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Abstract—A numerical solution for the dipole antenna with a bi-
isotropic object in the vicinity is developed. This solution is based
on the combined surface integral equation which could deal with
homogeneous situation. A fields splitting scheme is deployed to
circumvent the difficulties caused by the complexity of constitutive
relationships of bi-isotropic materials. With the aids of MoM, a
FORTRAN program can be developed. At the end of this paper, some
numerical results are presented.

1. INTRODUCTION

In recent years, novel materials have attracted more and more
interests. The main reason is the conflict between the ever-growing
demand for wireless usage and limited frequency spectrum resources.
Many solutions have been proposed to solve this problem. Among
them is bi-isotropic material, a novel material which has a more
well-known sub-class, chiral material. Chiral material has found
many applications in different areas, such as physics, chemistry,
pharmaceutical etc. However, the more general one, bi-isotropic
material, has a shorter history of research and has not found so many
applications. Nonetheless, with the growing interests, more and more
efforts have been put into the research of bi-isotropic material, and new
applications keep appearing, such as absorption material [1] and used
with microstrip antennas [2]. In such circumstances, a well-developed
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numerical solution would be very helpful for research and application
development. In 1970’s, solutions for scattering from a chiral body
have been developed [3, 4]. With the evolution of computer technology,
numerical methods have become affordable. With the accuracy and
convenience that they can provide, numerical solutions running on
computers are developed in numerous amount for different scattering
problems, including those involving bi-isotropic materials [5, 6].

The numerical techniques used to develop these solutions can
be categorized into two kinds. One is integral equation method,
and the other is finite difference method, both in time or frequency
domain. Among these numerical methods, the Method of Moments
(MoM) is one major numerical method adopted in the electromagnetic
community. Because of good accuracy that it can provide, it has been
used to develop many numerical solutions in various scenarios. We
can find the MoM based numerical solutions for conducting bodies of
revolution [7], dielectric three-dimensional (3-D) bodies [8], and 3-D
bodies of revolution [9, 10]. Urged by the requirement of numerical
solution for unconventional materials, the solution for electromagnetic
scattering from 3-D chiral bodies is developed by Worasawate et al.
[11], from 3-D inhomogeneous chiral bodies by Hasanovic et al. [12],
and from a chiral body of revolution by Yuccer et al. [13]. The solution
for bi-isotropic bodies is developed by Wang et al. [14], and that for
bi-isotropic bodies of revolution is developed by Bao et al. [15]. All the
numerical solutions mentioned here involve only scatterers. However,
bi-isotropic scatterers appear in conjunction with antennas in many
instances, such as in the research of electromagnetic compatibility,
especially when investigating the SARs. A numerical solution [16]
developed for a similar case via the FDTD method can be found.
However, using a FDTD method could suffer from longer computation
time or the difficulty of convergence. Besides, no publication based on
MoM can be found, and it is our aim to develop a numerical solution
for such a problem via surface integral equation (SIE) in conjunction
with MoM.

Because of the unique constitutive relationship that bi-isotropic
materials have, electric and magnetic fields are coupled with each other,
and the integral equation generated would be very complex if using
this constitutive relationship directly. To circumvent this problem,
a scheme of fields splitting is employed [17]. After performing the
fields splitting, the Maxwell’s equations associated with the fields in
bi-isotropic body can be replaced with two sets of Maxwell’s equations
with propagation in free space. After that, a group of equations will be
established by enforcing the boundary condition on the surface of both
dipole antenna and bi-isotropic body. Instead of excited with incident
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fields, the excitation is located on the dipole antenna. The regular
matrix equation is expanded to include the effect of the presentation
of dipole antenna. With the feeding usually located at the center of
the dipole antenna, the total tangential electric field would vanish on
its surface. Unlike the equations for bi-isotropic body, we do not need
a combined field integral equation to obtain the solution. The electric
field integral equation (EFIE) is enough. The finally resulted matrix
equations will be solved numerically with MoM, and the currents will
be determined. Then, we can obtain the interested parameters such as
RCS, etc.

2. THEORY AND FORMULAE

A dipole antenna and a bi-isotropic body are placed in free space,
as shown in Figure 1. The bi-isotropic is characterized by relative
permittivity εr, relative permeability µr, relative chiral parameter κr

and relative Tellegen parameter χr. The constitutive relationship of
bi-isotropic material can be written in terms of these four parameters

D = εrε0E + (χr − jκr)
√

µ0µrε0εrH (1)
B = µrµ0H + (χr + jκr)

√
µ0µrε0εrE (2)

Without losing generality, the dipole antenna is placed along z-axis,
and it is excited at the center.

The boundary condition employed here is that the tangential
component of fields on both sides of the boundary surface should be
continuous. For the dipole antenna, there are no fields inside it, and the
incident field should be an impressed field, so the boundary condition
will be rewritten as

Einpressed
∣∣∣
tan

+ Es|tan = 0 (on surface of antenna) (3)

Figure 1. The dipole antenna and bi-isotropic object.
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And for bi-isotropic object, there is no impressed field, and the
boundary condition is

Es|tan = Ed
∣∣∣
tan

(on surface of BI body) (4)

Hs|tan = Hd
∣∣∣
tan

(on surface of BI body) (5)

It should be noticed that the scattering fields consist of two parts, one
from dipole antenna and the other from bi-isotropic objects. They are
denoted as Es

A and Es
B, Hs

B, respectively.
The scattering fields can be linked to the surface currents via the

Green’s function.

Es(J,M) = −L(J)−K(M) (6)
Hs(J,M) = K(J)− L(M)/η2

0 (7)

The details of the integro-differential operators L and K can be found
in [15]. As mentioned above, the fields inside the bi-isotropic object
would be very difficult to handle. This problem is solved by introducing
the fields splitting scheme [17]. In this scheme, the fields inside the bi-
isotropic materials are divided into two elliptically polarized uncoupled
groups, denoted as “plus” group, “E+, H+”, and “minus” group,
“E−, H−”. Each group fulfills Maxwell’s equation with corresponding
parameters.

E± (J±,M±) = −L±(J±)−K±(M±) (8)

H±(J±,M±) = K±(J±)− 1
η2±

L±(M±) (9)

The operators L± and K± here are the same with L and K except
that ε, µ and k are replaced by ε+(ε−), µ+(µ−), and k+(k−). And
the relations between these two sets of parameters can also be found
in [15], so are the relations between J, M and J±, M±. With these
manipulations, (4) and (5) could be rewritten as

(Es
A (JA) + Es

B (JB,MB))|tan

=
(
Ed

+ (JB,MB) + Ed
− (JB,MB)

)∣∣∣
tan

(on surface of BI body) (10)

(Hs
A (JA) + Hs

B (JB,MB))|tan

=
(
Hd

+ (JB,MB) + Hd
− (JB,MB)

)∣∣∣
tan

(on surface of BI body) (11)

Es
A and Hs

A represent the scattering fields from antenna while
Es

B and Hs
B represent the scattering fields from bi-isotropic object.

Equation (3) is rewritten here exhibiting the dependencies on the
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currents:

Einpressed
∣∣∣
tan

=−(Es
A(JA)+Es

B(JB,MB))|tan (on surface of antenna)

(12)
It can be noticed that the only unknowns in (10)–(12) are the surface
currents JA, JB, and MB. The subscripts A and B indicate that the
currents are on the antenna or on the bi-isotropic object.

3. NUMERICAL PROCESSING

In order to solve Equations (10)–(12) and determine surface currents,
we need to transform the Equations (10)–(12) into numerical form
and solve them with MoM [18]. The discretization begins with the
expansion of surface currents. The triangulated patch basis function
is adopted to expand the electric and magnetic surface currents on
bi-isotropic object.

JB =
∑

m
amfm (r) (13)

MB =
∑

B
bmfm (r) (14)

f is the mentioned triangulated patch basis function which is the well-
known RWG function as detailed in [19]

fm (r) =





lm
2A+

m
ρ+

m, r in T+
m

lm
2A−m

ρ−m, r in T−m
0, otherwise

(15)

The discretization of the electric surface current on the dipole antenna
is quite simple. We approximate the dipole antenna with a cylinder,
on which the current is concentrated on the axis. Then, the axis is
divided into N segments, and the current is represented in terms of
basis function. The expansion is shown in Figure 2, which is rotated
90◦ to save the space.

JA =
∑

n
cnJn (16)

where
Jn = ẑfn (z) (17)

The basis function used in both expansions is

fi(t) =
{

1− |t− ti| , |t− ti| ≤ 1
0 |t− ti| > 1 (18)

here ti is the ith point on the axis of dipole antenna; t is the normalized
arc parameter along the dipole antenna; ẑ is the unit vector in z-
direction.
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Figure 2. The expansion of current on dipole antenna.

Substituting (13), (14) and (16) into (10)–(12), and testing
them by applying Gelarkin method, a set of matrix equation can be
generated.



[
ZJJ

mm

] [
ZJM

mm

] [
ZJA

mn

]
[
ZMJ

mm

] [
ZMM

mm

] [
ZMA

mm

]
[
ZAJ

nm

] [
ZAM

nm

] [
ZAA

nn

]







[am]
[bm]
[cn]


 =




[0]
[0][

V impress
]


 (19)

Matrix [Z] is the impedance matrix, which requires most of the storage
resources and computing time. [ [am] [bm] [cn] ]T is the unknown
matrix which is to be found out by solving this matrix equation. And
the matrix on the right hand side of the equation is the excitation
matrix, which, in this case, is the voltage excitation applied to the
dipole antenna. The details of derivation can be found in [15, 20].

4. NUMERICAL RESULTS

Some examples are demonstrated in this section to validate the
developed solution. In this example, there is a bi-isotropic sphere in
the vicinity of a dipole antenna. The length of the dipole antenna
is 0.5λ0, and the radius of the bi-isotropic sphere is 0.25λ0. The
distance between the middle point of the dipole antenna and the center
of bi-isotropic sphere is 0.26λ0 with a relative permittivity εr = 4
and relative permeability µr = 1. The center frequency used here is
300MHz, corresponding to λ0 = 1 m. The antenna is divided into
N = 49 segments, and the number of the triangle patches used on the
surface of bi-isotropic sphere is 849. By running the program written
in FORTRAN, the numerical data were generated.

The S11 of the dipole is shown in Figure 3. We can see the trend
that the resonance shifts upwards. And the difference is very significant
when the sphere becomes a bi-isotropic.

The current distributions on the dipole antenna can be found in
Figure 4. The trend mention above is found again in this figure.

In the second example, the center frequency is still 300 MHz, but
the length of the antenna is changed to 1λ0, and so is the diameter of
the bi-isotropic sphere. With other parameters unmodified, one of the
far fields is shown in Figure 5.



Progress In Electromagnetics Research Letters, Vol. 25, 2011 181

Figure 3. The S11 of the dipole antenna.

Figure 4. Current distribution of dipole antenna.

Figure 5. The θ-component electric field on the φ = 90 plane. The
chiral parameter of the sphere is varying from 0 to 0.7, while Tellegen
parameter chi = 0.3.
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5. CONCLUSION

In this paper, a numerical solution for a dipole antenna with a bi-
isotropic object in the vicinity is developed. This solution is based on
the previous research on chiral and bi-isotropic materials. However, it
extends the numerical solution to deal with the case that one object
is radiating while the other is scattering. A fields splitting scheme
is deployed to circumvent the difficulties caused by the complexity of
constitutive relationships of bi-isotropic material. With the aids of
MoM, numerical results are generated. Future work could implement
the volume integral equation to the bi-isotropic part, resulting in
the so called volume-surface integral equation (VSIE), which has the
capability of solving inhomogeneous bi-isotropic objects.
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