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Abstract—Up to now, ray-tracing simulations are commonly used
with a deterministic approach. Given the input parameters, the
ray-tracing algorithm computes a value for the electric field. In
this paper, we present a method that aims at computing the mean
and standard deviation of the electric field. More precisely, we aim
to obtain the probabilistic content of the electric field value and
direction. We assume that this uncertainty results from input random
variables which we consider uniformly distributed. Since ray-tracing
computations have a high computational cost, we use spectral methods
in order to optimize the number of simulations. We consider 2D
electromagnetic propagation for the multi-path components, which can
interact with the environment through four processes: transmission,
single reflection, double reflection and diffraction. These are modelled
using adequate coefficients. In order to calculate the polynomial
chaos expansion coefficients, we use the projection method and
Gauss-Legendre quadratures. These coefficients can then be used to
determine the Sobol indices of input parameters. This is done in order
to neglect variables in practical computation of the uncertainties.

1. INTRODUCTION

Ray-tracing is a classical high frequency method for calculating prop-
agation through regions of varying propagation velocity, absorption
characteristics, and reflecting surfaces. To the authors’ knowledge, the
uncertainties related to the output of ray-tracing simulations are not
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known. There are two reasons that cause these uncertainties. First,
the underlying mathematical model (i.e., GTD) is constructed on sim-
plified hypothesis. Second, uncertainties are also attached to the values
of the input parameters. In this paper the uncertainties are supposed
to only result from uncertain input variables, and a spectral method
is used in order to determine the uncertainty propagation throughout
the model. Projection methods are considered to determine general-
ized polynomial chaos expansion from which the probabilistic content
of the electromagnetic field can be obtained. The chaos coefficients
are then used to perform a sensitivity analysis and the computation of
Sobol indices. Finally, an algorithm that aims at computing the mean
and standard deviation of the electric field and its direction, for all
multi-path components, is presented.

The computation of the uncertainty on ray-tracing calculations
is particularly important in the framework of electromagnetic
exposure level assessment. Following guidelines for limiting exposure
published by independent scientific organizations [1], governments have
established legal levels. Prior to the construction of new antennas,
operators have to show that these levels will not be exceeded. This can
only be done through numerical computation using ray-tracing. It is
then obvious that having a knowledge of the uncertainty on ray-tracing
computations could help both the governments and the operators.

2. UNCERTAIN INPUTS FOR A RAY-TRACING
MODEL

Ray-tracing softwares allow to compute the electric field impinging on
a receive antenna. The waves are modelled as rays, also referred to as
the multi-path components (MPC). The electric field at the receiver
is calculated by summing all the different multi-path components that
draw a path between the transmitter ans the receiver. The electric
field of each MPC is computed thanks to the ray-tracing model that
take into consideration the different interactions undergone by the ray
through its propagation. It should be noticed that these expressions
give a-different-value for every multi-path component independently.
In order to calculate the uncertainty on the output of the ray-
tracing model, an uncertainty on each multi-path component is to be
computed.

With the ray-tracing model considered, one has first to determine
which inputs shall be considered as uncertain variables. Next, since
every multi-path component undergo a combination of interactions:
transmission, reflection and diffraction, our analysis begins with the
study of each interaction taken individually.
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3. SPECTRAL METHODS

It is known that ray-tracing simulations have an highly important
computation cost. For that reason, the use of Monte Carlo simulations
in order to derive the mean value and the standard deviation of the
electric field strength is practically impossible. Hence, a method that
decreases the number of computations is required when calculating the
statistics of the output.

Polynomial chaos decomposition of a model responses were
introduced by Wiener in 1938 [2]. Twenty years ago [3], it was
suggested to use spectral methods in engineering. It has been used
recently in mechanics. Let M be the stochastic model given by the
mathematical representation of the ray-tracing algorithm presented in
Section 5. The output random variable Y is the model response to a
random vector X; e.g., for the computation of the electric field strength
Y = M(X).

The spectral method consists in using a polynomial chaos
expansion for the response. When the input random variables are
standard uniform random variables on [−1, 1], the model response may
directly be expanded on a basis given by the Legendre polynomials. As
we consider here non standard uniform variables, an isoprobabilistic
transform I is to be used, for a model with M random inputs

X = I(ζ) ζ ∼ U
(
[−1, 1]M

)
. (1)

Thus, any second-order random variable may be expanded in the
following way

Y = M (I(ζ)) ≈
P−1∑

k=0

ykΨk(ζ) (2)

where the Legendre polynomial chaos expansion has been truncated.
The number of coefficients P is given by [4]

P =
(M + p)!

M !p!
(3)

with p the maximal degree of unidimensional polynomials. In order
to compute the chaos coefficients {yk; k = 0, . . . , P − 1}, we use the
projection method which lead to the following expression

yk =
1

‖Ψk‖2

∫
M◦ I(ζ)Ψk(ζ)fU (ζ)dζ (4)

where we can simplify the probability density function to fU (ζ) =
(1/2)M , since we assume uniformly distributed independent random
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variables. The multidimensional integral is computed using a Gauss-
Legendre quadrature [5]

yk =
(1/2)M

‖Ψk‖2

K∑

i1=1

. . .
K∑

iM=1

wi1 . . . wiMM◦ I(ζi1 , . . . , ζiM )Ψk(ζi1 , . . . , ζiM )

(5)
where we use [4] a scheme of order K = p + 1 and {ζij ; ij = 1, . . . , K}
and {wij ; ij = 1, . . . , K} in each dimension are the integration points
and weights computed using the theory of orthogonal polynomials.
Finally, the mean value and the standard deviation are derived from
the chaos coefficients using [6]

µPC = y0 (6)
and

σ2
PC =

P−1∑

k=1

yk‖Ψk‖2. (7)

4. SENSITIVITY ANALYSIS

Sobol indices are a measure of the model sensitivity w.r.t. uncertain
inputs. Let the M input parameters of the ray-tracing algorithm
be gathered in a input vector x. For any function f , the Sobol
decomposition of f(x) reads [7]

f(x1, . . . , xM ) = f0 +
M∑

i=1

fi(xi) +
∑

1≤i<j≤M

fij(xi, xj)

+ . . . + f1...n(x1, . . . , xM ). (8)
The Sobol indices are then defined as follows

Si1...is =
Di1...is

D
(9)

where the partial variance

Di1...is =
∫

[0,1]s
f2

i1...is(xi1 , . . . , xis)dxi1 . . . dxis ,

1 ≤ i1 < . . . < is ≤ M ; s = 1, . . . , M. (10)
The total variance D can be written as

D =
∫

[0,1]M
f2(x)dx− f2

0 (11)

=
M∑

i=1

Di +
∑

1≤i<j≤M

Dij + . . . + D1...M . (12)
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It has been shown [4] that approximations for the Sobol indices
can be computed using the chaos coefficients presented in Section 3.
In order to present that formula, we need to introduce multi-index
α = (α1, . . . , αM ) to rewrite the chaos polynomials Ψj(x) of (2) in the
following way

Ψα(x) =
M∏

i=1

Lαi(xi), (13)

where Lk(x) is the kth Legendre polynomial. Then, let us introduce
the set of α multi-indices such that only the indices (i1, . . . , is) are
nonzero

Ii1...is =
{

α :
αk > 0 k ∈ (i1, . . . , is) ∀k = 1, . . . ,M

αj = 0 j /∈ (i1, . . . , is) ∀j = 1, . . . , M

}
. (14)

Finally, the chaos-based Sobol indices are defined as

SUi1...is =
∑

α∈Ii1...is

y2
α‖Ψα‖2

σ2
PC

, (15)

where the models defined on [0, 1]M are first mapped onto [−1, 1]M by
a linear transform of the input parameters.

5. RAY-TRACING MODEL

Let a 2D-indoor ray-tracing model at 2.45 GHz be considered. It is
obvious that the method presented up to now could easily be adapted
to more complex 3D ray-tracing models. Four possible phenomena
are taken into consideration: transmission through a wall, reflection
(simple or double) on a wall and diffraction on edges. A perpendicular
polarization of the electric field is also assumed. With these hypothesis,
the electric field of each of the transmitted and reflected rays is given
by

E = T1T2 . . . R1R2

√
60PTX GTX

e−jβd

d
, (16)

where PTX and GTX are, respectively, the transmitted power and gain,
β is the free-space wave number, and d is the distance travelled by
the multi-path component. For our simulations, we use an unlimited
number of transmissions combined or not with one (simple or double)
reflection or one diffraction. The coefficients T and R are computed
assuming lossy dielectrics [8–10].
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Figure 1. Geometrical parameters for an edge-diffraction.

The model adopted to calculate the electric fields of each diffracted
ray is given by

E = E0(s
′)D

√
s′

s(s + s′)
e−jβs (17)

where s′ and s are, respectively, the distance between the diffraction
point and the transmitter and the diffraction point and the receiver,
see Fig. 1 and E0 is the free-space field strength. In order to compute
the diffraction coefficient D, we use the heuristic extension of the UTD
for a wedge with impedance faces (assuming vertical polarization) is
used [11].

6. PROBABILITY DENSITY FUNCTIONS

The uncertain input parameters are determined by inspection of the
ray-tracing model. Some parameters appear as multiplicative factors.
Therefore, their effect on the output can be easily assessed and should
not be taken into consideration. Hence, the uncertain parameters we
ought to treat are the following. First, the coordinates of the emitter
antenna and the positions of the walls. Second, the dielectric properties
of the latter such as the permittivity and the conductivity are also
prone to uncertainty. Finally we should also assume that the thickness
of these walls should be a random variable. The following variables are
taken into consideration:

• the transmitter coordinates (xTX , yTX ),
• the wall permittivity ε,
• the wall conductivity σ,
• the wall thickness t,
• the position of the wall and
• the diffraction point coordinates (xD, yD).
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Uniformly distributed random variables are chosen in order to model
these uncertainties. It should be noticed that we carried out
simulations that prove that an uncertainty of 20MHz on a central value
of 2.45 GHz led to variations in the electric field that were negligible
compared to the others we introduce later. Hence, we used a 2.45 GHz
frequency as an exact parameter.

7. NUMERICAL ANALYSIS

A maximal uncertainty of 5 cm has been chosen for the positions, e.g.,
for a deterministic coordinates of (1, 2) for the emitter antenna, we use
the following probability density functions (in m)

xTX ∼ U(0.95, 1.05) yTX ∼ U(1.95, 2.05). (18)

This uncertainty is obtained through an analysis of the common sizes
of today’s electronic devices.

Uniform intervals for the non spatial random inputs are still to be
found. As the dielectric properties vary much with the composition,
concrete walls are chosen with the following properties

εr ∼ U(4, 9) (19)

for the relative permittivity and

σ ∼ U(0.001, 0.1) (20)

for the conductivity (in S/m). Finally, walls are supposed to have
a thickness of 10 cm, and a maximum uncertainty of 5 cm from this
central value is considered; this lead to the probability density function
(in m)

t ∼ U(0.095, 0.105). (21)

For single and double reflections a 10 cm interval around the
central value is used for the coordinate whose direction is normal to
the wall. Finally, for diffractions, a maximum spread of 5 cm around
the deterministic coordinates xD and yD is assumed.

It should be noticed that, in the following, the multipath
contributions are added incoherently in order to calculate the total
strength field. In fact, if a coherent summation were carried out,
the total strength field would be very sensitive with respect to the
antenna position since constructive and destructive interferences would
occur. Conversely, when incoherent summation is used, which is the
case in this paper, it is expected that the total field strength is not
very sensitive to the antenna position due to the 1/d factor for the
amplitude in (16), where d does not vary a lot.
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As every multi-path component will undergo combination of
single interactions such as transmission, reflection or diffraction, it
is interesting to study these interactions individually. We will see
that some characteristics are common to all of these interactions. In
fact, although we have reduced the computation time using spectral
methods, it is still necessary to find a way to decrease the number of
simulations with the ray-tracing algorithm. This was done using the
Sobol indices that allowed us to determine which inputs have higher
influence than others on the output uncertainty. The following results
will be presented for different values of p, the maximum degree of
unidimensional Legendre polynomials.

8. UNCERTAINTY PROPAGATION THROUGH THE
RAY-TRACING MODEL

In Fig. 2, for a transmission, we use a position (in m) of the emitter and
receiver respectively of (1, 1) and (4, 4) whereas for a single reflection
they are (1, 1) and (2, 4). In both cases, the horizontal coordinate of
the wall is 2.5 m. For a diffraction, we use the situation presented in
Fig. 1 with the following deterministic coordinates: (0, 0) for TX, (3, 4)
for RX and (1, 3) for the diffraction point. The Sobol indices obtained
for a transmission are presented in Fig. 3 where p is the maximal order
of the Legendre unidimensional polynomials. We can observe that the
indices start to converge for a chaos order p = 5. It can also be noticed
that the wall conductivity is the most important parameter for the
Sobol variance analysis as it explains almost 70% of the total variance
when taken alone. If we add the indices SUε, SUσ and SUεσ, it is
remarkable that more than 88% of the total variance can be recovered.
The effect of uncertainties on the transmitter position is very low (less
than 1%) .

Figure 2. Deterministic coordinates (in m) for a transmission
(dashed) and a single reflection.
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Figure 3. Sobol indices for a transmission. Not shown indices are
negligible.
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Figure 4. Sobol indices for a
reflection. Not shown indices are
negligible.
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Figure 5. Sobol indices for a
diffraction. Not shown indices are
negligible.

Using again spectral methods to determine the Sobol indices for
a reflection, we obtain the results of Fig. 4. In this case, it is no longer
the conductivity but the permittivity that has the major influence on
the electric strength uncertainty. Next, the second order index SUεt

which has an effect superior to 30%. If we consider ε, σ and t, the
sensitivity analysis shows that more than 92% of the total variance is
kept. It should be noticed that very similar results are obtained when
studying a double reflection: the variance explained by the three latter
inputs accounts for more than 95%.

The last case we studied is a diffraction. As seen in Fig. 5, the
two most important inputs for that interaction are the conductivity
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and the permittivity with the first one clearly the more important.
Once again, we observe that the position uncertainties do not affect
much the output variance. Moreover, similarly to a transmission, if
we consider a simplified model only keeping the wall properties as
uncertain, 90% of the output variance is kept. It should be noted
that for this kind of interaction, it was not possible to expand the
response with Legendre polynomials of order 7 or more. This is due
to the complexity of the D coefficient and the high number (seven) of
inputs. As we already mentioned, the Sobol indices presented here are
obtained for the specific geometries exposed above. Nevertheless, when
varying relative positions of the emitter and the walls for these single
interactions, the indices undergo very little modifications, at most 5%.

9. OUTPUT UNCERTAINTY COMPUTATION

The data presented in Section 8 allow to suggest a method to compute
the output uncertainties due to imprecise inputs when considering a
2D ray-tracing software.

9.1. Electric Field Strength Module

As presented earlier, each of the three basic interactions have similar
characteristics in terms of sensitivity analysis related to the electric
field strength. More precisely, the Sobol indices have shown that
considering only the three wall properties (permittivity,conductivity
ans thickness), more than 90% of the total variance is kept. Hence, we
propose to use a simplified model whose inputs are given by only these
three parameters. In order to validate this assumption, we still have
to consider combinations of basic interactions. In fact, the 90% of the
output variance is still observed when making sensitivity analysis for
more complex paths, such as combinations of several transmissions
with one (single or double) reflection or one diffraction. Finally,
comparisons to Monte Carlo simulations suggest to use Legendre
polynomials of maximal order of 8.

9.2. Reception Angle Module

The incidence angle (on the receiver) uncertainty computation is easier.
Only position uncertainties have to be considered, since wall properties
do not affect the path in the ray-tracing model. We notice that
these inputs cause linear variations of the incidence angle, for all
interactions. Finally, sensitivity analysis show that Sobol indices are
similar for different inputs. This leads us to consider all the uncertain
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inputs in order to determine the angle uncertainty, without neglecting
parameters as we have done for the electric strength. Moreover, the
linear variations allows us to use Legendre polynomials of order 1.

9.3. Example

In this example, the mean electric field in a local zone round the
receiver is

E =
√∑

i

|Ei|2 = 0.051 V/m, (22)

with an uncertainty

σ =
√∑

i

σ2
i = 0.015 V/m. (23)

In order to illustrate the proposed method, simulations were
carried out using the indoor environment presented in Fig. 6. The

Table 1. Output of the uncertainty computation algorithm when
analysing the indoor environment of Fig. 6: µ, σ and V C = µ/σ are
related to the electric field E and the incidence angle θ; MPC with
µE < 0.001V/m are not presented.

Components µE (V/m) σE (V/m) V CE (%) µθ (◦) σθ (◦) V Cθ (%)

Direct 0.045 0.008 17.9 212.0 0.1 0.0

Single 0.005 0.004 76.9 221.1 0.2 0.1

Reflections 0.007 0.003 51.3 206.5 0.1 0.0

0.009 0.005 54.3 131.6 0.2 0.1

0.002 0.002 75.0 333.4 0.1 0.0

Double 0.010 0.005 49.5 126.0 0.2 0.1

Reflections 0.005 0.004 68.9 325.0 0.3 0.0

0.005 0.004 68.9 214.9 0.3 0.1

0.005 0.003 69.6 138.0 0.2 0.1

0.001 0.000 10.0 337.3 0.1 0.0

0.011 0.005 50.4 41.9 0.2 0.6

0.002 0.001 71.4 190.1 0.0 0.0

0.002 0.001 43.4 194.0 0.0 0.0

0.004 0.003 69.5 233.9 0.2 0.1

Diffractions 0.001 0.000 50.0 165.9 0.4 0.2

0.010 0.002 22.6 210.9 0.2 0.1

0.001 0.000 34.3 216.8 0.3 0.1
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Figure 6. Example indoor environment. The coordinates for the
emitter and receptor antennas are respectively (1, 1) and (9, 6).

deterministic positions of the emitter and receiver are respectively
of (1, 1) and (9, 6). The considered geometry leads to 28 multi-path
components: the direct one, 4 single reflections, 14 double reflections
and 9 diffractions. The outputs of our software are given in Table 1.

10. CONCLUSION

An algorithm that allows to quantify the uncertainty on ray-tracing
simulations outputs has been implemented: the electric field strength
and the receptor angle. A methodology that gives the mean value
and the standard deviation for both quantities, for all multi-path
components is then suggested. Usually, a ray-tracing software has a
highly important computation cost, the presented method optimises
the number of ray-tracing simulations by using spectral methods. The
output uncertainty considered are only due to uncertain inputs and
random uniform variables are used. The uncertainty is propagated
throughout the model, using a projection method and Gauss-Legendre
quadratures in order to compute the coefficients of the polynomial
chaos expansion.

The uncertainty on the electric strength requires more attention
than that of the angle. The chaos expansion allows to derive
sensitivity indices, i.e., the Sobol indices related to the uncertain
input parameters. In order to illustrate the method, a 2D-model
for the ray-tracing is considered. Obviously, the methodology could
easily be adapted for more complex ray-tracing simulations. Three
basic interactions are taken into consideration: a transmission, a
reflection and a diffraction. It has been observed that for the three
interactions, more than 90% of the total variance is due to the wall
properties, i.e., permittivity, conductivity and thickness. Afterwards,
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it has been shown that this is also the case for more complex multi-
path components. In all situations, the uncertainties on position of
the emitter and of the walls can be neglected. This has led to suggest
to use a three-inputs reduced model to estimate the uncertainty on
the electric strength. The angle uncertainty is easier to obtain, as the
computation costs are much reduced. All the uncertain inputs can be
kept: position of the emitter and of walls for a reflected multi-path
components and position of the emitter and the diffraction point for a
diffraction. As the proposed method is non-intrusive, it can be applied
to any ray-tracing code without any modification.
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