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Abstract—The imaging quality of tomography SAR is limited by the
low number of flight tracks and their non-uniform distribution. In this
paper, a new 3-D imaging algorithm is proposed for tomography SAR
based on the improved interpolated array transform. The key point of
the proposed algorithm is the introduction of the projection technique
into the interpolated array transform, which can reduce the energy of
the interference signal and improve the imaging quality. Performance
analysis under different scenarios is carried out via the simulations.
And the results demonstrate that the sidelobe performance can be
significantly improved by the proposed algorithm.

1. INTRODUCTION

Traditional synthetic aperture radar (SAR) systems can reconstruct
2-D images of the investigated area with all-weather capability [1–
6]. However, 2-D images could not meet the requirements in many
applications, and 3-D images are anticipated. Synthetic aperture radar
interferometry (InSAR) technology is a powerful technique used to
measure the elevation of the terrain patch [7–9], but the distribution
of the scatterers in height is underdetermined and cannot be resolved
by a single baseline measurement. As the extension of conventional
InSAR, tomography SAR adds multiple baselines in the direction
perpendicular to the azimuth and to the line of sight and forms an
additional synthetic aperture in the height direction. Therefore, it has
a resolving capability along this dimension [10].

Fourier transform method was first proposed to obtain the height
image of tomography SAR; however, the height resolution is limited
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by the low number of tracks [10]. Compared with the Fourier
transform method, spatial spectrum estimation methods can obtain
lower sidelobes and higher resolution in the height direction [11],
but which suffered from high sidelobes under the non-uniform track
distribution. Excessively non-uniform passes may lead to completely
unsatisfactory reconstruction with high ambiguity levels.

To overcome these difficulties, an accurate focused algorithm
was proposed based on backprojection [12], which suffered from
severe computational complexity. Subsequently, also singular value
decomposition method was considered to focus the non-uniform data
in the height direction [13]. An additional problem is that this method
should handle an ill-conditioning inverse problem. In a recent work, the
sector interpolation method was applied to SAR tomography [14, 15],
providing a beneficial effect on the imaging quality. However, the
sidelobe performance can be improved comparing with the ideal data.

The main topic of this paper is to present a 3-D imaging algorithm
for tomography SAR by introducing the projection technique into
the interpolated array transform. As the first step, the virtual
uniform array data can be acquired from the non-uniform one by
the interpolated array transform. Then, the projection technique is
used to project the steering vector of the virtual array into the signal
subspace. This step can reduce the energy of the interference signal
and improve the sidelobe performance. Afterwards, the height image
can be acquired by beamforming. The rest of the paper is organized
as follows. Section 2 presents the geometric and signal model of
tomography SAR. The basic interpolated array transform method is
introduced in Section 3. In Section 4, a new imaging approach is
described in detail based on improved interpolated array transform.
The performance of the method is investigated by simulated data in
Section 5. Section 6 gives a brief conclusion.

2. TOMOGRAPHY SAR

Figure 1 shows the geometry of tomography SAR. x and y denote the
range and azimuth directions, respectively. There are K passes over
the same illuminated area. The interval between two pass is b, and
the baseline length B is defined as the distance between the first and
the last passes. ε is the angle between the baseline and the horizontal.
The observation on the first pass is defined as the reference position
with elevation H. Its look angle in the center of beam is θ, and its
line of sight is the slant range direction, which is marked as r. The
direction perpendicular to the azimuth and to the slant range is defined
as the height direction, which is marked as s. Therefore, the 3-D
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Figure 1. The geometry of tomography SAR.

imaging coordinates y-r-s are built, and the origin is at the position
of the referenced observation. In each pass, the radar moves along the
azimuth direction and transmits coherent phase modulated pulses in
the range direction.

One 2-D SAR image is derived by one pass, and then K SAR
images are derived by K passes. Suppose that all SAR images have
been coregistered first, and then, the azimuth and slant range positions
of each scatterer in all SAR images are the same. Because the interval
between two pass is far less than the distance between the pass and
the illuminated area, the K phase centers of tomography SAR can be
aligned to form a linear array [16]. Therefore, the complex amplitudes
of the pixels from the same azimuth-slant range resolution cell collected
at the K phase centers of tomography SAR can be modeled as

y(n) =
Ns∑

m=1

√
τmxm(n)¯ a(ϕm) + v(n), n = 1, 2, . . . , N (1)

where y(n), xm(n), a(ϕm), and v(n) are K-dimensional complex
vectors, n denotes the look index, N is the number of looks, ¯ is
Hadamard product, and Ns is the number of backscattering sources.
τm is the radar reflectivity of the mth sources. {xm(n)}N

n=1 are the
speckle complex vectors pertinent to the mth source, and v(n) is
Gaussian thermal noise with zero mean and power σ2

v [16]. ϕm is the
interferometric phase at the overall baseline, and a(ϕm) is the steering
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vector for the mth source, which can be written as
a(ϕm)

=
[
ej(b⊥1/B)ϕm , ej(b⊥2/B)ϕm , . . . , ej(b⊥k/B)ϕm , . . . , ej(b⊥K/B)ϕm

]T
(2)

where b⊥k is the orthogonal baseline of the kth phase center, B is the
overall orthogonal baseline, and (∗)T denotes the transpose operator.

The baseline interval is identical under ideal condition; hence the
b⊥k can be written as

b⊥k =
k − 1
K − 1

B (3)

Replacing the b⊥k by (3) in Equation (2), the steering vector under
ideal condition can be written as

ā(ϕm) =
[
1, ejϕm/K−1, ej2ϕm/K−1, . . . , ejϕm

]T
(4)

Moreover, the interferometric phase ϕm is related to the spatial
frequency wm as ϕm = (K − 1)wm, and to the elevation angle θm as
ϕm = (K−1)wm = 4πB cos(ε−θm)/λ, where λ is the radar wavelength,
and ε is the baseline tilt.

Based on the analysis of above, the scatterers in height of
tomography SAR can be considered as the sources of the linear
array. Therefore, the estimation of the different heights of the
signals backscattered from the same azimuth-slant range resolution cell
corresponds to estimate the interferometric phases {ϕm}Ns

m=1 and the
radar reflectivities {τm}Ns

m=1, spatial spectrum estimation methods can
be adopted to obtain the height images. Unfortunately, for the current
SAR tomography, it is almost impossible to avoid a non-uniform track
distribution. This results in a poor imaging quality with the spatial
spectrum estimation methods.

3. INTERPOLATED ARRAY TRANSFORM

The main idea of the interpolated array transform approach is dividing
the field of view of the array into several sectors. The size of the
sectors depends on the array geometry and desired accuracy [17–19].
For example, suppose the signal components belong to a sector Θ

Θ = [ϕ1 ϕ2 ϕ3 . . . ϕl] (5)
where ϕ1 and ϕl are the left and right borders of Θ, and the sampling
occurs with a step defined by ∆ϕ = (ϕl − ϕ1)/(l − 1).

Form (2) the steering vector matrix of the real array can be written
as

A = [a(ϕ1) a(ϕ2) a(ϕ3) . . . a(ϕl)] (6)
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where a(∗) is a K-dimensional complex vector.
Form (4) the steering vector matrix of the virtual uniform array

can be written as

Ā = [ā(ϕ1) ā(ϕ2) ā(ϕ3) . . . ā(ϕl)] (7)

where ā(∗) is a Kv-dimensional complex vector, and Kv is the number
of the phase centers in the virtual array.

Then, the transformation matrix to transform the real array
into the virtual array can be found as the solution of the following
optimization problem

H = arg min
H

∥∥Ā−HHA
∥∥2

F
(8)

where ‖ ∗ ‖F and (∗)H denote the Frobenius norm and the Hermitian
transpose, respectively.

Suppose that the l > K, the transformation matrix can be
acquired by (8)

H =
(
AAH

)−1
AĀH (9)

And the error of the interpolation can be defined as [17]

EIA =

∥∥Ā−HHA
∥∥2

F∥∥Ā
∥∥2

F

(10)

Therefore, the output of the virtual array after the interpolated array
transform is given by

ȳ(n) = HHy(n) (11)

Moreover, the covariance matrix of the virtual array can be obtained
from (1) and (11)

R̄y = E
{
ȳ(n)ȳH(n)

}
= HHE

{
y(n)yH(n)

}
H

=
Ns∑

m=1

τmHHAmRxmAH
mH + σ2

vH
HH (12)

where Am = diag{a(ϕm)}, and the autocorrelation function of the
speckle complex vectors {xm(n)}N

n=1 can be given by [16]

Rxm(u, v) = E {[xm(n)]u · [xm(n)]∗v}

=
{

1− |u−v|
K−1 bm, |u− v| ≤ (K − 1)/bm

0 others
(13)

where bm = B⊥/B⊥cm is the normalized baseline of the mth source,
B⊥ is the baseline orthogonal to the line of sight, and B⊥cm is the
normalized critical baseline of the mth source.
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Moreover, from (8) we can get that

HHAm ≈ Ām (14)

Then, substituting (14) into (12) yields

R̄y ≈
Ns∑

m=1

τmĀmRxmĀH
m + σ2

vH
HH (15)

Consequently, the beamforming estimator after the interpolated array
transform can be written as

P(ϕ) =
āH(ϕ)R̄yā(ϕ)

K2
v

(16)

4. IMPROVED INTERPOLATED ARRAY TRANSFORM

The idea of the improved method is to introduce the projection
technique into the interpolated array transform, which can improve
the sidelobe performance significantly.

Suppose the signal components belong to sector Θ, the correlation
matrix of the virtual steering vector in the signal field can be defined
as

RΘ =
∫

Θ
ā(θ)āH(θ)dθ (17)

Computing the eigenvalue decomposition of RΘ yields

RΘ =
Kv∑

k=1

λkukuH
k (18)

where {λk}Kv
k=1 are the eigenvalues of the matrix RΘ, and λ1 ≥ λ2 ≥

. . . ≥ λKv . uk is the eigenvector corresponding to the eigenvalue λk.
Then, the projection matrix can be formed by the eigenvectors

corresponding to the d largest eigenvalues

T =
d∑

k=1

ukuH
k (19)

Then, the projection transform is implemented to the steering
vector matrix of the virtual array using the projection matrix T

Ã = TĀ = THHA = [ã(ϕ1) ã(ϕ2) ã(ϕ3) . . . ã(ϕl)] (20)

where ã(∗) is a Kv-dimensional complex vector.
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Therefore, the output of the virtual array after the projection
transform can be written as

ỹ(n) = THHy(n) (21)
Moreover, the covariance matrix of the virtual array after the

projection transform can be rewritten as

R̃y = THHE
{
y(n)yH(n)

}
HTH

=
Ns∑

m=1

τmTHHAmRxmAH
mHTH + σ2

vTHHHTH (22)

Then, substituting (20) into (22) yields

R̃y =
Ns∑

m=1

τmÃmRxmÃH
m + σ2

vTHHHTH (23)

where Ãm = diag{ã(ϕm)}.
It is obvious that the projection transform is used to project

the covariance matrix of the virtual array into the signal subspace,
which can reduce the energy of the interference signal and improve the
estimation performance.

Moreover, from (9) and (19) we can get that THHHTH 6= I.
That is to say, the noise has been colored noise after the interpolation
and the projection transform, and the noise pre-whitening is required.
Therefore, the output of the virtual array after the noise pre-whitening
is [17]

ỹ1(n) =
(
THHHTH

)−1/2
THHy(n) = Q−1THHy(n) (24)

where Q = (THHHTH)1/2.
Meanwhile, the covariance matrix of the virtual data becomes

R̃y1 =
Ns∑

m=1

τmQ−1ÃmRxmÃH
mQ−1 + σ2

vI (25)

And the beamforming estimator after the improved interpolated array
transform can be written as

P(ϕ) =
ãH(ϕ)R̃y1 ã(ϕ)

K2
v

(26)

5. SIMULATION RESULTS

In this section, to verify the validity of the proposed imaging algorithm
for tomography SAR, the height dimensional imaging experiments and
point-target simulation are carried out, respectively.
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5.1. The Height Dimensional Imaging Results

First of all, suppose that there is a single source located at zero height
with a signal-to-noise ratio of 12 dB, and there are five non-uniformly
spaced tracks over the same illuminated area. Since we assumed
the first phase center as the master track, the baseline intervals of
each track related to the master track can be written as [0, 2, 5,
8, 9]b, where b is the reference baseline interval. This non-uniform
baseline distribution can be obtained by thinning a 10-element full
uniform array. Therefore, the improved interpolated array transform
method can be used to obtain the height image of tomography SAR.
From [16] we can get that the height unambiguous range of 10-element
full uniform array extends from −4.5 to 4.5 height resolution units.
If the interest signal range spans 5 height resolution units, and the
height image obtained by the improved interpolated array transform
method is plotted in Figure 2(a). In order to analyze the performance
of the proposed method, the imaging results obtained by the non-
uniform linear array data and the interpolated array transform method
are also given for comparison in this and the following experiments.
Moreover, the left and right borders of the signal range are presented
by two solid beelines; the curves labeled with NLA are those obtained
by the non-uniform array data, the curves labeled with IAT are
those obtained by the interpolated array transform method, and the
curves labeled with improved IAT are those obtained by the proposed
method in this and the following figures. From Figure 2(a) we can
get that the interpolation step has a beneficial effect on the sidelobes,
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Figure 2. Height imaging results of tomography SAR with baseline
intervals [0, 2, 5, 8, 9]b. (a) Signal range of 5 height resolution units.
(b) Signal range of 3 height resolution units.
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but the imaging result can be improved with a lower sidelobes after
the projection transform. Maintaining the same array structure,
Figure 2(b) shows the imaging results with a smaller signal range of
3 height resolution units. It is obvious that a narrower signal range
would acquire a better reduction of the sidelobes.

The following case studies a more realistic geometry with eleven
non-uniformly spaced tracks. The baseline intervals of each track
related to the master track are [0, 2, 2.96, 4, 5.024, 5.92, 8.04, 9.04,
10.12, 12, 16.52]b, which can be obtained by thinning a 19-element
full uniform array. The height unambiguous range of the 19-element
full uniform array extends from −9 to 9 height resolution units. The
height image obtained by the improved interpolated array transform
method is plotted in Figure 3(a), with a signal range of 10 height
resolution units. The imaging results confirm that the proposed
method can handle a non-integer track structure and exhibit much
better sidelobes behavior than the basic interpolated array transform
method. Maintaining the same array structure, Figure 3(b) shows the
imaging results with a smaller signal range of 6 height resolution units.
As expected, it shows a better reduction of the sidelobes than that of
Figure 3(a).

The coming to analysis takes into account two sources. The
two sources are centered on zero height with a signal-to-noise ratio
of 12 dB each, and distant 3 height resolution units. The baseline
structure used in this experiment is the same as in Figure 3. The height
image obtained by the improved interpolated array transform method
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Figure 3. Height imaging results of tomography SAR with baseline
intervals [0, 2, 2.96, 4, 5.024, 5.96, 8.04, 9.04, 10.12, 12, 16.52]b. (a)
Signal range of 10 height resolution units. (b) Signal range of 6 height
resolution units.
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Figure 4. Height imaging results of tomography SAR with two
sources.

Table 1. Parameters used for simulation.

Parameters Value

Carrier frequency 1.3GHz

Pulse bandwidth 75MHz

Chirp duration 5.0 µs

Center of ground range 5000m

Flight height 5000m

Radar velocity 200m/s

Baseline 400m

Number of flight pass 21

is plotted in Figure 4, with a signal range of 10 height resolution units.
Again, the proposed method provides a better profile extraction with
a sidelobes reduction.

5.2. The Three-dimensional Imaging Results

To validate the proposed imaging algorithm, point targets are
simulated in the last case. The azimuth-slant range-height coordinates
of them are (−30, 7054, ±8.5), (−30, 7072, ±8.5), (0, 7063, 0), (30,
7054, ±8.5), and (30, 7072, ±8.5). The main parameters used for
simulation are listed in Table 1. The spatial baseline distribution is
non-uniform, shown in Figure 5(a).

After raw-data generation and 3-D imaging processing of
tomography SAR using the proposed method, the surfaces of the final
3-D image are shown at −3 dB in Figure 5(b). As expected, the image
is well focused in the three directions.
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Figure 5. Spatial baseline distribution and final 3-D image. (a)
Spatial baseline distribution. (b) Final 3-D image.
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Figure 6. Height distributions of selected point targets. (a) Azimuth-
slant range unit of (−30, 7054). (b) Azimuth-slant range unit of (0,
7063).

In order to analyze the performance of the imaging result, Figure 6
shows the height distributions of the point targets located in the
azimuth-slant range units of (−30, 7054) and (0, 7063), respectively.
And then, the imaging results are compared with the results obtained
by the non-uniform sampling data and the interpolated array transform
method. It can be seen clear that the proposed method shows a better
sidelobes reduction capability and gives a better reconstruction quality.

6. CONCLUSIONS

In this paper, a new 3-D imaging algorithm that is capable of focusing
tomography SAR data has been proposed. The principle behind the
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method is based on considering the reduction of the energy of the
interference signal thought projecting the steering vector into the
signal subspace. The height dimensional imaging experiments with
different scenarios and raw data of tomography SAR in L-band were
simulated and the focused images were achieved by the proposed
method. Meanwhile, the imaging results were compared with the non-
uniform sampling data and the interpolated array transform method.
The results of the simulated data confirm the effectiveness of the
proposed method.
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