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Abstract—By introducing bistatic geometry to near range microwave
imaging systems, this paper proposes a near range three dimensional
(3D) bistatic imaging geometry based on planar scanning aperture and
establishes corresponding echo model. Then, the paper deduces the
3D bistatic Omega-K imaging algorithm based on implicit spectral
decomposition, in which the impacts of residual phase, including
position displacement, range, azimuth and elevation defocusing, are
analyzed and compensated. Finally, the 3D bistatic imaging geometry
and algorithm are investigated and verified via numerical simulations
and experiments using a near range imaging system.

1. INTRODUCTION

Near range microwave imaging systems are considered one of the most
promising systems for applications in the field of concealed weapon
detection, biomedical imaging, non-destructive testing, etc. Based on
the amplitude and phase information recorded by scanning a planar
aperture in two orthogonal directions and transmitting broadband
signals in range direction, the systems can reconstruct 3D complex
image and obtain the shape, structure, and scattering properties of
interested targets in the illuminated scene [1–4]. Meanwhile, near range
microwave imaging technique has advantages of penetrating, security
and high resolution comparing with other imaging techniques such as
visible light, infrared light, X-ray, etc. [2, 5, 6].
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Bistatic geometry is characterized by separated transmitter and
receiver. And bistatic imaging system can exploit non-backscattering
information included in the bistatic reflectivity of targets, which is
helpful to classify and identify different kinds of targets [7, 8].

By introducing bistatic geometry to near range microwave imaging
system, this paper proposes 3D bistatic imaging geometry. Specially,
the bistatic range equation is a dual square root, resulting that
the monostatic algorithms cannot be applied to bistatic geometry.
Some two dimensional (2D) bistatic algorithms [9, 10] are modified
from monostatic algorithms by means of making approximations and
simplifications to the dual square root. The common shortcoming of
these algorithms is their rigorous applying conditions. Based on the
principle of implicit spectral decomposition, Ender [11] proposed a
method which adopted a linear fit of the phase term in wavenumber
domain which can minimize the residual phase error. QIU [7]
deduced an Omega-K algorithm in which the impacts of remaining
phase errors are studied and a compensation method is proposed.
However, these algorithms which are developed particularly for bistatic
geometry [7, 12–14] are mostly deduced for 2D case, and only the 2D
complex image of scene can be reconstructed. This paper deduces
the 3D bistatic Omega-K imaging algorithm for near range microwave
imaging systems and analyzes the impacts of residual phase.

The structure of the paper is organized as follows. 3D
bistatic imaging geometry based on planar scanning aperture and
corresponding echo model are established in Section 2. Then, in
Section 3, the paper deduces the 3D bistatic Omega-K algorithm
based on implicit spectral decomposition, and analyzes the impacts
of residual phase, including position displacement, range, azimuth and
elevation defocusing. Finally, the correctness of the imaging geometry
and imaging algorithm are verified via numerical simulations and near
range imaging experiment in Section 4. Section 5 provides several
conclusions.

2. 3D BISTATIC IMAGING GEOMETRY

In this section, 3D bistatic imaging geometry and corresponding
echo model are established and analyzed. Firstly, Subsection 2.1
analyzes the 3D bistatic imaging geometry [2, 16, 15–18], which is
formed by scanning a planar aperture in two orthogonal directions and
transmitting broadband signals in range direction. Then, based on the
geometry, Subsection 2.2 establishes the corresponding echo model.
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Figure 1. 3D bistatic imaging geometry.

2.1. Imaging Geometry

As shown in Fig. 1, by setting the center of scanning plane to be the
origin of the Cartesian coordinates, the directions of range, azimuth
and elevation are denoted as Y , X and Z axes, respectively.

The transceiver consists of transmitter At and receiver Ar, with
azimuth interval of d. As shown in Fig. 1, the transceiver moves
along azimuth and elevation directions to synthesize planar scanning
aperture on the plane x−z, with initial scanning position A1 and final
scanning position A2. Denote the instantaneous scanning position as
A(x′, 0, z′), then the coordinates of transmitting and receiving antennas
can be expressed as At(x′ + d

2 , 0, z′) and Ar(x′ − d
2 , 0, z′).

Besides, yr is the distance of scene center from the aperture, and
I indicates an arbitrary point scatterer located at (x, y, z).

2.2. Echo Model

Suppose that the 3D complex reflectivity function of the distributed
targets in Cartesian coordinates is I(x, y, z). In this case, the measured
echoes [1, 2] from a given point scatterer located at (x, y, z) can be
written as,

EI

(
x′,Kω, z′

)
= I (x, y, z) exp (−jKωRbi) (1)

where Kω is frequency wavenumber of stepped frequency continuous
wave signal, and is related to instantaneous frequency f , the speed
of light c via Kω = 2πf

c . Kω ∈ [Kω min, Kω max], where Kω min and
Kω max are the wavenumbers at minimum and maximum frequencies,
respectively. And Rbi is the two-way distance between the transceiver
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in scanning position A(x′, 0, z′) and an arbitrary point scatterer located
at (x, y, z),

Rbi = Rt + Rr =

√(
x′ +

d

2
− x

)2

+ y2 + (z′ − z)2

+

√(
x′ − d

2
− x

)2

+ y2 + (z′ − z)2 (2)

Therefore, the response measured at scanning position A(x′, 0, z′)
has the following form,

ERbi

(
x′,Kω, z′

)
=

∫∫∫

V
EI

(
x′,Kω, z′

)
dr

=
∫∫∫

V
I (x, y, z) exp (−jKωRbi) dr (3)

where V denotes the illuminated area, r is position vector of the targets
and dr = dxdydz. |x′ − x| ≤ Lx

2 and |z′ − z| ≤ Lz
2 , where Lx and Lz

are the synthetic aperture lengths of azimuth and elevation, which are
determined by −3 dB beam width φx in azimuth and φz in elevation.

3. 3D OMEGA-K ALGORITHM FOR 3D BISTATIC
IMAGING GEOMETRY

This section deduces the 3D bistatic Omega-K imaging algorithm based
on implicit spectral decomposition, in which the residual phase is
analyzed and compensated.

3.1. Echo Spectrum in Wavenumber Domain

By performing two dimensional FFT with respect to x′ and z′, and
interchanging the order of the integrals, the echoes in (3) can be
rewritten as,

ERbi
(Kx,Kω, Kz) =

∫∫∫

V
I (x, y, z)

×
{∫

x′

∫

z′
exp

(−jKωRbi − jKxx′ − jKzz
′) dx′dz′

}
dr (4)

Let u = x′ − x, v = z′ − z, and (4) becomes,

ERbi
(Kx,Kω, Kz) =

∫∫∫

V
I (x, y, z) exp (−jKxx− jKzz)

×
{∫

u

∫

v
exp[−j (KωRbi+Kxu+Kzv)]dudv

}
dr (5)
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Denote Φ(u, v) as the phase of the last integral term in (5),
Φ (u, v) = KωRbi (u, v) + Kxu + Kzv (6)

where

Rbi(u, v) =

√(
u +

d

2

)2

+ y2 + v2 +

√(
u− d

2

)2

+ y2 + v2 (7)

According to the method of stationary phase (MSP), it is
necessary to solve the stationary point (u∗, v∗) for computing the
spectrum in (5), and (u∗, v∗) should satisfy,

∂Φ
∂u
|(u∗,v∗) = 0,

∂Φ
∂v
|(u∗,v∗) = 0 (8)

i.e.,

u∗ + d
2√(

u∗ + d
2

)2
+ y2 + v∗2

+
v∗ − d

2√(
u∗ − d

2

)2
+ y2 + v∗2

= −Kx

Kω

v∗√(
u∗ + d

2

)2
+ y2 + v∗2

+
v∗√(

u∗ − d
2

)2
+ y2 + v∗2

= −Kz

Kω

(9)

Let C1 = Kx/Kω, C2 = Kz/Kω, then u∗ and v∗ are functions
of C1, C2 and y, which are denoted as u∗ = u∗(C1, C2, y) and
v∗ = v∗(C1, C2, y). Then, the stationary phase can be expressed as,
Φ(u∗, v∗) = Kω [Rbi (C1, C2, y) + C1u

∗ (C1, C2, y) + C2v
∗ (C1, C2, y)]

= Kω

{√[
u∗ (C1, C2, y) +

d

2

]2

+ y2 + v∗ (C1, C2, y)2

+

√[
u∗ (C1, C2, y)− d

2

]2

+ y2 + v∗ (C1, C2, y)2

+C1u
∗ (C1, C2, y) + C2v

∗ (C1, C2, y)
}

(10)

Then, the implicit spectrum in wavenumber domain of the echo
in (5) can be written as,

ERbi
(Kx,Kω,Kz) =

∫∫∫

V
I (x, y, z) exp (−jKxx−jKzz)

{exp [−jΦ(u∗, v∗)]} dr (11)
If the last exponential term in (11) is separable [11], that is,

Φ (u∗, v∗)=Kω [Rbi (C1, C2, y)+C1u
∗ (C1, C2, y)+C2v

∗ (C1, C2, y)]
=Kω [h (C1, C2) q(y)+g (C1, C2)] (12)
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then, the 3D complex image of the scene can be reconstructed through
compensating the phase Kωg(C1, C2) which is independent of y,
performing a wavenumber domain interpolation which can transform
the data from (Kx,Kω,Kz) domain to [Kx,Kωh(C1, C2),Kz] domain,
and finally performing a 3D IFFT [2, 7].

However, different from monostatic 3D imaging geometry, the
bistatic range equation is a dual square root, resulting that the term
is not separable, and only an approximate solution can be found.

3.2. Interpolation in wavenumber domain

This subsection achieves the factorization of Φ(u∗, v∗) in (12). Denote
the scene center as reference position yr and expand Φ(u∗, v∗) to its
Taylor series at yr, that is,

Φ (u∗, v∗) = Φ (C1, C2; yr) +
∂Φ
∂y

∣∣∣
yr

(y − yr) +
1
2!

∂2Φ
∂y2

∣∣∣
yr

(y−yr)
2

+
1
3!

∂3Φ
∂y3

∣∣∣
yr

(y − yr)
3 + O

[
(y − yr)

4
]

(13)

where

∂Φ
∂y

∣∣∣
yr

= Kω

{
yr√[

u∗ (C1, C2, yr) + d
2

]2
+ y2

r + [v∗ (C1, C2, yr)]
2

+
yr√[

u∗ (C1, C2, yr)− d
2

]2
+ y2

r + [v∗ (C1, C2, yr)]
2

}

+Kω

(
∂Φ
∂u

∣∣∣
(u∗,v∗)

∂u

∂y

∣∣∣
yr

)
+ Kω

(
∂Φ
∂v

∣∣∣
(u∗,v∗)

∂v

∂y

∣∣∣
yr

)
(14)

According to (8), the second and third terms in (14) are zero,
therefore, (14) can be simplified to be,

∂Φ
∂y

∣∣∣
yr

= Kω

{
yr√[

u∗ (C1, C2, yr) + d
2

]2
+ y2

r + [v∗ (C1, C2, yr)]
2

+
yr√[

u∗ (C1, C2, yr)− d
2

]2
+ y2

r + [v∗ (C1, C2, yr)]
2

}
(15)

Let
Ky = Kω · h (C1, C2) = Kω · ∂Φ

∂y

∣∣∣
yr

(16)
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then, after compensating the phase Φ(C1, C2; yr) which is irrelevant
to y, the data can be transformed from (Kx,Kω,Kz) domain to
(Kx,Ky,Kz) domain via interpolation according to (16).

3.3. Residual Phase Compensation

After wavenumber domain interpolation according to (16), the residual
item in (13) is called residual phase, which is analyzed in this
subsection [7].

In (13), define,

p (Kx,Kω,Kz) =
∂2Φ
∂y2

∣∣∣
yr

, f (Kx,Kω,Kz) =
∂3Φ
∂y3

∣∣∣
yr

(17)

Then, the residual phase in (13) becomes,

Φres (Kx,Ky,Kz; y) = Ky (y − yr) +
1
2!

p (Kx,Ky,Kz) (y − yr)
2

+
1
3!

f (Kx,Ky,Kz) (y − yr)
3 (18)

Define that Kx0, Ky0 and Kz0 are the central values of Kx,
Ky and Kz, respectively. Then, by expanding p(Kx,Ky, Kz) and
f(Kx,Ky, Kz) to their Taylor series at Ky0 and retaining the first three
terms, the residual phase can be expressed as,

Φres (Kx,Ky,Kz; y) = Ky0 (y−yr)+(Ky−Ky0)q(Kx,Kz; y)

+Φrg
err (Kx,Ky,Kz; y)+Φpl

res (Kx,Ky0,Kz; y)(19)

where

q (Kx,Kz; y) = (y − yr) +
1
2!

∂p (Kx,Ky,Kz)
∂Ky

∣∣∣
Ky0

(y − yr)
2

+
1
3!

∂f (Kx,Ky,Kz)
∂Ky

∣∣∣
Ky0

(y − yr)
3 (20)

Φrg
err (Kx,Ky,Kz; y) = (Ky −Ky0)

2

×
[

1
2!

∂2p (Kx,Ky,Kz)
∂K2

y

∣∣∣
Ky0

(y − yr)
2

+
1
3!

∂2f (Kx,Ky,Kz)
∂K2

y

∣∣∣
Ky0

(y − yr)
3

]
(21)

Φpl
res (Kx, Ky0,Kz; y) =

1
2!

p (Kx,Ky0,Kz) (y − yr)
2

+
1
3!

f (Kx,Ky0,Kz) (y − yr)
3 (22)
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In (21), (22), Φrg
err is range phase error, Φpl

res is the residual phase
term which is relevant to azimuth and elevation variables.

Again, by expanding p(Kx,Ky0,Kz) and f(Kx,Ky0,Kz) to their
Taylor series at (Kx0,Kz0) and retaining the first three terms, (22)
becomes,

Φpl
res (Kx,Ky0,Kz; y) = xm(y) + zm(y)

+Φaz
err (Kx; y)+Φel

err (Kz; y)+Φae
err (Kx; Kz; y)

+
1
2!

p (Kx0,Ky0,Kz0) (y − yr)
2

+
1
3!

f (Kx0,Ky0,Kz0) (y − yr)
3 (23)

where

xm(y) = (Kx −Kx0)
[

1
2!

∂p (Kx,Ky0,Kz)
∂Kx

∣∣∣
(Kx0,Kz0)

(y−yr)
2

+
1
3!

∂f (Kx,Ky0, Kz)
∂Kx

∣∣∣
(Kx0,Kz0)

(y−yr)
3

]
(24)

zm(y) = (Kz −Kz0)
[

1
2!

∂p (Kx,Ky0,Kz)
∂Kz

∣∣∣
(Kx0,Kz0)

(y − yr)
2

+
1
3!

∂f (Kx,Ky0, Kz)
∂Kz

∣∣∣
(Kx0,Kz0)

(y − yr)
3

]
(25)

Φaz
err(Kx; y) =

1
2!

(Kx−Kx0)
2

[
1
2!

∂2p (Kx,Ky0,Kz)
∂K2

x

∣∣∣
(Kx0,Kz0)

(y−yr)
2

+
1
3!

∂2f(Kx,Ky0,Kz)
∂K2

x

∣∣∣
(Kx0,Kz0)

(y−yr)
3

]
(26)

Φel
err(Kz; y) =

1
2!

(Kz−Kz0)
2

[
1
2!

∂2p (Kx,Ky0,Kz)
∂K2

z

∣∣∣
(Kx0,Kz0)

(y −yr)
2+

1
3!

∂2f(Kx, Ky0,Kz)
∂K2

z

∣∣∣
(Kx0,Kz0)

(y−yr)
3

]
(27)

Φae
err(Kx,Kz; y) = (Kx −Kx0) (Kz −Kz0)

×
[

1
2!

∂2p (Kx, Ky0,Kz)
∂Kx∂Kz

∣∣∣
(Kx0,Kz0)

(y − yr)
2

+
1
3!

∂2f(Kx,Ky0,Kz)
∂Kx∂Kz

∣∣∣
(Kx0,Kz0)

(y−yr)
3

]
(28)
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According to (19)–(28), the residual phase in (18) is,

Φres(Kx,Ky,Kz; y) = Φconst + (Ky −Ky0) q(Kx,Kz; y) + xm(y)
+zm(y) + Φrg

err (Kx,Ky,Kz; y) + Φaz
err(Kx; y)

+Φel
err(Kz; y) + Φae

err(Kx, Kz; y) (29)

Then, after removing the phase Φ(C1, C2; yr) and performing
wavenumber domain interpolation, the echo spectrum in (11) becomes,

ERbi
(Kx,Ky,Kz) =

∫∫∫

V
I(x, y, z) exp (−jKxx−jKzz)

×exp
{
−j

[
Φconst+(Ky−Ky0) q(Kx,Kz; y)+xm(y)

+zm(y)+Φrg
err+Φaz

err+Φel
err+Φae

err

]}
dr (30)

Based on (29) and (30), the impacts of each term are analyzed as
follows, meanwhile, the procedures of residual phase compensation are
discussed.

1) Const phase: The const phase Φconst has no impact on the
focusing quality.

Φconst = Ky0(y − yr) +
1
2!

p (Kx0,Ky0,Kz0) (y − yr)
2

+
1
3!

f (Kx0,Ky0, Kz0) (y − yr)
3

(31)

2) Position displacement: The linear phase terms in (29) and (30)
will result in the position displacements.

Range position: Performing an IFFT with respect to Ky, the
targets located at range y will appear at q(Kx,Kz; y) in (Kx,Kz; q)
domain. Therefore, the algorithm will finally give an image in (x, q, z)
domain, where q depends on (Kx,Kz). And the range y should meet
the following inequality in order to ensure all the targets in the scene
can be well focused [7],

max [q(Kx,Kz; y)]−min [q(Kx,Kz; y)] ≤ ∆q (32)

where ∆q indicates the range interval of the image. And the targets
located at range y will appear at q(Kx0,Kz0; y) when (32) is satisfied.

After IFFT with respect to Ky, (30) becomes,

ERbi
(Kx, q, Kz) =

∫

x

∫

z
I(x, q, z) exp (−jKxx− jKzz) dxdz

× exp
{
−j

[
xm(y) + zm(y) + Φrg

err + Φaz
err + Φel

err + Φae
err

]}
(33)
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Azimuth and Elevation position: According to (11), (23)–(25),
(33), if performing IFFT with respect to Kx and Kz, the targets
located at x, z will appear at x + xm(y), z + zm(y). It can be seen
that xm(yr) = zm(yr) = 0 and xm(y), zm(y) increase with |y − yr|.
Therefore, the targets at reference range yr will appear in the correct
positions, while targets beyond yr will deviate from their original
positions.

3) Range phase error: Φrg
err(Kx,Ky,Kz; y) is range phase error,

which is usually very small (less than 0.05 rad in the simulation of this
paper) and can be ignored.

4) Azimuth and elevation phase error: Φaz
err(Kx; y) and

Φel
err(Kz; y), that is, the azimuth and elevation phase error will de-

grade the focusing quality of azimuth and elevation. According to (26)
and (27), Φaz

err(Kx; yr) = 0, Φel
err(Kz; yr) = 0 and both of the two terms

increase with |y− yr|. Therefore, the targets at reference range yr will
not be affected, while targets at boundary of the scene will suffer the
greatest impact. Similarly, the phase error Φae

err(Kx;Kz; yr) which is
related to both of azimuth and elevation and called cross phase error in
this paper, has no effect on targets at reference range, while affecting
the boundary targets.

5) Residual Phase Compensation: Based on the analysis in 2)–
4), the paper compensates the residual phase with the filter Hcomp in
(Kx, y, Kz) domain (i.e., (Kx, q, Kz) domain),

Hcomp (Kx,Kz; y) = exp
{
j[xm(y) + zm(y) + Φaz

err(Kx; y)

+Φel
err(Kz; y) + Φae

err(Kx; Kz; y)]
}

(34)

Denote the signal after compensation as EComp, then, (33)
becomes,

EComp (Kx, q, Kz)=
∫

x

∫

z
I(x, q, z) exp (−jKxx− jKzz) dxdz (35)

from which the 3D complex image in (x, q, z) domain can be
reconstructed by performing 2D IFFT with respect to Kx and Kz.

3.4. Reconstruction procedure

Based on the analysis of Subsection 3.2–3.3, the block dia-
gram [2, 7, 15, 16] of 3D bistatic Omega-K algorithm, which is based on
implicit spectral decomposition and includes the procedure of residual
phase compensation, can be summarized as shown in Fig. 2.

Step 1. Performing 2D FFT with respect to x′ and z′.
Step 2. Compensating the phase Φ(C1, C2; yr) which is irrelevant

to y.
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Figure 2. Block diagram of 3D bistatic Omega-K algorithm.

Step 3. Performing wavenumber domain interpolation to trans-
form the data from (Kx, Kω, Kz) domain to (Kx, Ky, Kz) domain.

Step 4. Performing IFFT with respect to Ky.
Step 5. Compensating the residual phase.
Step 6. Performing 2D IFFT with respect to Kx and Kz.
Some implementation details are described as follows.
1) Wavenumber domain interpolation in Step 3. Wavenumber

domain interpolation can be achieved through the following sub-steps.
Calculation of u∗(C1, C2, y) and v∗(C1, C2, y). For each Kx, Kω

and Kz, the stationary point u∗(C1, C2, y) and v∗(C1, C2, y) can be
found by means of numerical calculation through (9).

Calculation of Ky. Based on the result of u∗(C1, C2, y) and
v∗(C1, C2, y), Ky can be solved through (16). And Ky is a function
of Kx, Kω and Kz. Then, wavenumber domain interpolation can be
achieved.

2) Residual phase compensation in Step 5. The calculation of
Hcomp mainly includes the following sub-steps.

Calculation of Φ(u∗, v∗). For some fixed Ki
x, Kj

y and Kk
z , where

i = 1, 2, ..., l, j = 1, 2, ...,m and k = 1, 2, ..., n. And l, m and n are the
numbers of control points, respectively. Ki,j,k

ω corresponding to Ki
x,

Kj
y and Kk

z can be calculated using numerical methods through (16).
Then Φ[u∗(Ki

x,Ki,j
ω , y), v∗(Kk

z ,Kk,j
ω , y)] versus y can be solved.

Calculation of p(Kx,Ky,Kz) and f(Kx, Ky,Kz). According to
Φ(u∗, v∗), p(Ki

x,Ki,j,k
ω ,Kk

z ) and f(Ki
x,Ki,j,k

ω ,Kk
z ) [i.e., p(Ki

x,Kj
y ,Kk

z )
and f(Ki

x,Kj
y ,Kk

z )] can be solved by means of polynomial fitting
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method. Then, p(Kx0,Ky0,Kz0) and f(Kx0,Ky0, Kz0) can be
calculated through polynomial interpolation. Accordingly, the partial
derivatives with respect to Kx, Ky and Kz can be derived by means
of polynomial fitting method.

Calculation of Hcomp. According to the partial derivatives solved
above, each term of the phase error can be calculated, which can form
the compensation phase of Hcomp.

3.5. Resolution

The resolutions of the 3D complex image depend on the frequency
bandwidth, center frequency and the dimensions of the synthetic
aperture [2]. And the range resolution δy, azimuth resolution δx and
elevation resolution δz can be expressed as,

δx =
λ0R

2Lx
, δy =

c

2B
, δz =

λ0R

2Lz
Lx,z = min

{
L′x,z, φx,z ×R

}
(36)

where λ0 is the wavelength of the center frequency, B is the bandwidth,
Lx,z are the synthetic aperture lengths of azimuth and elevation, L′x,z

are the scanning lengths of azimuth and elevation, φx,z = Kbλ0/Dx,z

are the beam width of the two directions, Kb = 0.89 is beam width
factor, Dx,z are the antenna physical size of azimuth and elevation,
and R is distance from targets to scanning plane.

4. SIMULATIONS AND EXPERIMENTS

By means of numerical simulations and experiments based on near
range imaging system, this section verifies the correctness and
effectiveness of the imaging geometry and corresponding imaging
algorithm of this paper.

4.1. Numerical simulations

The main simulation parameters, which are consistent with the actual
parameters of near range imaging system, are listed in Table 1.

The simulation scenario is shown in Fig. 3. There are 75 point
scatterers in the 3D space, divided into three groups of 25. And
the range from the three groups of scatterers to scanning plane are
1.2m, 1.5 m and 1.8m, respectively. Besides, for the scatter targets in
each group, both of the azimuth and elevation interval among adjacent
targets are 0.1m.

Theoretical resolutions can be calculated according to (36) and the
simulation parameters. The range resolution is 0.025 m. The azimuth
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Figure 3. Simulation scene which consists of 75 point scatterers
divided into three groups, and each group includes 25 ones, spaced
0.1m in azimuth and elevation.

Table 1. Simulation parameters.

Parameters Value

Frequency range 31–37GHz

Bandwidth 6GHzRange
Wavelength of center frequency 0.0088m

Number of frequency points 101

Interval of antennas 0.5m/0m

Antenna physical size 0.015m/0.012 mAzimuth/Elevation
Scanning interval 5mm/5 mm

Scanning length 0.65m/0.65m

and elevation resolutions are determined by the synthetic aperture
lengths which are the smaller one of ÃL′x,z and φx,z R, and the calculating
procedures of azimuth and elevation resolutions are listed in Table 2.

4.1.1. Imaging Results.

In order to analyze the impacts of residual phase, both of the images
based on algorithms without and with residual phase compensation are
derived, and the 3D imaging results are shown in Fig. 4. The red one
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Table 2. Theoretical resolutions of targets located at the range of
1.2m, 1.5 m and 1.8 m.

ÃL′x,z φxR Azimuth φzR Elevation

Near (1.2 m) 0.65m 0.6282m 0.0084m 0.7853m 0.0081m

Center (1.5m) 0.65m 0.7853m 0.0102m 0.9816m 0.0102m

Far (1.8m) 0.65m 0.9423m 0.0122m 1.1779m 0.0122m
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Figure 4. 3D imaging result of simulation scenario with displayed
dynamic range of 13 dB.

is image without the compensation, while the black one is the image
with the compensation.

4.1.2. Targets Position.

Range position. According to the analysis in Subsection 3.3, the targets
located at range y will appear at q(Kx0, Ky0; y) under the condition of
(32), where

q(Kx0,Kz0; y) = y+2.414×10−4(y−yr)2−5.980×10−6(y−yr)3 (37)

Azimuth and elevation positions. Denoting the scene center as
reference range yr, then the targets at reference range will appear
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in the correct azimuth and elevation positions, while targets at the
boundary of scene will have largest offset from their original positions.

In order to highlight the position displacement, the displayed
dynamic range of Fig. 4 is 13 dB, which means that only the main
lobe of the targets are shown. It can be seen from Fig. 4 that there
are certain azimuth and elevation position offset between the red and
black image. The quantitative analysis can be achieved using profile
method.

For analyzing the azimuth and elevation position displacement,
profiles of different ranges are analyzed. It can be seen from Fig. 4
that there are three groups of targets which are in different ranges. The
center targets of each group are chosen to be analyzed and their profiles
are shown in Fig. 5. In the figure, (a)–(c) are results without residual
phase compensation and (d)–(f) are results with compensation.

In Figs. 5(a)–(c), the azimuth displacements of near, center and
far targets are 3mm, 0 mm and 5mm, respectively. And elevation
displacements are 4 mm, 0 mm and 4 mm, respectively. However, the
targets in Figs. 5(d)–(f) can be focused on right positions.
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Figure 5. Contrast of the profiles without and with residual phase
compensation. Horizontal axis indicates azimuth direction in units of
meter, vertical axis indicates elevation direction in units of meter, and
the displayed dynamic range is 25 dB. (a)–(c) are the profiles without
the compensation, (d)–(f) are profiles with the compensation.
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4.1.3. Focusing Quality.

The phase error can be calculated according to Subsection 3.5. The
results are shown in Fig. 6. In the calculation, l, m and n are 16.

Range phase error. Φrg
err(Kx,Kyb,Kz; y) in (21) is the range phase

error, where Kyb is the border of Ky. However, Φrg
err(Kx,Kyb,Kz; y) is

a triple function which is inconvenient to display. Therefore, Kz might
be fixed in the border Kzb and the result of Φrg

err(Kx,Kyb,Kzb; y) is
shown in Fig. 6(a). It can be seen that the range phase error is less
than 0.05 rad which has little effect on focusing quality of range.

Azimuth and elevation phase error. The results of Φaz
err, Φel

err and
Φae

err in (26)–(28) are shown in Figs. 6(b)–(d), respectively. Similarly,
Φaz

err(Kx,Kyb,Kzb; y), Φel
err(Kxb,Kyb,Kz; y) and Φae

err(Kx,Kyb,Kzb; y)
are shown for the convenience of display. It can be seen that the phase
error terms are zero in reference range, while have largest value in
boundary of range direction. Besides, the azimuth phase error is much
larger than elevation phase error.
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Figure 6. Phase error which will degrade the focusing quality.
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Table 3. Focusing quality of scatterers in different ranges. The
azimuth and elevation IRW and PSLR of the imaging result with
residual phase compensation are improved comparing with the result
without the compensation.

Without Compensation With CompensationLocation
IRW PSLR IRW PSLR

Range 0.02531m −13.10 dB 0.02521m −13.36 dBNear
Azimuth 0.00856m −11.72 dB 0.00842m −13.41 dB1.2m
Elevation 0.00821m −12.88 dB 0.00816m −13.27 dB

Range 0.02512m −13.30 dB 0.02510m −13.30 dBCenter
Azimuth 0.01022m −13.29 dB 0.01021m −13.31 dB1.5m
Elevation 0.01023m −13.33 dB 0.01023m −13.34 dB

Range 0.02531m −13.26 dB 0.02524m −13.35 dBFar
Azimuth 0.01239m −11.75 dB 0.01223m −13.44 dB1.8m
Elevation 0.01223m −12.68 dB 0.01221m −13.33 dB

According to the profiles in Fig. 5, the azimuth and elevation
focusing quality of near and far targets are degraded, which is
consistent with theoretical analysis and calculation results in Fig. 6.
And the focusing quality of the simulation are listed in Table 3. It can
be seen that the IRW and PSLR of the imaging result with residual
phase compensation are improved comparing with the result without
the compensation.

According to the analysis of the numerical simulation results, it
can be concluded that the scene illuminated by 3D bistatic imaging
geometry can be well reconstructed through the 3D bistatic Omega-K
algorithm deduced in this paper. And Subsection 4.2 provides further
verification through experiment based on near range imaging system.

4.2. Experiments

This subsection verifies the correctness and effectiveness of the imaging
geometry and imaging algorithm of this paper via near range imaging
experiment. Most of the experimental parameters are the same as
simulation parameters, and the experiment system and illuminated
scene are shown in Fig. 7.

As shown in Fig. 7, (a) shows the experimental system; (b) shows
the transmitting and receiving antennas, interval of which is 0.5m; and
the illuminated scene is shown in (c). The main targets in the scene
include steel square, scissor and solid metal balls, which are fixed on a
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(a)

(b)

(c)

Figure 7. Experiment system and illuminated scene. (a) shows the
experimental system; and (c) shows the transmitting and receiving
antennas; (b) is the illuminated scene.

rectangular foam. The detailed description of the scene is as follows.
The range from scene center to scanning plane is 1.5 m. And the

main targets are fixed on the front and back of the foam. In detail,
the front of the foam is 1.2 m away from the scanning plane, on which
several targets are fixed, including a steel square fixed with cotton
thread and transparent tape, four solid metal balls of 2 cm diameter
which form a shape of square with 0.4 m side length. And targets on
the back of the foam, which is 1.8 m away from the scanning plane,
include a scissor fixed with cotton thread and transparent tape, four
solid metal balls of 2 cm diameter with the same distribution as the
front ones. Besides, the scanning lengths of azimuth and elevation in
the experiment are 1.3 m, and the calculating procedures of azimuth
and elevation resolutions are changed into Table 4.

In order to analyze the effect of residual phase compensation, both
of the images based on algorithms without and with residual phase
compensation are reconstructed, and the results are shown in Fig. 8, in
which the red one is the image without the compensation and the black
one is the image with the compensation. It can be seen from Fig. 8
that there are certain azimuth and elevation position offset between
the red and black image.

Then, the azimuth and elevation focus quality are analyzed by
means of maximum projection method [1]. In detail, the 3D images
in Fig. 8 are projected to azimuth — elevation plane at range of 1.2 m
and 1.8 m, and the projected results are shown in Fig. 9.

In Figs. 9(a) and (b) are optical photos of the front and back of
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the foam. It can be seen that main targets on the front includes a steel
square and four solid metal balls marked with A, B, C and D, and main
targets on the back includes a scissor and four solid metal balls marked
with E, F, G and H. And (c) and (d) show the projections based on
reconstructed image without compensation, in which the azimuth and
elevation focus quality are degraded. Finally, (e) and (f) show the
projections based on reconstructed image with compensation. In these
two subfigures, not only the major targets of steel square, scissors,
metal balls but also the accessories including the hole (I), screw (II)
in the steel square and the plastic handle of the scissor are exactly
focused. Besides, the auxiliary objects including cotton thread (III)
and transparent tape (IV) are also well reconstructed. In order to
display the results more clearly, the enlarged major targets projections
of the 3D imaging result with residual phase compensation are shown
in Fig. 10.

The experiment and the imaging results of this subsection further
validate the feasibility and correctness of the proposed 3D bistatic
imaging geometry and corresponding 3D bistatic Omega-K algorithm.

Table 4. Theoretical resolutions of targets located at the range of
1.2m and 1.8 m.

ÃL′x,z φxR Azimuth φzR Elevation

Near (1.2m) 1.3m 0.6282m 0.0084m 0.7853 m 0.0067m

Far (1.8m) 1.3m 0.9423m 0.0084m 1.1779 m 0.0067m

Figure 8. 3D imaging result of the experiment scenario.
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Figure 9. Projections of imaging results without and with residual
phase compensation. (a) and (b) are optical photos of the front
and back of the foam; (c) and (d) show the results without the
compensation and (e) and (f) show the results with the compensation.

Figure 10. Enlarged projections of major targets which derived from
the 3D imaging with compensation.
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5. CONCLUSION

This paper proposes near range 3D bistatic imaging geometry and
establishes corresponding echo model. Then, the 3D bistatic imaging
algorithm based on implicit spectral decomposition are deduced
and the impacts of residual phase, including position displacement,
range, azimuth and elevation defocusing, are studied. Finally, the
paper validates the feasibility and correctness of the 3D bistatic
imaging geometry and corresponding algorithm by means of numerical
simulations and experiments based on near range imaging system. The
imaging results of simulations and experiments demonstrate that 3D
image of illuminated scene can be well reconstructed via the 3D bistatic
imaging algorithm deduced in this paper, and the method of residual
phase compensation in the algorithm can improve focusing quality of
the 3D image.
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APPENDIX A. DESCRIPTION OF THE VARIABLES
RELATED TO RESIDUAL PHASE

Table A1. Description of the variables related to residual phase.

Variable Description

Φres (Kx, Ky, Kz; y) Total residual phase

Φconst Const phase term

xm(y), zm(y) Linear phase terms, resulting in position displacements.

Φrg
err(Kx; y) Range phase error

Φaz
err(Kx; y) Azimuth phase error, resulting in azimuth defocusing

Φel
err(Kz; y) Elevation phase error, resulting in Elevation defocusing

Φae
err(Kx; Kz; y) Cross phase error
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