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Abstract—In this paper, we propose a simplified particle probability
hypothesis density (PHD) filter and its hardware implementation for
multiple-target tracking (MTT). In the proposed algorithm, the update
step of particle PHD filter is simplified and the time-varying number of
measurements is arranged in combination series/parallel mode. This
may result in fixed hardware architecture and therefore present a
convenient hardware implementation of particle PHD filter. Simulation
results indicate that for the MTT problems, this proposed simplified
algorithm shows similar performance with the standard particle PHD
filter but has faster processing rate. Experiment study shows that
the proposed simplified algorithm can be efficiently implemented in
hardware and can effectively solve the MTT problems.

1. INTRODUCTION

Radar tracking systems extract information pertaining to locations or
velocities of targets upon receiving the measurements of targets. Since
radar tracking is of great importance to both civilian and military
applications, multifarious new techniques are continuously applied
in various radar tracking systems to improve the performance [1–
7]. Among various radar tracking problems, multiple-target tracking
(MTT) is an important topic with wide applications [8, 9]. The purpose
of MTT is to identify targets and then to estimate the states of the
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targets. There have been several methods used for MTT problems [10–
13], such as joint probabilistic data association (JPDA) filter, multiple
hypothesis tracking (MHT) filter, and so on. These methods do not
directly get the number of targets and are mostly based on explicit
data association. Thus, these algorithms entail high computational
complexity. Recently, the probability hypothesis density (PHD) filter,
which propagates only the first moment (or PHD) instead of the full
multi-target posterior, has been shown to be a computationally efficient
solution to the MTT problems [14–17]. Unfortunately, it is impossible
to obtain closed-form solutions for the PHD filter since it still involves
multiple integrals.

Particle filters (PFs) [18, 19], also known as Sequential Monte
Carlo (SMC) filters, are commonly utilized for the approximation of
intractable integrals and rely on the ability to draw random samples
(or particles) from a probability distribution. The key idea is to
represent the target posterior probability density function (PDF) of
the state given the observations by a set of random particles with
their associated weights. PFs have shown great promise in various
target tracking problems [20–27] since they were proposed. However,
for MTT problems, multi-target PF requires intensive computations
and it is difficult to find an efficient importance density for the multi-
target PF [15].

To have both the merits of PFs and PHD filter, starting from the
fundamental idea of PF, The authors in [14, 15] proposed a particle
PHD filter based on SMC method to approximate the PHD posterior
intensity for tracking multiple targets. The principle of particle PHD
filter is to use a large set of weighted samples (or particles) to represent
the multi-target PHD. It has been shown that the particle PHD filter
is suitable for tracking a set of time-varying number of targets in
non-linear and non Gaussian situations. However, to our knowledge,
all the works about particle PHD filter or even PHD filter focus on
theoretical analysis, and no effort toward the hardware implementation
has been exploited yet due to its high computational complexity and
time-varying number of measurements. From theory to practice, the
hardware implementation is an important topic. In this paper, we
propose a simplified particle PHD filter algorithm and its hardware
implementation to fill in this blank.

The rest of this paper is organized as follows. In Section 2, a brief
review of the particle PHD filter is presented. In Section 3, we propose
the simplified particle PHD filter. In Section 4, the corresponding
hardware architecture is described in details. Simulation results and
experimental study are given in Section 4 and we conclude this paper
in Section 5.
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2. BRIEF REVIEW OF PARTICLE PHD FILTER

The PHD function DΞ is the 1st order moment of the random finite
set (RFS) Ξ and is defined by [14]

DΞ(x) ≡ E[δΞ(x)] =
∫

δX(x)PΞ(dX) (1)

where δΞ(x) =
∑

x∈Ξ δx is the random density representation of Ξ.
PΞ is the probability distribution of the RFS Ξ. The PHD has the
properties that, the integral

∫
S DΞ(x)λ(dx) is the expected number of

targets in the measurable region S and the peaks of the PHD function
give the estimates of the target states, where λ is the appropriate
measure.

The PHD filter is a recursion of the PHD Dk|k associated with the
multi-target posterior density pk|k. Given the RFS Ξ is Poisson, the
recursion propagating Dk|k is [14]

Dk|k = (Ψk ◦ Φk|k−1)(Dk−1|k−1) (2)
where “◦” denotes composition of functions, Φk|k−1 and Ψk are the
PHD prediction and update operator respectively, which are defined
as follows:

(Φk|k−1α)(x) = γk +
∫

φk|k−1(x, ξ)α(ξ)λ(dξ) (3)

(Ψkα)(x) =


1− PD(x) +

∑

z∈Zk

ψk,z(x)
κk(z) + 〈ψk,z, α〉


α(x) (4)

for any (integrable) function α on Es, where
φk|k−1(x, ξ) = bk|k−1(x | ξ) + ek|k−1(ξ)fk|k−1(x | ξ)

ψk,z(x) = pD(x)gk(z | x)
κz(z) = λkck(z)

〈f, g〉 =
∫

f(x)g(x)λ(dx)

and γk denotes PHD of the spontaneous RFS Γk; bk|k−1(· | ξ) denotes
the PHD of the RFS Bk|k−1(ξ) spawned by a target with previous state
ξ; ek|k−1(ξ) denotes the target survival probability with previous state
ξ; fk|k−1(· | ·) and gk(· | ·) denote the transition probability density
and the likelihood of individual targets, respectively; pD(·) denotes the
probability of detection; λk denotes the average number of Poisson
clutter points per scan; and ck(·) denotes the clutter probability
density.
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As described above, the PHD filter involves multiple integrals with
no closed forms. SMC implementation of PHD filter (name as particle
PHD filter) incorporates PF that utilizes a set of weighted particles
to represent the PHD and has been proven to be suitable for MTT
problems. Let Lk be the number of particles used for those targets
surviving or spawned, and Jk be the number of particles used for new
born targets.The Pseudo code of the particle PHD filter is described
in Algorithm 1. For more details of discussion, please see [14, 15].

Algorithm 1 Pseudo code of PHD particle filter

k = 0;

• Initialization:
– the posterior PHD D0|0 is represented by a set of particles

with their associated weights {x(i)
0 , w

(i)
0 }Lk

i=1.

For k = 1, 2, 3, . . .

• Prediction:
– For i = 1, . . . , Lk−1

∗ sample x̃
(i)
k ∼ qk(· | x(i)

k−1, zk)
∗ compute the predicted weights:

w̃
(i)
k|k−1 =

φk|k−1(x̃
(i)
k ,x

(i)
k−1)

qk(x̃
(i)
k |x(i)

k−1,zk)
w

(i)
k−1

– For i = Lk−1 + 1, . . . , Lk−1 + Jk

∗ sample x̃
(i)
k ∼ pk(· | zk)

∗ compute the predicted weights: w̃
(i)
k|k−1 = 1

Jk

γk(x̃
(i)
k )

pk(x̃
(i)
k |zk)

• Update:

– For each z ∈ Zk, compute: Ck(z) =
Lk−1+Jk∑

i=1
ψk,z(x̃

(i)
k )w̃(i)

k|k−1

– For i = 1, . . . , Lk−1 + Jk, update weights:

w̃
(i)
k =


1− pD(x̃(i)

k ) +
∑

z∈Zk

ψk,z(x̃
(i)
k )

κk(z) + Ck(z)


 w̃

(i)
k|k−1

• Resample:

– compute the total mass: Ñk|k =
Lk−1+Jk∑

i=1
w̃

(i)
k ;

– resample {x̃(i)
k , w̃

(i)
k /Ñk|k}Lk−1+Jk

i=1 to get {x(i)
k , w

(i)
k /Ñk|k}Lk

i=1;
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– rescale (multiply) the weights by Ñk|k to get {x(i)
k , w

(i)
k }Lk

i=1.
• Target estimation:

– estimate the number of targets: N̂k = round(Ñk|k);
– use clustering algorithm to determine the N̂k peaks of the

posterior, which are the estimates of target states.

3. PROPOSED PARTICLE PHD FILTER

It is seen from Algorithm 1 that due to the time-varying number
of measurements, the update step is difficult to be implemented in
hardware. If one arranges the time-varying number of measurements
in series mode, the latency will be unbearable and plenty of variables
should be stored; if one arranges the time-varying number of
measurements in parallel mode, the number of parallel implementation
circuits will be difficult to be chosen and the efficiency of the hardware
implementation would be affected. In this section, we propose a
simplified version of particle PHD filter, which simplifies the update
step. In the simplified update step, the time-varying number of
measurements are skillfully arranged in combination series/parallel
mode considering the compromise between the latency and efficiency
of the hardware implementation.

In the update step of the particle PHD filter, given the probability
of detection pD(·), one can observe that if the Ck(z) of a measurement
is zero, that is, all the likelihoods of this measurement for the particles
gk(· | ·) are zeros, this measurement will make no contribution to the
update weights. Obviously, the measurement can be discarded or re-
placed. Considering the compromise between the computational com-
plexity and estimation accuracy, in this simplified algorithm, the Ck(z)
is compared with a threshold T > 0. The measurements with Ck(z)
greater than T are retained and the corresponding implementation cir-
cuits are kept for these measurements, whereas the measurements with
Ck(z) less than T can be replaced and the corresponding implemen-
tation circuits may be utilized for the other measurements. Thus we
can arrange the time-varying number of measurements in combination
series/parallel mode. This may remove the barrier of the hardware im-
plementation and result in fixed hardware architecture with acceptable
latency. Let mk be the number of time-varying measurements and p
be the number of parallel implementation circuits used; The details
of the update step in this proposed simplified algorithm are shown in
Algorithm 2.
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Algorithm 2 The update step of the simplified particle PHD filter

Initialization: u = 0;
Compute Ck:
while (u ≤ mk)
• for j = 1 : p

– if (value(j) == 0)
∗ u = u + 1
∗ if (u > mk)

· break;
∗ end if
∗ value(j) = 1;
∗ ψk,z(x̃

(i)
k ) = pD(x̃(i)

k )gk(z | x̃(i)
k )

∗ Ck(j) =
Lk−1+Jk∑

i=1
ψk,z(x̃

(i)
k )w̃(i)

k|k−1

– end if
• end for
• for j = 1 : p

– if (Ck(j) > T )
∗ if (pos(j) == 0)

· pos(j) = 1;
∗ end if

– else
∗ value(j) = 0;

– end if
• end for

end while
update weights:

w̃
(i)
k =


1− pD(x̃(i)

k ) +
p∑

j=1

ψk,z(x̃
(i)
k )

κk(z) + Ck(j)


 w̃

(i)
k|k−1

where value(j) for 1 ≤ j ≤ p represents whether the corresponding
implementation circuit is running, and pos(j) for 1 ≤ j ≤ p shows
whether the variable Ck(j) is updated. Clearly the choice of the
number of parallel implementation circuits p should be larger than
the maximum number of targets and is compromise. Too large a value
would result in the low efficiency of hardware implementation but too
small a value would discard some of the measurements generated by
the targets.
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From the Algorithm 2, one can observe that the time-varying
number of measurements is arranged in combination series/parallel
mode and therefore the update step can be achieved in fixed hardware
architecture.

4. HARDWARE IMPLEMENTATION OF PARTICLE
PHD FILTER

According to the description in Section 2, the hardware implementation
of the particle PHD filter contains four important processing steps,
namely prediction module, update module, resample module and target
estimation module, as shown in Fig. 1, where prediction module
samples particles for those targets surviving or spawned and generates
particles for new born targets; update module updates the weights
of particles given the measurements; resample module resamples the
particles to reduce sample impoverishment and to prevent exponential
growth of the size of the particle ensemble; and target estimation
module estimates the number and the corresponding state of targets.

Resample module, the hardware implementation of which has
been widely investigated [28, 29], can be designed according to the
references. In this paper, we utilize the systematic resampling
(SR) algorithm [28]. Target estimation module mainly consists of
clustering algorithm to estimate the states of targets, which is very
mature and already used in variety of fields. The K-means clustering
that is a very popular clustering technique is used in this paper.
There have been considerable interests in the FPGA implementation
of K-means clustering algorithm [30, 31]. Certainly, considering
the implementation complexity due to the loops of the clustering
algorithm, the target estimation can also be processed with software,
hardware/software co-design or DSP. Thus, in what follows, we focus
on the prediction module and update module.

Prediction
Module

Update
Module

Target

Estimation
Module

Resample
Module

| 1,k k kx w

,k kx w

,k kx w

ˆ ˆ,k kN x

kx

kw

∼ ∼

∼

∼ ∼

-

Figure 1. The module of particle PHD filter.
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4.1. Prediction Module

Figure 2 shows the architecture of prediction module for the particles.
Once the resample step is done, the memory MEM with depth Lk

contains the replicated particles’ indexes and the FIFO with depth
Lk + Jk stores the discarded indexes (since the number of discarded
particles is nondeterministic). The memory MEM is then read
sequentially and the indexes are utilized as addresses to the read
port of the memory PMEM with depth Lk + Jk storing the particles.
Due to the nature of the SR algorithm and sequential read from the
memory MEM, a replication signal Rep can be detected by comparing
the current read index with the previous one stored in a temporary
register Reg1. When an index is read from the memory MEM for the
first time, the corresponding particle is read from the memory PMEM
and stored in another temporary register Reg2. After propagation this
predicted particle is written to its original location in the memory
PMEM. In the following cycle, when the same index is read from the
memory MEM, replication signal Rep is detected. Since the location in
the memory PMEM has been overwritten by the propagated particle,
the particle is read from the temporary register Reg2 rather than from
the memory PMEM. Meanwhile, a discarded index obtained form the
FIFO simultaneously is used as address to the write port of memory
PMEM to write the replicated particle after propagation. When all
the replicated indexes are read off, particles for new born targets are
generated and then writen into the memogy PMEM whose address is
also the discarded index obtained from the FIFO (see Fig. 2).

PMEM

Address

Read

port

Address

Write
port

Data

Reg2
Sample

Unit
(latency Ls)

Rd_index

De_index

Rep

Rep

new
Rd_index

new

New particles 

generator

Replicated 
indexes

(MEM)

Discarded
indexes

(FIFO)

Reg1 =?

or

Rep

new

Figure 2. Architecture of prediction module.
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4.2. Update Module

The architecture of update module, which updates the weights
according to the measurements, is shown in Fig. 3. In this architecture,
the number of parallel implementation circuits is set as p. Since all the

p implementation circuits are to compute the ψk,z(x̃
(i)
k )

κk(z)+Ck(z) , one structure
is designed and is used for p times, which are actually p circuits in
hardware implementation. Besides, there is a controller to generate
control signals that arrange the time-varying number of measurements
in combination series/parallel mode.

When the uth (u ≤ mk) measurement is ready, determine
whether the p implementation circuits are free. If all the
implementation circuits are busy, the measurement is kept until
that one implementation circuit is free. If there are some free
implementation circuits, the first free circuit j is obtained by judging
value(j) == 0 for 1 ≤ j ≤ p and set value(j) = 1 to indicate that
this implementation circuit is running. Then the likelihood function
gk(z | x̃

(i)
k ) of every particle given this measurement is computed and

multiplies by the probability of detection pD(x̃(i)
k ) to get the ψk,z(x̃

(i)
k ),

which will be stored in a RAM for future use. Simultaneously the
predicted weight w̃

(i)
k|k−1 multiplies by the ψk,z(x̃

(i)
k ) corresponding to

particle x̃
(i)
k and the product is summed in an accumulator to get Ck(z),

which is used to compared with the threshold (T ). The comparison
results of the Ck(z) and the threshold (T ) are used to determine
whether to retain the measurement. If the Ck(z) is greater than the

u>m

( | )kg z x
likelihood

measurements 1

value(1)
=1

u=u+1

×

p

RAM, ( )k z x

× Acc. + 1/x

×

( | )kg z x
likelihood

measurements 
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=1
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| 1k kw
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×
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Figure 3. Architecture of update module.
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threshold (T ), reciprocal of the sum of the Ck(z) and κk(z) is computed

and multiplies by the ψk,z(x̃
(i)
k ) stored in RAM to get the ψk,z(x̃

(i)
k )

κk(z)+Ck(z)

for this measurement. If the Ck(z) is less than the threshold (T ), that
is, this measurement may make no contribution to the update weights,
readjust value(j) = 0 to indicate that the implementation circuit is
free and can be utilized for other measurements. For the rest of the
measurements, similar operation is conducted.

After all the measurements are utilized in the update module, the

values of ψk,z(x̃
(i)
k )

κk(z)+Ck(z) for all the p implementation circuits are obtained

(for the free implementation circuit, ψk,z(x̃
(i)
k )

κk(z)+Ck(z) = 0). Then all the

values of ψk,z(x̃
(i)
k )

κk(z)+Ck(z) are added together and add 1 − pD(x̃(i)
k ). The

results are used to multiply by the predicted weights w̃
(i)
k|k−1 and then

updated weights w̃
(i)
k are obtained.

5. SIMULATION RESULTS AND EXPERIMENTAL
STUDY

To validate the proposed filter, we consider a two-dimensional scenario
with an unknown and time-varying number of targets [15]. Each target
moves according to the following dynamics

xk =




1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1


xk−1 +




T 2/2 0
T 0
0 T 2/2
0 T


wk (5)

where xk = [xk ẋk yk ẏk]T is target state vector at time kT (k is the
time index) and the sampling period is T = 1. wk = [wx

k wy
k]T is the

vector of independent zero-mean Gaussian white noise with standard

deviations of
[

1 0
0 0.1

]
. Targets can appear or disappear in the scene

at any time. The probability of target survival is ek|k−1(·) = 0.95 and
no spawning is considered for simplicity. Assume that target birth
follows a Poisson model with the intensity γk = 0.2N(·; x̄, Qx), where
N(·; x̄, Qx) denotes a normal density with mean x̄ and covariance Qx

and x̄ =




0
3
0
−3


, Qx =




10 0 0 0
0 1 0 0
0 0 10 0
0 0 0 1


.
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Figure 4. Positions of 4 tracks over 40 scans.

Figure 4 plots the true trajectories of 4 tracks over 40 scans. It
can be seen that these 4 tracks start in the vicinity of the origin and
move radially outwards. The corresponding start and finish times of
the tracks can be found from Fig. 5.

The measurements originated from a target are given by

yk =
[

1 0 0 0
0 0 1 0

]
xk +

[
v1,k

v2,k

]
(6)

where v1,k and v2,k are independent zero-mean Gaussian measurement
noise with standard deviations of σv1 = σv2 = 2.5. The probability of
detection is set as pD(xk) = 1. Clutter is uniformly distributed over
the observation space of [−100, 100]× [−100, 100] with an average rate
of γ = 6 points per scan.

In numerical simulations and hardware implementation, the
number of particles used is Lk = 1024 and Jk = 1024. The importance
sampling densities used are qk = fk|k−1 and N(·; x̄, Qx), respectively.
The number of parallel implementation circuits and the threshold are
set as p = 8 and T = 2−16, respectively. For comparison, the results
of tracking the multiple trajectories using standard particle PHD filter
are presented to gauge the performance.

Simulation results of the proposed simplified algorithm and the
standard particle PHD filter are shown in Fig. 5, which plots the
individual x and y coordinates of the tracks and estimated targets
for each time step. It can be found that the estimated positions based
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Figure 5. Comparison of the proposed simplified particle PHD filter
and the standard particle PHD filter.

on the proposed simplified particle PHD filter and standard particle
PHD filter are similar and they are all close to the true tracks.

In multi-target tracking, it was proposed in [32] to use the
Wasserstein distance as a multi-target miss-distance between the true
and the estimated sets of multi-target states, which is given by

dp

(
X̂k, Xk

)
= min

C

p

√√√√√
|X̂k|∑

i=1

|Xk|∑

j=1

Ci,j‖x̂i,k − xj,k‖p (7)

where Xk and X̂k are the true and estimated set of the target states
and the minimum is taken over the set of all transportation matrices

C, whose entries Ci,j satisfy Ci,j ≤ 0,
|Xk|∑
j=1

Ci,j = 1/ ≤ |X̂k|,
|X̂k|∑
j=1

Ci,j =

1/|Xk|.
Figure 6 plots the estimated targets against truth in terms

of target number and Wasserstein multi-target miss-distance of the
two algorithms at each time step for comparison. It can be found
that again the proposed simplified particle PHD filter shows similar
performance with standard particle PHD filter and the multi-target
miss-distance exhibits peaks at the instances where the estimated
number is incorrect. When the estimated number of targets is correct,
the Wasserstein miss-distance is small.
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Figure 6. Target number estimate and multi-target miss-distance
of the proposed simplified PHD filter and the standard particle PHD
filter.

Table 1. The correct ratio of estimated number of targets and the
multi-target miss-distance of the two filter algorithms.

Filter

algorithm

The correct estimations

Correct ratio of

number of targets

Wasserstein miss-

distance

The standard particle

PHD filter
86.81% 2.646

The proposed simplified

particle PHD filter
86.78% 2.641

The correct estimation parameters including the correct ratio of
estimated number of targets and the average multi-target miss-distance
with the estimated number of targets correct are listed in Table 1. All
the data in Table 1 is obtained through 1000 Monte Carlo simulations.
From the Table 1, one can find that for the estimated number of
targets, the standard particle PHD filter has the correct ratio of 86.81%
while the proposed simplified one has 86.78%, and when the estimated
number of targets is correct, the average Wasserstein miss-distance
is 2.646 and 2.641, respectively. Comparison results confirm that the
proposed simplified particle PHD filter shows similar performance with
the standard one.
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Table 2 shows the computational time in Matlab 7.7.0 on a Core 2
Duo 3.16-GHz PC with 4GB RAM. Both the two filters run 1000
rounds of simulation and their computational time are recorded. Then
the average time is computed. From the Table 2, it can be found
that compared with the standard particle PHD filter, the proposed
simplified particle PHD filter has faster processing rate. The reasons
can be explained that the proposed simplified particle PHD filter
discards the measurements with Ck(z) less than the threshold T in the
update step. This simplified update step can reduce the complexity
and computational time. Further, the simplified algorithm removes the
barrier of the hardware implementation and results in fixed hardware
architecture for the implementation of particle PHD filter.

Except that the clustering step is done using Matlab, the
hardware architectures of the rest are described in Verilog HDL and
verified using Modelsim. The results of implementing the proposed
simplified particle PHD filter algorithm on a Xilinx Virtex II device
(XC2VP70FF1517) for the MTT problems are shown in Fig. 7 and

Table 2. The computational time of the two filter algorithms.

Filter algorithm The computational time(s)

The standard particle PHD filter 2.856

The proposed simplified particle PHD filter 2.652
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Figure 7. Comparison of the hardware results and matlab simulation
of the proposed simplified particle PHD filter.
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Figure 8. Target number estimate and multi-target miss-distance of
the proposed simplified particle PHD filter by Matlab and FPGA.

Fig. 8, where Fig. 7 shows the individual x and y coordinates of
the tracks and estimated targets at each time step and Fig. 8 plots
the estimated targets against truth in terms of target number and
Wasserstein multi-target miss-distance.

It is seen that the result from the hardware experiment agrees
well with the simulated one. Detailed comparison shows that there are
some small differences along with trajectory, which is mainly due to
the different precision effects, time-series random noises and uniform
random-numbers in simulation and hardware implementation. Thus,
one can draw the conclusion that the simplified particle PHD filter can
be applied to the MTT problems effectively.

6. CONCLUSION

In this paper, a simplified particle PHD filter and its hardware
implementation are proposed for MTT problems. Numerical
simulation results and experiment study indicate that compared with
the standard particle PHD filter, the proposed simplified algorithm,
which simplifies the update step and then removes the barrier of the
hardware implementation, exhibits similar performances, has faster
processing rate, and can be efficiently implemented in hardware. In
this way, the proposed method can be used to effectively solve the
MTT problems.
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