]∗ + [A(1)+][A(2)+]∗

+[A(0)+][A(3)+]∗
)

+ h4
(
[A(4)+][A(0)+]∗ + [A(3)+][A(1)+]∗

+[A(2)+][A(2)+]∗ + [A(1)+][A(3)+]∗ + [A(0)+][A(4)+]∗
)}

(
[β+][β−]−1

)
(128)
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11. VALIDITY CONDITIONS OF THE PERTURBATION
METHOD

11.1. Theoretic Validity

The perturbation method applies to case where the first order
perturbation hM(1) and second order perturbation h2M(2) are
very small with respect to M(0). Then the result given by
Equation (98) suggests that a suitable definition of “smallness” for the
perturbations hM(1) and h2M(2) is that the relevant matrix elements
|〈ψ(0)

i |hM(1)|ψ(0)
m 〉| and |〈ψ(0)

i |h2M(2)|ψ(0)
m 〉| should be small compared

to the difference of corresponding eigenvalues r
(0)
m − r

(0)
i .

From (98) and (99) we can see that the perturbed wave vector
|ψm〉 can be viewed as a linear combination of unperturbed eigenvector
|ψ(0)

i 〉; the coefficients a
(1)
mi and a

(2)
mi tell us “how much” of the ith

unperturbed vectors contribute to the mth perturbed vector. We say
that the unperturbed vector |ψ(0)

i 〉 for a particular i 6= m mix with
|ψ(0)

m 〉 to form the perturbed vector |ψm〉.
Since a

(1)
mi and a

(2)
mi are inversely proportional to eigenvalues

separation between the mth and ith unperturbed diffracted directions
we expect directions that are closest together in diffracted directions to
mix most strongly with |ψ(0)

m 〉. This fact provides a clue on how to avoid
calculating the set of terms in Equation (98) depending on the degree
of accuracy desired, we need only evaluate terms for the diffracted
directions closest in mth direction. It is important to note that if any
of these coefficients is large, then perturbation method might break
down and the problem probably must be handled in another way.

Finally, it is apparent from (98) that this result is restricted to
non-degenerate states only, for if some unperturbed vector, say |ψ(0)

i 〉,
is degenerate with |ψ(0)

m 〉, then r
(0)
m = r

(0)
i and the mth term in the

summation of Equation (98) is infinite. This situation would not occur
if 〈ψ(0)

i |hM(1)|ψ(0)
m 〉 or if 〈ψ(0)

i |h2M(2)|ψ(0)
m 〉 happened to be zero, but

such will not generally the case. Thus all degenerate states must be
treated differently.

Moreover, the Equation (97) indicates that the mth perturbed
eigenvalue rm associated to the mth diffracted direction is given by
the eigenvalue r

(0)
m of the corresponding unperturbed problem plus the

expectation values of the first order perturbation hM(1) and second
order perturbation h2M(2). These terms can be of either sign and thus
can raise or lower the value rm from the unperturbed value r

(0)
m .



Progress In Electromagnetics Research B, Vol. 34, 2011 305

11.2. Numerical Validity

The perturbation method is applied to a sinusoidal grating of infinite
conductivity. The calculation of efficiencies PTE and PTM is tried on
various values of parameters: incidence angle θ0, period d, wavelength
λ, groove depth hc with a suitable number of space-harmonic N
introducing evanescent waves and m-th real orders.

Especially, the values of d/λ and θ0 being fixed we study the
evolution of efficiencies PTE and PTM against parameter hc/λ when it
varies from 0 to 0.20 by steps of 0.04.

We have chosen two domains of study according to respective
values of d and λ:

- The first study is done into domain of electromagnetism waves
or resonant domain corresponding to d/λ near of value one, let
d/λ = 1.3.
The chosen values for angles are θ0 = 10◦ (three real orders),

θ0 = 30◦ (two real orders), θ0 = 22.62◦ very near of Littrow (two real
orders) and θ0 = 1◦ very near normal incidence (three real orders).

- The second study is done near physical optics domain
corresponding to d/λ large with respect to the value one, let
d/λ = 10.3.
The chosen values for angles are θ0 = 5◦ with the incident order

m = 0 (five real diffracted orders −2, −1, 0, 1, 2, far from evanescent
waves) and θ0 = 5◦ with the incident order m = 8, let θ8 = 59.7522◦
(five real diffracted orders, 5, 6, 7, 8, 9 or −3, −2, −1, 0, 1 by slipping
of numbers, close to evanescent waves). In fact, when the number of
eigenvalues is great, the calculation done for θ0 = 5◦ gives also the
results for all m-th incident orders such that sin θm = sin θ0 + mλ/d.

11.2.1. Comparison of Efficiencies

In order to appreciate the numerical results obtained from algebraic
expression of perturbation method we compare them with those
obtained through the rigorous numerical method with same values of
parameters. The curves representing the evolution of efficiencies PTE

and PTM against parameter hc/λ for the incident order m = 0 and the
diffracted order m = −1 are then drawn on Figure 2 for d/λ = 1.3 and
Figure 3 for d/λ = 10.3.

The comparison of numerical results obtained from two methods
on the one hand and the comparison of corresponding curves on
the other hand show that a good agreement is obtained up to a
maximum value of parameter hc/λ. This limit value defines the
smallest domain of variation of groove depth compared to wavelength
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(a) (b)

(c) (d)

Figure 2. Efficiencies PTE and PTM versus groove depth hc/λ for
diffracted order m = −1 and period d/λ = 1.3. Crosses correspond to
perturbation method and solid curve corresponds to numerical method
for TE polarization. Asterisks correspond to perturbation method and
dotted curve corresponds to numerical method for TM polarization.
Incidence angles (a) θ0 = 10◦, (b) θ0 = 30◦, (c) θ0 = 22.62◦ and (d)
θ0 = 1◦.

where the perturbation method must be applied. To this limit value
of parameter hc/λ we calculate the corresponding relative uncertainty
of efficiencies ∆PTE/PTE and ∆PTM/PTM between the two methods
for each TE and TM polarization:

∆P

P
=

∣∣P(perturbation) − P(numerical)

∣∣
P(numerical)

(129)

The Table 1 gives the limit value of parameter hc/λ and corresponding
uncertainties ∆PTE/PTE and ∆PTM/PTM for each set of parameters
and m-th incident and diffracted orders written in thick character.

11.2.2. Comments

The angle θ0 = 22.62◦ is very near degenerated point of 22.6198◦ that
correspond to Littrow mounting obtained when θ−1 = −θ0 = λ/2d.
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Table 1. Values of parameters d/λ, θ0, N used for calculations
efficiencies. Relative uncertainty on efficiencies PTE , PTM and on the
eigenvalue r−1 calculated for the limit value of hc/λ with incident and
diffracted orders written in thick character.

d/λ θ0
m-th

incident order
N

m-th

diffracted order

1.3 10◦ 0 3 −1, 0, 1

30◦ 0 3 −1, 0

22.62◦ 0 3 −1, 0

1◦ 0 3 −1, 0, 1

10.3 5◦ 0 13 −2, −1, 0, 1, 2

5◦ 8 13 −3, −2, −1, 0, 1

hc/λ ∆PT E
PT E

∆PT M
PT M

∆r−1

r
(0)
−1

-

≤ 0.16 ≤ 0.12 ≤ 0.03 ≤ 0.037 -

≤ 0.16 ≤ 0.08 ≤ 0.08 ≤ 0.037 -

≤ 0.16 ≤ 0.08 ≤ 0.08 ≤ 0.037 -

≤ 0.12 ≤ 0.08 ≤ 0.37 ≤ 0.021 -

≤ 0.12 ≤ 0.15 ≤ 0.17 ≤ 0.0004 -

≤ 0.16 ≤ 0.08 ≤ 0.08 ≤ 0.0006 -

In this case, the deviation is minimum for order m = −1. Thus for
an angle difference ∆θ = 2 × 10−4 degree it appears an eigenvalue
difference ∆β−1 = β−1

−1 − β−1
0 = 2 × 10−6 which is sufficient for

perturbation method to give results in agreement with numerical
method (Figure 2(c)). This situation only occurs twice with matrix
elements of M(1), 〈ψ−1|hM(1)|ψ0〉 and 〈ψ0|hM(1)|ψ−1〉, and twice with
matrix elements of M(2), 〈ψ−1|h2M(2)|ψ0〉 and 〈ψ0|h2M(2)|ψ−1〉, which
are small.

The angle θ0 = 1◦ has been chosen near another degenerated point,
the normal incidence. In fact, into normal incidence θ0 = 0◦ that is
α0 = 0, real and imaginary eigenvalues are twofold (±β−1

3 = ±β−1
−3 ,

±β−1
2 = ±β−1

−2 , ±β−1
1 = ±β−1

−1) except β0. In this case the perturbation
method established for undegenerated states does not agree. However,
near of normal incidence θ0 = 1◦ (Figure 2(d)), the perturbation
method gives results into good agreement with numerical method
with hc/λ ≤ 0.12, smaller value than for other cases (Figures 2(a),
(b), (c), let angles θ0 = 10◦, 30◦, 22.62◦). The precision is better
for TE polarization (∆PTE/PTE ≤ 0.08) than for TM polarization
(∆PTM/PTM ≤ 0.37).
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(a) (b)

Figure 3. Efficiencies PTE and PTM versus groove depth hc/λ for
diffracted order m = −1 and period d/λ = 10.3. Crosses correspond to
perturbation method and solid curve corresponds to numerical method
for TE polarization. Asterisks correspond to perturbation method and
dotted curve corresponds to numerical method for TM polarization.
Incidence angles (a) θ0 = 5◦ and (b) θ0 = 59.75◦.

For d/λ = 10.3, period large with respect to wavelength, the
two cases considered with incident angles θ0 = 5◦ and θ8 = 59.7522◦
give different results for limit value of hc/λ and ∆P/P (Figure 3 and
Table 1). In fact, the results are better with θ8 than θ0. We can
explain this difference with regard to the influence of evanescent waves
which is more important in second case (Figure 3(b)) than in first
case (Figure 3(a)). Furthermore, the Figure 3 shows that values of
efficiencies PTE and PTM are similar for each of them perturbation
method and numerical method. Indeed, d/λ = 10.3 is near of physical
optics domain where polarization effects disappear.

The Table 1 shows that the two chosen periods d/λ = 1.3 and
d/λ = 10.3 lead to same limit value hc/λ ≤ 0.16 for example with the
same uncertainties on efficiencies ∆P/P ≤ 0.08 deduced of limit good
agreement of efficiencies between results obtained from perturbation
method and rigorous numerical method. Now, it is from eigenfunctions
that efficiencies are calculated. Consequently, on condition that
d/λ > 1 it may be seen that parameter d/λ has a weak effect on
eigenfunctions.

11.2.3. Comparison of Eigenvalues

According to (97), in our problem of a sinusoidal surface, we can
observe that the eigenvalue rm(= r±m) is independent of magnitude
h because the matrix M(1) has its diagonal terms equal to zero. The
only dependence is in h2. Therefore, the eigenvalues are independent
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of sign of h when we stop the calculation to the first order in h2 with
M(2) operator (97).

The perturbation method leads to rm 6= r
(0)
m with r

(0)
m =

β−1
m . Then, the rigorous numerical method gives rm = r

(0)
m in

here considered cases for real eigenvalues. Consequently, to compare
eigenvalues obtained with perturbation method and numerical method
it is sufficient to compare rm and r

(0)
m . Thus, for the same set of

parameters and same m-th incident directions (m = 0 and m = 8)
and diffracted direction m = −1 as indicated in Table 1, we calculate
relative uncertainties ∆r−1/r

(0)
−1 = (r−1− r

(0)
−1)/r

(0)
−1 for the limit values

of hc/λ given in Table 1. The obtained values for ∆r−1/r
(0)
−1 are given

in Table 1.
We note that uncertainties ∆r−1/r

(0)
−1 vary as (hc/λ)2 for d/λ fixed

and as (λ/d)2 for hc/λ fixed. These results are in agreement with the
considered corrective term due to h2M(2) when we stop the calculation
to the first order in h2 (97) where h is of the form h = 2π hc

λ × λ
d .

11.3. Results for Domain of Validity

To point of view of efficiencies, it is the parameter hc/λ which defines
the domain of validity of perturbation method, let 0 < hc/λ ≤ 0.16,
with a period d satisfying d/λ = 1.3 (domain of electromagnetic waves)
or d/λ = 10.3 (domain near to physical optics waves)

However the accuracy on eigenvalues is better for d/λ = 10.3 than
for d/λ = 1.3. Here the calculation of efficiencies does not depend on
of accuracy on eigenvalues. Generally the value of parameter d/λ is
fixed by the choice of number diffracted orders.

The perturbation method presents some advantage with regard
to the numerical method. It is principally an analytic method.
Consequently, at each step of calculation it is possible to follow the
influence of parameters. Furthermore, the last results of this work
that is the efficiencies are also presented under analytic form.

12. CONCLUSION

The present work has been devoted to perturbation method relating
to propagative and evanescent waves for undegenerated states in case
of diffraction of electromagnetic waves by periodic surface. The
propagation equation is a second order differential equation with first
order term.
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In the case of a surface with groove depth small compared to
its period we have written the propagation equation in a translation
coordinate system and we have associated operators to the different
coefficients of the equation. This equation appears in matrix form
according to an expansion in series of powers of h to second order.
The small dimensionless parameter h, leads us to use the perturbation
method to find an approximate solution of the eigenvalue equation.
Unlike the quantum physics, our operator is not a hermitian operator.
Consequently, there are also imaginary eigenvalues, then evanescent
waves. For that, each of steps of calculation has been related in detail.

These analytical solutions, eigenvalues and eigenfunctions, are
obtained from known eigensolutions of the unperturbed problem that
is a plane surface. Furthermore, the efficiencies are expressed as a
function of geometrical parameters.

From comparison of efficiencies deduced from perturbation
method with those obtained with rigorous numerical method we have
defined a validity domain of perturbation method. This domain relates
to the groove depth hc with regard to wave length λ. We obtain
0 < hc/λ ≤ 0.16 with a period d satisfying d/λ > 1 (resonant domain)
or d/λ À 1 (physics optics domain). Although the variation domain
of hc/λ may appear narrow, the perturbation method presents some
interests. For instance it shows in a simple way that eigenvalues do
not depend h parameter. Therefore up to the first order, eigenvalues
are the same for surfaces y = +ha(x) and y = −ha(x). Furthermore it
allows understand how the unperturbed vector |ψ(0)

i 〉 for a particular
i 6= m mixes with |ψ(0)

m 〉 to form the perturbed vector |ψm〉.
However, for exact values of incidence angle corresponding to

normal incidence and Littrow mounting it will be necessary to develop
the perturbation method for degenerated states. Indeed for these
both cases, two different physical directions correspond to the same
eigenvalue.

Our future work will be the generalization of the method.
For example, starting from known numerical solutions associated to
particular surface (h 6= 0), we will derive approximate solutions when
this surface undergoes a periodic deformation.
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