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Abstract—A convergence study of a non-standard Schwarz domain
decomposition method for finite element mesh truncation in
electromagnetics is carried out. The original infinite domain is
divided into two overlapping domains. The interior finite domain is
modeled by finite elements and the exterior infinite domain by an
integral equation representation of the field. A numerical study of
the spectrum of the iteration matrix for non-convex mesh truncation
boundaries is performed. The projection of the error between two
consecutive iterations onto the eigenvector space of the iteration matrix
is performed. The numerical results explain the observed convergence
behavior of the Schwarz iterations.

1. INTRODUCTION

In this paper, a convergence study of a non-standard Schwarz
domain decomposition method for finite element mesh truncation in
electromagnetics is presented. The method is named Finite Element-
Iterative Integral Equation Evaluation (FE-IIEE). The original infinite
domain is divided into two overlapping domains. The term “non-
standard” refers to the fact that each domain is analyzed using a
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different technique. The interior finite domain is modeled by the
Finite Element Method (FEM) [1–4] using a Cauchy (Robin) type of
boundary condition for the mesh truncation boundary. The exterior
infinite domain is modeled by an integral equation representation of
the field [5–8]. According to Schwarz theory, the solution is obtained
through an iterative process in which the radiation boundary condition
on the mesh truncation boundary is updated.

The Schwarz methodology object of the paper has been applied
successfully by different authors (including the ones of this paper) to
radiation and scattering problems in two dimensions (2D) and three
dimensions (3D) of different forms; eg., hybridized or not with high
frequency techniques (see [9–11], and the references therein) using non-
conformal coupling [12], together with p-adaptivity [13], and within
multi-region iterative strategies [14–16].

A previous theoretical study of the convergence of the mentioned
Schwarz methodology for scattering problems in 2D is found in [17]. A
theoretical condition to assure the convergence of the method for the
case of a circular mesh truncation boundary is obtained: the truncation
boundary must be placed at a distance greater than a minimum one
from the scatter (typically very close from the surface of the scatter).
Moreover, as the overlapping between the two domains is larger, faster
rates of convergence are found. However, the number of unknowns
increase with the FEM domain. This suggests a compromise in the
placement of the truncation boundary if computing time is a concern.
Similar conclusions were obtained for the 3D case in [12]. The authors
have observed the same type of behavior for a wide variety of problems
in 2D and 3D making use of different convex truncation boundaries.
However, problems with non-convex boundaries (useful for scatters
with reentrant corners in order to minimize the number of unknowns)
does not follow the convergence behavior described above. In this
paper, the issue of the convergence of the method for non-convex
truncation boundaries is addressed. Specifically, this issue is illustrated
through the example of the scattering of a plane wave inciding on
a metallic open cavity in which the truncation boundary is chosen
conformal to the cavity. It is worth noting that some preliminary
results were presented in a conference paper, [18]. In the present full
paper, further numerical results are presented and more importantly
detailed comments about the results and the pertinent conclusions are
given.

The rest of the paper is organized as follows: Section 2 describes
briefly the iterative FEM methodology and how the convergence
analysis is performed. Numerical results are provided in Section 3.
Thereafter, we remark on the main conclusions.
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Figure 1. Domain decomposition of the open region problem.

2. ITERATIVE FEM METHODOLOGY FE-IIEE

Figure 1 depicts a typical problem setup. The original infinite domain
is divided into two overlapping domains: a FEM domain (ΩFEM)
bounded by the surface S and the infinite domain exterior to the
auxiliary boundary S′ (ΩEXT). Thus, the overlapping region is limited
by S′ and S. For simplicity, the region exterior to S is assumed to be
a homogeneous medium. The boundary S may be arbitrarily shaped
but typically it is selected to be conformal to S′. Distance from S′ to
S is usually small, typically in the range of 0.05λ to 0.2λ. Thus, the
FEM domain can be truncated very close to the sources of the problem
reducing the number of unknowns of the problem.

2.1. Formulation

An algebraic system of equations characterizing electromagnetically
ΩFEM is obtained by using FEM. Specifically, the implementation is
based on the double curl vector wave equation in terms of the electric
(E) or magnetic (H) field [2]:

∇×
(

¯̄fr
−1 ∇×V

)
− k2

0
¯̄grV = q in Ω (1)

where k0 is the wavenumber in vacuum and q = −jk0h0O−∇×( ¯̄f−1
r L)

is the source term due to the presence of impressed electric and/or
magnetic currents within Ω. See Table 1 for the different magnitudes
involved in the E and H formulations.

Boundary conditions of Perfect Electric Conductor (PEC) and
Perfect Magnetic Conductor (PMC), i.e., homogeneous Dirichlet or
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Table 1. Formulation magnitudes and parameters.

V ¯̄fr ¯̄gr h O L ΓD ΓN

Form. E E ¯̄µr ¯̄εr η J M ΓPEC ΓPMC

Form. H H ¯̄εr ¯̄µr
1
η M −J ΓPMC ΓPEC

Neumann type boundary conditions on ΓD and ΓN may be used
according to Table 1. The formulation also handles the presence of
waveguide ports by means of a multi-mode boundary condition, but
the details are omitted as they are not relevant to the objectives of the
paper.

A local type boundary condition is used on S, specifically the
Cauchy boundary condition:

n̂×
(

1
fr

∇×V
)

+ j
k

fr
n̂× n̂×V = Ψ at ΓS (2)

where n̂ is the outward unit vector normal to S and k is the
wavenumber of the medium exterior to S′, assumed to be homogeneous.

Thus, the variational formulation of the problem is:
Find V ∈ W such that

c(F,V) = l(F), ∀F ∈ W (3)

where the bilinear and linear forms, c(F,V) and l(F), are defined as
follows

c(F,V) =
ˆ

Ω
(∇× F) ·

(
¯̄fr
−1∇×V

)
dΩ− k2

0

ˆ

Ω
F · ¯̄grVdΩ

+j
k

fr

ˆ

ΓS

(n̂× F) · (n̂×V)dΓ (4)

l(F) =
ˆ

Ω
F · qdΩ +

ˆ

ΓS

F ·ΨdΓ

with
W := {A ∈ H(curl, Ω), n̂×A = 0 on ΓD} (5)

and H(curl) being the space of square integrable vector functions with
square integrable curl.

The discretization of the above variational formulation using the
second-order tetrahedra described in [2, 19] leads to a sparse system of
equations that may be expressed in partitioned form as follows

[
KII KIS

KSI KSS

]



{
φ

(i)
I

}

{
φ

(i)
S

}


 =

{ {bI}{
b
(i)
Ψ

}
}

(6)
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where the superindex i denotes the value of the variables at the i-th
iteration of the iterative process.

The sub-indexes S and I refer to the degrees of freedom g
associated to S (i.e., associated to nodes on ΓS) and those associated
to nodes in the interior of S, respectively. Thus, the right hand side
term {bI} corresponds to the discretization of the first term of l(F)
in (4). The term {bΨ} corresponds to the discretization of the second
term of l(F) in (4).

The iterative process is started by fixing the initial value of
function Ψ, which is denoted in matrix form as {Ψ(0)}. Typically,
{Ψ(0)} is fixed to zero for radiation problems and to {Ψinc} for
scattering problems; {Ψinc} being the result of introducing the incident
field into expression (2). Then, the FEM system (6) is solved. A new
value of {Ψ}, in general {Ψ(i+1)}, is obtained by using the integral
equation representation of the field in the infinite exterior domain.
Thus, FEM fields on S′ are calculated in order to compute the electric
and magnetic current densities Jeq and Meq of the equivalent exterior
problem. The field VIE-FEM, and its curl ∇×VIE-FEM, over S radiated
by Jeq and Meq are computed using the integral expressions:

VIE-FEM=
‹

S′
(Leq×∇G)dS′−jkh

‹

S′

(
Oeq

(
G+

1
k2

∇∇G

))
dS′ (7)

∇×VIE-FEM=jkh

‹

S′
(Oeq×∇G)dS′−

‹

S′

(
Leq

(
k2G+∇∇G

))
dS′(8)

where h stands for the immittance of the homogenous medium (see
Table 1), and G denotes the Green’s function for a homogeneous
medium, G ≡ G(r, r′) = (1/(4π) exp[−jk(r − r′)]/(4π|r − r′|), which
typically is the free space.

Finally, function {Ψ(i+1)} is computed by introducing the values
of the fields V (r ∈ ΓS) and ∇×V (r ∈ ΓS) in (2).

The just described procedure to update {bΨ} may be compactly
expressed in matrix form as follows:

{
b
(i+1)
Ψ

}
= [C]

{
Ψ(i+1)

}
= [C]

{
Ψ(0)

}
+ [C] [ MI MS ]





{
φ

(i)
I

}

{
φ

(i)
S

}


 (9)

where [C] is a rectangular matrix that weighs the residual vector with
the interpolating functions on S (linear form of (4)) and [M ] represents
the integral operator given by the Green function (expressions (7)
and (8)) together with action of combining the field and its curl into (2).

More details of the formulation and its implementation are given
in [9, 10]. Work referenced in [9] is in the context of 2D problems
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while [10] is for 3D problems. It is worth noting that the convergence
study of the paper is performed in the context of 3D problems.
However, the conclusions are valid for 2D and 3D applications.

2.2. Convergence Analysis

As a summary, the iterative FEM algorithm follows the algorithm
given by expressions and (6), (9). The process stops when a certain
error criterion based on the difference between {Ψ(i+1)} and {Ψ(i)} is
satisfied. Substituting in (9) the degrees of freedom from (6):

{
b
(i+1)
Ψ

}
= [C]{Ψ(0)}+ [B]

{ {bI}{
b
(i)
Ψ

}
}

= {w}+ [BΨ]
{

b
(i)
Ψ

}
(10)

where {w} = [C]{Ψ(0)} + [BI ]{bI} is a vector that remains constant
along all the iterations. Matrix [B] has been defined as

[B] = [C] [ MI MS ]
[

KII KIS

KSI KSS

]−1

= [ BI BΨ] (11)

Spectrum of [BΨ] determines the convergence of the iterative method
and corresponds to the iteration matrix. According with the theory,
the method converges if, and only if, the spectral radius of the
iteration matrix, defined as the maximum absolute value of the matrix
eigenvalues, is smaller than one. {b(0)

Ψ } corresponds to the initial
iteration and can be written as the sum of two components: the
true solution, {bΨt}, and the error one, {b(0)

Ψe
}, that is, {b(0)

Ψ } =

{bΨt}+{b(0)
Ψe
}. On the other hand, the degrees of freedom in the initial

iteration can be written as:
{

φ(0)
}

= [K]−1

{ {bI}
{bΨt}

}
+ [K]−1

{
0{

b
(0)
Ψe

}
}

= {φt}+
{

φ(0)
e

}
(12)

where {φt} gives the true degrees of freedom and {φ(0)
e } gives the error

in the initial iteration of the estimation of the degrees of freedom. Once
the degrees of freedom are obtained, {b(1)

Ψ }, corresponding to the first
iteration, can be written as

{
b
(1)
Ψ

}
= [C]

{
Ψ(0)

}
+ [C][M ]{φt}

︸ ︷︷ ︸
{bΨt}

+ [C][M ]
{

φ(0)
e

}

︸ ︷︷ ︸{
b
(1)
Ψe

}
(13)
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where {b(1)
Ψe
} is the error of {bΨ} for the first iteration, which can be

written as
{

b
(1)
Ψe

}
= [C][M ]

{
φ(0)

e

}
= [C][M ][K]−1

{
0{

b
(0)
Ψe

}
}

= [BΨ]
{

b
(0)
Ψe

}
(14)

The following expression can be found after m iterations
{

b
(m)
Ψe

}
= [BΨ]m

{
b
(0)
Ψe

}
(15)

Therefore, the proposed methodology converges to the true
solution, for any initial value {Ψ(0)}, if and only if, the spectral radius
of the iteration matrix [BΨ] is less than one. Otherwise, the method
may diverge.

Using (10), the residual error at the iterations i + 1 and i can be
written in terms of the previous iteration, respectively:

{
b
(i+1)
Ψ

}
= {w}+ [BΨ]

{
b
(i)
Ψ

}
(16a)

{
b
(i)
Ψ

}
= {w}+ [BΨ]

{
b
(i−1)
Ψ

}
(16b)

The following relation is found subtracting the Equations (16a)
and (16b):

{
b
(i+1)
Ψ

}
−

{
b
(i)
Ψ

}
= [BΨ]

({
b
(i)
Ψ

}
−

{
b
(i−1)
Ψ

})
(17)

{
z(i+1)

}
= [BΨ]

{
z(i)

}
(18)

where {z(i)} = {b(i)
Ψ }−{b(i−1)

Ψ } = {b(i)
Ψe
}−{b(i−1)

Ψe
} represents the change

of the residual error between two consecutive iterations and, therefore,
the change of the error in {bΨ}. The change of the residual error in
the first iteration can be projected onto the eigenvalues space of the

iteration matrix [BΨ] as {z(1)} =
n∑

j=1
cj{vj} where n is the dimension of

the iteration matrix, {vj} is the j-th eigenvector and cj its associated
coefficient. In matrix notation, {z(1)} can be expressed as:

{
z(1)

}
= [V ]{c} (19)

where the columns of [V ] are the eigenvectors and {c} is a vector that
contains the mentioned coefficients. The change of the residual error
in the second iteration can be written as:{

z(2)
}

= [BΨ]
{

z(1)
}

= [BΨ][V ]{c} = [V ]{c′} (20)
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where the component j of {c′} is c′j = cjλj , and λj is the jth eigenvalue
of the iteration matrix [BΨ]. Recursively, the projection of the ith
change of the residual error between two consecutive iterations can be

written as {z(i)} =
n∑

j=1
cjλ

(i−1)
j {vj}.

3. NUMERICAL RESULTS

Let us consider a metallic scatterer consisting of a cavity type structure
open on one of their sides. The dimensions of the interior cavity are
0.8λ×0.8λ×1λ with 0.1λ thick walls. The analysis of the scattering of
a plane wave incident on that metallic open cavity is performed using
the FE-IIEE methodology. Two types of mesh truncation strategies are
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Figure 2. Mesh truncation for cavity problem (convex case). (a) Top
view. (b) Side view.
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considered. The first one uses a box-type mesh truncation boundary S
for the problem (see Figure 2). Thus, a convex type of mesh truncation
is applied. The second type of mesh truncation is the one shown in
Figure 3, i.e., the exterior boundary S is chosen conformal to the cavity
walls. Thus, a non-convex type of mesh truncation is applied. Actually,
a strong re-entrant region is present for the truncation boundary
in this case. The former type of mesh truncation is the one that
should be chosen for the structure under considerarion in order to
avoid convergence problems. The latter type of mesh truncation is
deliberately used here in order to conclude about the convergence
of FE-IIEE with non-convex boundaries and large re-entrant regions.
Notice that in both cases the auxiliary boundary S′ is chosen conformal
to the object, i.e., S′ is conformal to S with the exception of the top
cover for the convex case (see Figure 2(b)). However, the convex or
non-convex nature of surface S′ has no impact in the convergence of
the method.

In order to illustrate first the behavior of FE-IIEE with the usual
convex type truncation boundary, two set of results have been chosen.
The first results are shown in the plot of Figure 4. The plot represents
the convergence behavior (change of the residual error — normalized
— between two consecutive iterations) for different cases of mesh
truncation setup implying different S-S′ distances, i.e., different sizes
for the overlapping region between ΩFEM and ΩEXT (see Table 2(a)).
As expected, the larger the size of the overlapping region the better

Table 2. Cases of mesh truncation setup used in the paper. (a) Convex
type. (b) Non-convex type.

Truncation Boundary Min. distance S-S′

T1 1.1λ× 1.1λ× 1.2λ 0.05λ

T2 1.2λ× 1.2λ× 1.3λ 0.1λ

T3 1.3λ× 1.3λ× 1.4λ 0.15λ

T4 1.4λ× 1.4λ× 1.5λ 0.2λ

T5 1.5λ× 1.5λ× 1.6λ 0.25λ

T6 1.6λ× 1.6λ× 1.7λ 0.3λ

(a)

Distance S-S′
A 0.1λ
B 0.15λ

(b)
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Figure 5. Convergence for different angles of incidence with convex
mesh truncation setup.

the rate of convergence achieved. The result shown has been obtained
with a plane wave excitation from (θinc, φinc) = (0◦, 0◦). Very similar
results are obtained with other angles of incidence. In order to show
the latter, the convergence behavior for different angles of incidence
and a given case of mesh truncation setup (specifically, the case
labeled as T2) is shown in Figure 5. It is observed how the rate of
convergence is virtually independent of the angle of incidence when a
convex truncation boundary S is used.

The rest of results shown in the paper correspond to the non-
convex truncation boundary case. A number of different non-convex
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cases with different overlapping between ΩFEM and ΩEXT, i.e., distance
between S and S′ surfaces, have been analyzed. In the following, two
relevant cases (named as A and B in the following) are considered.
They correspond to 4S equal to 0.1λ and 0.15λ, respectively (see
Table 2(b)).

The convergence curves of these two cases are shown in Figures 6
and 7, respectively, where the change of the residual error (normalized),
between two consecutive iterations along the 50 first iterations, is
depicted. The structure is illuminated by a plane wave at incidence
angle (θinc, φinc). The first 5 eigenvalues for the two cases under study
are shown in Table 3. The eigenvalues are computed using the library
ARPACK [20], which is based on the so named Implicitly Restarted
Arnoldi Method (IRAM). The first observation is that the method
converges for the case A and diverges for B. This observation agrees
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Figure 6. Convergence for the case A. ∆S = 0.1λ.
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Table 3. Eigenvalues with greatest absolute value.

A B
1 0.9896 1.0234
2 0.8849 0.9215
3 0.8846 0.7767
4 0.8311 0.7750
5 0.8305 0.7656

with the spectral radius of the cases under consideration (see Table 3).
It is worth noting that an increment of the overlapping region for non-
convex truncation boundaries does not imply a faster convergence as
it is observed when a convex truncation boundary is used. Actually,
an increase of the overlapping region leads to the divergence of the
method in this example.

It can be also noticed that the rate of convergence depends on
the incidence angle of the plane wave that illuminates the cavity. The
rate of convergence is faster when the illumination is from θinc = 0◦
for the two cases. The rate slows down for grazing angles (close to
90◦). This is due to the fact that the multiple reflections between the
internal walls of the cavity are not well modelled by the Cauchy local
approximation imposed on the boundary S. These reflections produce
the excitation of a resonant field pattern inside the cavity, as it will be
shown later.

Another observation, obvious from the definition of the iteration
matrix from (11), is that the spectral radius of the iteration matrix
does not depend on the incidence angle. Moreover, it can be noticed
one or two lineal zones in each convergence curve with an associated
slope. The slope of the curve has a direct relation with the projection
of the change of the residual error, between two consecutive iterations,
onto a given eigenvector. The correspondence between the slopes in
the lineal zones of the convergence curves and one of the eigenvalues
of the iteration matrix is as follows:

λ = e
ln(|z(i)|/|z(j)|)

i−j (21)

where i > j. Thus, in the case A and incidence angle θinc = 0◦,
between the iterations j = 20 and i = 50, a value of λ = 0.87964 is
obtained using (21), that is close to the second and third eigenvalue
(see Table 3). For other incident angles, the last zone is lineal and
the slopes are practically parallel between them. For instance, for
(θinc, φinc) = (75◦, 0◦), and between j = 25 and i = 50 iterations, a
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Figure 8. Magnitude |Ez| in the interior of the cavity when the
problem is excited by the first eigenvector in the case A. Plane yz.

value of λ = 0.98752 is obtained (very close to the first eigenvalue). If
the problem is excited with the eigenvector associated to this eigenvalue
(the one that limits the convergence of the method), i.e.,

{
φ(0)

}
= [K]−1

{
0

{v1}
}

(22)

a resonant field pattern is observed for the “error field” inside the
cavity, as it is depicted in Figure 8. Note that expression (22) is
obtained from (12) by substitution of {b(0)

Ψe
} by {v}1 and making {φt} =

0. For the rest of cases and incidence angles, similar considerations can
be made.

In order to better illustrate how the excitation of the dominant
resonant-type mode depicted in Figure 8 occurs depending on the
incidence angle, consider the results shown in Figures 9–12. In these
figures, the projection of the change of the residual error, between two
consecutive iterations, (z(i)), on the eigenvectors space (spanned by
vj) are shown for the mesh truncation cases A and B, and incidence
angles (θ = 0◦, φ = 0◦) and (θ = 75◦, φ = 0◦).

With respect to Figure 9, it can be noticed that for the first
iteration the main contribution to the residual error comes from the
14th eigenvector (|c14| > |cj | ∀j 6= 14). However, its associated
eigenvalue λ14 = 0.5967 (not shown in Table 3) is small enough such
that its contribution to the error after a few iterations ( |c14| · |λ14|(i−1)

for the i-th iteration) is negligible. After a few iterations the second and
third eigenvalues (λ3 ≈ λ4, see Table 3) govern the rate of convergence.
It is worth noting that although not observed in Figure 6, the rate
of convergence is expected to change after approximately 60 iterations
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(residual error around 10−4) due to the contribution of first eigenvalue.
In practice, the value of λ1 is so close to one that the convergence
has virtually stagnated after that point. Comparing the results of
Figure 9 with the ones depicted in Figure 10, it can be observed that
the main difference between the two is the higher excitation of the first
eigenvector in the latter case that produces the stagnation phenomenon
at an error level around 10−1. The first eigenvector field corresponds,
as shown in Figure 8, to a resonance field between the in front walls
of the cavity. This type of mode is significantly excited for grazing
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Figure 9. Projection of the 15 first eigenvectors over the change of
the residual error for the case A and incidence angle (θ = 0◦, φ = 0◦)
in each iteration.
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in each iteration.
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Figure 11. Projection of the 15 first eigenvectors over the change of
the residual error for the case B and incidence angle (θ = 0◦, φ = 0◦)
in each iteration.
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Figure 12. Projection of the 15 first eigenvectors over the change of
the residual error for the case B and incidence angle (θ = 75◦, φ = 0◦)
in each iteration.

angles. Therefore, it is expected to be excited with higher levels for
θinc = 75◦ than θinc = 0◦.

The same type of results as those above, but for the case of mesh
truncation B, are shown in Figures 11 and 12. As in case A, the
excitation of the first eigenvector c1 is larger for θinc = 75◦ than
θinc = 0◦; actually, with similar values to the ones of case A. The
main difference is that its associated eigenvalue λ1 is greater than one
in this case. That makes the method diverge instead of stagnate.

It is worth noticing again here that the spectral radius is
independent on the angle of excitation. The differences between
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exciting from one angle of incidence or another comes from the
different amounts of excitation of the eigenvectors of slow convergence.
Although truncation cases A and B might be used in practice to
analyze the problem with excitation angles close to θinc = 0◦ (errors
around 10−4 are beyond the limits of engineering accuracy for most
applications), it is difficult to predict for an arbitrary structure the
error level (or iteration number) in which the stagnation/divergence
can occur. Thus, the only robust procedure in general is to use convex-
mesh truncation boundaries, i.e., to mesh the region between the cavity
walls.

It is worth noting that no guarantee of better convergence
exists when making the S-S′ distance larger for the case of a non-
convex truncation boundary; an example is the comparison between
cases A and B shown in this paper. Other truncation cases (not
shown in the paper) have been studied and a clear pattern of when
convergence/divergence happens has not been detected.

4. CONCLUSIONS

A convergence study of a non-standard Schwarz domain decomposition
method with overlapping for finite element mesh truncation in
electromagnetics has been presented. The main objective has been
to gain insight into the convergence behavior of the method for non-
convex truncation boundaries. The problem of the scattering of a
cavity type metallic object by a plane wave has been considered. The
spectrum of the iteration matrix for different truncation boundaries
has been computed. It is concluded that a clear pattern about how the
method diverges or converges depending on the size of the overlapping
region cannot be obtained for the case of a non-convex truncation
boundary. Although in some situations the convergence is assured
because the spectral radius may be (strictly speaking) smaller than one,
the method in practice stagnates after reaching a certain error level.
The field solutions corresponding to the dominant eigenvectors (those
associated to eigenvalues close or greater than one) have been obtained.
A resonant field pattern on the reentrant part of the structure (due
to the strong coupling between the cavity walls) is observed. The
Cauchy type boundary condition simply cannot accurately take into
account of those interactions. The dependence of the excitation of the
dominant eigenvector fields with the incidence angle has been studied.
As expected, the illumination with grazing angles provide a significant
excitation of those eigenvector fields and the stagnation/divergence
behavior is reached before (higher error levels) than with angles close
to broadside. The projection of the change of the residual error on the



Progress In Electromagnetics Research, Vol. 120, 2011 455

eigenvectors space has been computed. The numerical results clearly
match and explain the convergence plots obtained.
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and M. Salazar-Palma, “Fully coupled hybrid FEM-UTD method
using NURBS for the analysis of radiation problems,” IEEE
Transactions on Antennas and Propagation, Vol. 56, 774–783,
Mar. 2008.

11. Fernández-Recio, R., L. E. Garćıá-Castillo, I. Gómez-Revuelto,
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